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ABSTRACT 

Direct Torque Control of Permanent Magnet Synchronous Motors With Non-Sinusoidal 

Back-EMF. (May 2008) 

Salih Baris Ozturk, B.S., Istanbul Technical University, Istanbul, Turkey; 

M.S., Texas A&M University, College Station 

Chair of Advisory Committee: Dr. Hamid A. Toliyat 

 
This work presents the direct torque control (DTC) techniques, implemented in 

four- and six-switch inverter, for brushless dc (BLDC) motors with non-sinusoidal back-

EMF using two and three-phase conduction modes. First of all, the classical direct torque 

control of permanent magnet synchronous motor (PMSM) with sinusoidal back-EMF is 

discussed in detail. Secondly, the proposed two-phase conduction mode for DTC of 

BLDC motors is introduced in the constant torque region. In this control scheme, only 

two phases conduct at any instant of time using a six-switch inverter. By properly 

selecting the inverter voltage space vectors of the two-phase conduction mode from a 

simple look-up table the desired quasi-square wave current is obtained. Therefore, it is 

possible to achieve DTC of a BLDC motor drive with faster torque response while the 

stator flux linkage amplitude is deliberately kept almost constant by ignoring the flux 

control in the constant torque region. 

Third, the avarege current controlled boost power factor correction (PFC) method 

is applied to the previously discussed proposed DTC of BLDC motor drive in the 

constant torque region. The test results verify that the proposed PFC for DTC of BLDC 
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motor drive improves the power factor from 0.77 to about 0.9997 irrespective of the 

load. 

Fourth, the DTC technique for BLDC motor using four-switch inverter in the 

constant torque region is studied. For effective torque control in two phase conduction 

mode, a novel switching pattern incorporating the voltage vector look-up table is 

designed and implemented for four-switch inverter to produce the desired torque 

characteristics. As a result, it is possible to achieve two-phase conduction DTC of a 

BLDC motor drive using four-switch inverter with faster torque response due to the fact 

that the voltage space vectors are directly controlled..  

Finally, the position sensorless direct torque and indirect flux control (DTIFC) of 

BLDC motor with non-sinusoidal back-EMF has been extensively investigated using 

three-phase conduction scheme with six-switch inverter. In this work, a novel and simple 

approach to achieve a low-frequency torque ripple-free direct torque control with 

maximum efficiency based on dq reference frame similar to permanent magnet 

synchronous motor (PMSM) drives is presented. 
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CHAPTER I 

 
 

INTRODUCTION: DIRECT TORQUE CONTROL OF PERMANENT 
 

MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDAL BACK-EMF 
 
 
 
 

1.1. Introduction and Literature Review 

Today there are basically two types of instantaneous electromagnetic torque-

controlled ac drives used for high-performance applications: vector and direct torque 

control (DTC) drives. The most popular method, vector control was introduced more 

than 25 years ago in Germany by Hasse [1], Blaske [2], and Leonhard. The vector 

control method, also called Field Oriented Control (FOC) transforms the motor 

equations into a coordinate system that rotates in synchronism with the rotor flux vector. 

Under a constant rotor flux amplitude there is a linear relationship between the control 

variables and the torque. Transforming the ac motor equations into field coordinates 

makes the FOC method resemble the decoupled torque production in a separately 

excited dc motor. Over the years, FOC drives have achieved a high degree of maturity in 

a wide range of applications. They have established a substantial worldwide market 

which continues to increase [3]. 

No later than 20 years ago, when there was still a trend toward standardization of 

control systems based on the FOC method, direct torque control was introduced in Japan 

____________________ 
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by Takahashi and Nagochi [4] and also in Germany by Depenbrock [5], [6], [7]. Their 

innovative studies depart from the idea of coordinate transformation and the analogy 

with dc motor control. These innovators proposed a method that relies on a bang-bang 

control instead of a decoupling control which is the characteristic of vector control. 

Their technique (bang-bang control) works very well with the on-off operation of 

inverter semiconductor power devices. 

After the innovation of the DTC method it has gained much momentum, but in 

areas of research. So far only one form of a DTC of ac drive has been marketed by an 

industrial company, but it is expected very soon that other manufacturers will come out 

with their own DTC drive products [8]. 

The basic concept behind the DTC of ac drive, as its name implies, is to control 

the electromagnetic torque and flux linkage directly and independently by the use of six 

or eight voltage space vectors found in lookup tables. The possible eight voltage space 

vectors used in DTC are shown in Fig. 1.1 [8]. 

D

Q

60

6 (101)V

1(100)V

2 (110)V3 (010)V

4 (011)V

5 (001)V

0 (000)V

7 (111)V

 

Fig. 1.1. Eight possible voltage space vectors obtained from VSI. 
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The typical DTC includes two hysteresis controllers, one for torque error 

correction and one for flux linkage error correction. The hysteresis flux controller makes 

the stator flux rotate in a circular fashion along the reference trajectory for sinewave ac 

machines as shown in Fig. 1.2. The hysteresis torque controller tries to keep the motor 

torque within a pre-defined hysteresis band. 

D

Q

2θ

1θ

6θ
5

V
6

V

3
V

2
V

4V
1

V

1
V

2V
3V

1
V

2V

3
V4

V
3

V4
V

5
V

4
V

5
V

6
V

5V

6
V

6V
1V

2
V

3θ

4θ

5θ

 

Fig. 1.2. Circular trajectory of stator flux linkage in the stationary DQ−plane. 

 

At every sampling time the voltage vector selection block decides on one of the 

six possible inverter switching states ( aS , bS , cS ) to be applied to the motor terminals. 

The possible outputs of the hysteresis controller and the possible number of switching 

states in the inverter are finite, so a look-up table can be constructed to choose the 
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appropriate switching state of the inverter. This selection is a result of both the outputs 

of the hysteresis controllers and the sector of the stator flux vector in the circular 

trajectory. 

There are many advantages of direct torque control over other high-performance 

torque control systems such as vector control. Some of these are summarized as follows: 

• The only parameter that is required is stator resistance 

• The switching commands of the inverter are derived from a look-up table, 

simplifying the control system and also decreasing the processing time unlike a 

PWM modulator used in vector control 

• Instead of current control loops, stator flux linkage vector and torque estimation 

are required so that simple hysteresis controllers are used for torque and stator 

flux linkage control 

• Vector transformation is not applied because stator quantities are enough to 

calculate the torque and stator flux linkage as feedback quantities to be compared 

with the reference values 

• The rotor position, which is essential for torque control in a vector control 

scheme, is not required in DTC (for induction and synchronous reluctance motor 

DTC drives) 

Once the initial position of the rotor magnetic flux problem is solved for PMSM 

drives by some initial rotor position estimation techniques or by bringing the rotor to the 

known position, DTC of the PMSM can be as attractive as DTC of an induction motor. It 

is also easier to implement and as cost-effective (no position sensor is required) when 
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compared to vector controlled PMSM drives. The DTC scheme, as its name indicates, is 

focused on the control of the torque and the stator flux linkage of the motor, therefore, a 

faster torque response is achieved over vector control. Furthermore, due to the fact that 

DTC does not need current controller, the time delay caused by the current loop is 

eliminated. 

Even though the DTC technique was originally proposed for the induction 

machine drive in the late 1980’s, its concept has been extended to the other types of ac 

machine drives recently, such as switched reluctance and synchronous reluctance 

machines. In the late 90s, DTC techniques for the interior permanent magnet 

synchronous machine appeared, as reported in [9], [10]. 

Although there are several advantages of the DTC scheme over vector control, it 

still has a few drawbacks which are explained below: 

• A major drawback of the DTC scheme is the high torque and stator flux linkage 

ripples. Since the switching state of the inverter is updated once every sampling 

time, the inverter keeps the same state until the outputs of each hysteresis 

controller changes states. As a result, large ripples in torque and stator flux 

linkage occur. 

• The switching frequency varies with load torque, rotor speed and the bandwidth 

of the two hysteresis controllers. 

• Stator flux estimation is achieved by integrating the difference between the input 

voltage and the voltage drop across the stator resistance (by the back-EMF 

integration as given in (1.9)). The applied voltage on the motor terminal can be 
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obtained either by using a dc-link voltage sensor, or two voltage sensors 

connected to the any two phases of the motor terminals. For current sensing there 

should be two current sensors connected on any two phases of the motor 

terminals. Offset in the measurements of dc-link voltage and the stator currents 

might happen, because for current and voltage sensing, however, temperature 

sensitive devices, such as operational amplifiers, are normally used which can 

introduce an unwanted dc offset. This offset may introduce large drifts in the 

stator flux linkage computation (estimation) thus creating an error in torque 

estimation (torque is proportional to the flux value) which can make the system 

become unstable. 

• The stator flux linkage estimation has a stator resistance, so any variation in the 

stator resistance introduces error in the stator flux linkage computation, 

especially at low frequencies. If the magnitude of the applied voltage and back-

EMF are low, then any change in the resistance will greatly affect the integration 

of the back-EMF. 

• Because of the constant energy provided from the permanent magnet on the rotor 

the rotor position of motor will not necessarily be zero at start up. To 

successfully start the motor under the DTC scheme from any position (without 

locking the motor at a known position), the initial position of the rotor magnetic 

flux must be known. Once it is started properly, however, the complete DTC 

scheme does not explicitly require a position sensor. 



7 

From the time the DTC scheme was discovered for ac motor drives, it was 

always inferior to vector control because of the disadvantages associated with it. The 

goal is to bring this technology as close to the performance level of vector control and 

even exceed it while keeping its simple control strategy and cost-effectiveness. As a 

result, many papers have been presented by several researchers to minimize or overcome 

the drawbacks of the DTC scheme. Here are some of the works that have been done by 

researchers to overcome the drawbacks for the most recent ac drive technology using 

direct torque control: 

• Recently, researchers have been working on the torque and flux ripple reduction, 

and fixing the switching frequency of the DTC system, as reported in [11]–[16]. 

Additionally, they came up with a multilevel inverter solution in which there are 

more voltage space vectors available to control the flux and torque. As a 

consequence, smoother torque can be obtained, as reported in [14] and [15], but 

by doing so, more power switches are required to achieve a lower ripple and an 

almost fixed switching frequency, which increases the system cost and 

complexity. In the literature, a modified DTC scheme with fixed switching 

frequency and low torque and flux ripple was introduced in [13] and [16]. With 

this design, however, two PI regulators are required to control the flux and torque 

and they need to be tuned properly. Very recently Rahman [17] proposed a 

method for torque and flux ripple reduction in interior permanent magnet 

synchronous machines under an almost fixed switching frequency without using 
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any additional regulators. This method is a modified version of the previously 

discovered method for the induction machine by the authors in [18]. 

• Stator flux linkage estimation by the integration of the back-EMF should be reset 

regularly to reduce the effect of the dc offset error. There has been a few 

compensation techniques related to this phenomenon proposed in the literature 

[19]–[21] and [22]. Chapuis et al. [19] introduced a technique to eliminate the dc 

offset, but a constant level of dc offset is assumed which is usually not the case. 

In papers [19]–[21] and [22], low-pass filters (LPFs) have been introduced to 

estimate the stator flux linkage. In [19], a programmable cascaded LPF was 

proposed instead of the single-stage integrator to help decrease the dc offset error 

more than the single-stage integrator for induction motor drives. More recently, 

Rahman [23] has reached an approach like [19] with further investigation and 

implementation for the compensation of dc offset error in a direct controlled 

interior permanent magnet (IPM) synchronous motor drive. It has been claimed 

and proven with simulation and experimental results that programmable cascaded 

LPFs can also be adopted to replace the single-stage integrator and compensate 

for the effect of dc offsets in a direct-torque-controlled IPM synchronous motor 

drive, improving the performance of the drive. 

• The voltage drop in the stator resistance is very large when the motor runs at low 

frequency such that any small deviations in stator resistance from the one used in 

the estimation of the stator flux linkage creates large errors between the reference 

and actual stator flux linkage vector. This also affects the torque estimation as 



9 

well. Due to these errors, the drive can easily go unstable when operating at low 

speeds. The worst case scenario might happen at low speed under a very high 

load. A handful of researchers have recently pointed to the issue of stator 

resistance variation for the induction machine. For example, fuzzy and 

proportional-integral (PI) stator resistance estimators have been developed and 

compared for a DTC induction machine based on the error between the reference 

current and the actual one by Mir et al. [24]. On the other hand, they did not 

show any detail on how to obtain the reference current for the stator resistance 

estimation. Additionally, some stability problems of the fuzzy estimator were 

observed when the torque reference value was small. As reported in [25], fuzzy 

logic based stator resistance observers are introduced for induction motor. Even 

though it is an open-loop controller based on fuzzy rules, the accuracy of 

estimating the stator resistance is about 5% and many fuzzy rules are necessary. 

This resulted in having to conduct handful numbers of extensive experiments to 

create the fuzzy rules resulting in difficulty in implementation. Lee and Krishnan 

[26] contributed a work related to the stator resistance estimation of the DTC 

induction motor drive by a PI regulator. An instability issue caused by the stator 

estimation error in the stator resistance, the mathematical relationships between 

stator current, torque and flux commands, and the machine parameters are also 

analyzed in their work. The stator configuration of all ac machines is almost the 

same, so the stator resistance variation problem still exists for permanent magnet 

synchronous motors. Rahman et al. [27] reported a method, for stator resistance 
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estimation by PI regulation based on the error in flux linkage. It is claimed that 

any variation in the stator resistance of the PM synchronous machine will cause a 

change in the amplitude of the actual flux linkage. A PI controller works in 

parallel with the hysteresis flux controller of the DTC such that it tracks the 

stator resistance by eliminating the error in the command and the actual flux 

linkage. One problem with this method was that the rotor position was necessary 

to calculate the flux linkage. Later on the same author proposed a similar method 

but this time the PI stator resistance estimator was able to track the change of the 

stator resistance without requiring any position information. 

• The back-EMF integration for the stator flux linkage calculation, which runs 

continuously, requires a knowledge of the initial stator flux position, 
0tsλ =
, at 

start up. In order to start the motor without going in the wrong direction, 

assuming the stator current is zero at the start, only the rotor magnetic flux 

linkage should be considered as an initial flux linkage value in the integration 

formula. The next step is to find its position in the circular trajectory. The initial 

position of the rotor is not desired to be sensed by position sensors due to their 

cost and bulky characteristics, therefore some sort of initial position sensing 

methods are required for permanent magnet synchronous motor DTC 

applications. A number of works, [28]–[39], have been proposed recently for the 

detection of the initial rotor position estimation at standstill for different types of 

PM motors. Common problems of these methods include: most of them fail at 

standstill because the rotor magnet does not induce any voltage, so no 
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information of the magnetization is available; position estimation is load 

dependent; excessive computation and hardware are required; instead of a simple 

voltage vector selection method used in the DTC scheme, those estimation 

techniques need one or more pulse width-modulation (PWM) current controllers. 

Recently, a better solution was introduced for the rotor position estimation. It is 

accomplished by applying high-frequency voltage to the motor, as reported in 

[37]–[39]. This approach is adapted to the DTC of interior permanent magnet 

motors for initial position estimation by Rahman et. al. [23]. 

1.2. Principles of Classical DTC of PMSM Drive 

The basic idea of direct torque control is to choose the appropriate stator voltage 

vector out of eight possible inverter states (according to the difference between the 

reference and actual torque and flux linkage) so that the stator flux linkage vector rotates 

along the stator reference frame (DQ frame) trajectory and produces the desired torque. 

The torque control strategy in the direct torque control of a PM synchronous motor is 

explained in Section 1.2.1. The flux control is discussed following the torque control 

section. 

1.2.1. Torque Control Strategy in DTC of PMSM Drive 

Before going through the control principles of DTC for PMSMs, an expression 

for the torque as a function of the stator and rotor flux will be developed. The torque 

equation used for DTC of PMSM drives can be derived from the phasor diagram of 

permanent magnet synchronous motor shown in Fig. 1.3. 
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Fig. 1.3. Phasor diagram of a non-salient pole synchronous machine in the motoring mode. 
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Fig. 1.4. Electrical circuit diagram of a non-salient synchronous machine at constant frequency 

(speed). 

 

When the machine is loaded through the shaft, the motor will take real power. 

The rotor will then fall behind the stator rotating field. From the circuit diagram, shown 

in Fig. 1.4, the motor current expression can be written as 
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Assuming a reasonable speed such that the sX  term is higher than the resistance 

sR  such that sR  can be neglected, then s sZ X≈  and 
2
π

ϕ≈ . sI  can then be rewritten as 

 

0 2s
s

s s

EVI
X X

πδ∠ −∠
= −

 (1.2) 

Such that the real part of sI  is 
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                          cos sin
2

s
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s s

s s

V EI I
X X

E E
X X

π π
ϕ δ

π
δ δ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= = − − −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

⎛ ⎞⎟⎜=− − =−⎟⎜ ⎟⎜⎝ ⎠

 (1.3) 

The developed power is given by 

 3 Re[ ] 3 cosi s s s sP V I V I ϕ= =  (1.4) 

Substituting (1.3) into (1.4) yields 

 3 sins
i

s

V EP
X

δ=−     [Watts/phase] (1.5) 

This power is positive when δ  negative, meaning that when the rotor field lags 

the stator field the machine is operating in the motoring region. When 0δ>  the machine 

is operating in the generation region. The negative sign in (1.5) can be dropped, 

assuming that for motoring operation a negative δ  is implied. 
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If the losses of the machine are ignored, the power iP  can be expressed as the 

shaft (output) power as well 

 2
i o e emP P T

P
ω= =  (1.6) 

When combining (1.5) and (1.6), the magnitude of the developed torque for a 

non-salient synchronous motor (or surface-mounted permanent magnet synchronous 

motor) can be expressed as 
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s

s r

V E

λ λ
 (1.7) 

where δ  is the torque angle between flux vectors sλ  and rλ . If the rotor flux remains 

constant and the stator flux is changed incrementally by the stator voltage sV  then the 

torque variation emTΔ  expression can be written as 

 3 sin
2em

s

PT
L

δ
⎛ ⎞ +⎟⎜Δ = Δ⎟⎜ ⎟⎜⎝ ⎠

s s rλ Δλ λ
 (1.8) 

where the bold terms in the above expressions indicate vectors. 

As it can be seen from (1.8), if the load angle δ  is increased then torque variation 

is increased. To increase the load angle δ  the stator flux vector should turn faster than 

rotor flux vector. The rotor flux rotation depends on the mechanical speed of the rotor, 

so to decrease load angle δ  the stator flux should turn slower than rotor flux. Therefore, 

according to the torque (1.7), the electromagnetic torque can be controlled effectively by 

controlling the amplitude and rotational speed of stator flux vector sλ . To achieve the 



15 

above phenomenon, appropriate voltage vectors are applied to the motor terminals. For 

counter-clockwise operation, if the actual torque is smaller than the reference value, then 

the voltage vectors that keep the stator flux vector sλ  rotating in the same direction are 

selected. When the load angle δ  between sλ  and rλ  increases the actual torque increases 

as well. Once the actual torque is greater than the reference value, the voltage vectors 

that keep stator flux vector sλ  rotating in the reverse direction are selected instead of the 

zero voltage vectors. At the same time, the load angle δ  decreases thus the torque 

decreases. The reason the zero voltage vector is not chosen in the DTC of PMSM drives 

will be discussed later in this chapter. A more detailed look at the selection of the 

voltage vectors and their effect on torque and flux results will be discussed later as well. 

Referring back to the discussion above, however, torque is controlled via the stator flux 

rotation speed, as shown in Fig. 1.5. If the speed of the stator flux is high then faster 

torque response is achieved. 

reωsω

δ

sλ

rλ

Im

Rereθ
sθ

 

Fig. 1.5. Rotor and stator flux linkage space vectors (rotor flux lagging stator flux) [21]. 
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1.2.2. Flux Control Strategy in DTC of PMSM Drive 

If the resistance term in the stator flux estimation algorithm is neglected, the 

variation of the stator flux linkage (incremental flux expression vector) will only depend 

on the applied voltage vector as shown in Fig. 1.6 [40]. 
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Fig. 1.6. Incremental stator flux linkage space vector representation in the DQ−plane. 

 

For a short interval of time, namely the sampling time sT t=Δ  the stator flux 

linkage sλ  position and amplitude can be changed incrementally by applying the stator 

voltage vector sV . As discussed above, the position change of the stator flux linkage 

vector sλ  will affect the torque. The stator flux linkage of a PMSM that is depicted in 

the stationary reference frame is written as 

 ( )s s s sR dt= −∫λ V i  (1.9) 
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During the sampling interval time or switching interval, one out of the six 

voltage vectors is applied, and each voltage vector applied during the pre-defined 

sampling interval is constant, therefore (1.9) can be rewritten as 

 s s s s s t=0t - R dt + λ= ∫λ V i  (1.10) 

where s t=0λ  is the initial stator flux linkage at the instant of switching, Vs  is the 

measured stator voltage, is  is the measured stator current, and sR  is the estimated stator 

resistance. When the stator term in stator flux estimation is removed implying that the 

end of the stator flux vector sλ  will move in the direction of the applied voltage vector, 

as shown in Fig. 1.6, we obtain 

 ( )V λs s
d
dt

=  (1.11) 

or 

 Δts sΔλ =V  (1.12) 

The goal of controlling the flux in DTC is to keep its amplitude within a pre-

defined hysteresis band. By applying a required voltage vector stator flux linkage 

amplitude can be controlled. To select the voltage vectors for controlling the amplitude 

of the stator flux linkage the voltage plane is divided into six regions, as shown in Fig. 

1.2. 

In each region two adjacent voltage vectors, which give the minimum switching 

frequency, are selected to increase or decrease the amplitude of stator flux linkage, 

respectively. For example, according to the Table I, when the voltage vector 2V  is 

applied in Sector 1, then the amplitude of the stator flux increases when the flux vector 



18 

rotates counter-clockwise. If 3V  is selected then stator flux linkage amplitude decreases. 

The stator flux incremental vectors corresponding to each of the six inverter voltage 

vectors are shown in Fig. 1.1. 
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Fig. 1.7. Representation of direct and indirect components of the stator flux linkage vector [21]. 

 

Fig. 1.7 is a basic graph that shows how flux and torque can be changed as a 

function of the applied voltage vector. According to the figure, the direct component of 

applied voltage vector changes the amplitude of the stator flux linkage and the indirect 

component changes the flux rotation speed which changes the torque. If the torque needs 

to be changed abruptly then the flux does as well, so the closest voltage vector to the 

indirect component vector is applied. If torque change is not required, but flux amplitude 

is increased or decreased then the voltage vector closest to the direct component vector 

is chosen. Consequently, if both torque and flux are required to change then the 

appropriate resultant mid-way voltage vector between the indirect and direct components 

is applied [21]. It seems obvious from (1.9) that the stator flux linkage vector will stay at 

its original position when zero voltage vectors (000)aS  and (111)aS  are applied. This is 
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true for an induction motor since the stator flux linkage is uniquely determined by the 

stator voltage. On the other hand, in the DTC of a PMSM, the situation of applying the 

zero voltage vectors is not the same as in induction motors. This is because the stator 

flux linkage vector will change even when the zero voltage vectors are selected since the 

magnets rotate with the rotor. As a result, the zero voltage vectors are not used for 

controlling the stator flux linkage vector in a PMSM. In other words, the stator flux 

linkage should always be in motion with respect to the rotor flux linkage vector [10]. 

1.2.3. Voltage Vector Selection in DTC of PMSM Drive 

As discussed before, the stator flux is controlled by properly selected voltage 

vectors, and as a result the torque by stator flux rotation. The higher the stator vector 

rotation speed the faster torque response is achieved. 

The estimation of the stator flux linkage components described previously 

requires the stator terminal voltages. In a DTC scheme it is possible to reconstruct those 

voltages from the dc-link voltage dcV  and the switching states ( aS , bS , cS ) of a six-step 

voltage-source inverter (VSI) rather than monitoring them from the motor terminals. The 

primary voltage vector sv  is defined by the following equation: 

 (2 /3) (4 /3)2 ( )
3

j j
s a b cv v e v eπ π= + +v  (1.13) 

where av , bv , and cv  are the instantaneous values of the primary line-to-neutral voltages. 

When the primary windings are fed by an inverter, as shown in Fig. 1.8, the primary 

voltages av , bv  and cv  are determined by the status of the three switches aS , bS , and 



20 

cS . If the switch is at state 0 that means the phase is connected to the negative and if it is 

at 1 it means that the phase is connected to the positive leg. 

aS bS cS
1

0

1

0

1

0

dcV

D

Q

 

Fig. 1.8. Voltage Source Inverter (VSI) connected to the R-L load [5]. 

 

For example, av  is connected to dcV  if aS  is one, otherwise av  is connected to 

zero. This is similar for bv  and cv . The voltage vectors that are obtained this way are 

shown in Fig. 1.1. There are six nonzero voltage vectors: 1(100)V , 2 (110)V , …, and 

6 (101)V  and two zero voltage vectors: 7 (000)V  and 8 (111)V . The six nonzero voltage 

vectors are 60  apart from each other as in Fig. 1.1. 

The stator voltage space vector (expressed in the stationary reference frame) 

representing the eight voltage vectors can be shown by using the switching states and the 

dc-link voltage dcV  as 

 
(2/ 3) (4 /3)2( , , ) ( )

3
j j

s a b c dc a b cS S S V S S e S eπ π= + +v  (1.14) 

where dcV  is the dc-link voltage and the coefficient of 2/3 is the coefficient comes from 

the Park Transformation. Equation (1.14) can be derived by using the line-to-line 
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voltages of the ac motor which can be expressed as ( )ab dc a bv V S S= − , 

( )bc dc b cv V S S= − , and ( )ca dc c av V S S= − . The stator phase voltages (line-to-neutral 

voltages) are required for (1.14). They can be obtained from the line-to-line voltages as 

( ) / 3a ab cav v v= − , ( ) / 3b bc abv v v= − , and ( ) / 3c ca bcv v v= − . If the line-to-line voltages 

in terms of the dc-link voltage dcV  and switching states are substituted into the stator 

phase voltages it gives 

 
1 (2 )
3a dc a b cv V S S S= − −

 

 1 ( 2 )
3b dc a b cv V S S S= − + −   (1.15) 

 
1 ( 2 )
3c dc a b cv V S S S= − − +   

Equation (1.15) can be summarized by combining with (1.13) as 

 1Re( ) (2 )
3a s dc a b cv V S S S= = − −v  

 1Re( ) ( 2 )
3b s dc a b cv V S S S= = − + −v   (1.16) 

 1Re( ) ( 2 )
3c s dc a b cv V S S S= = − − +v  

To determine the proper applied voltage vectors, information from the torque and 

flux hysteresis outputs, as well as stator flux vector position, are used so that circular 

stator flux vector trajectory is divided into six symmetrical sections according to the non 

zero voltage vectors as shown in Fig. 1.2. 
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Fig. 1.9. Voltage vector selection when the stator flux vector is located in sector i [21]. 

 

According to Fig. 1.9, while the stator flux vector is situated in sector i, voltage 

vectors i+1V  and i-1V  have positive direct components, increasing the stator flux 

amplitude, and i+2V  and i-2V  have negative direct components, decreasing the stator flux 

amplitude. Moreover, i+1V  and i+2V  have positive indirect components, increasing the 

torque response, and i-1V  and i-2V  have negative indirect components, decreasing the 

torque response. In other words, applying i+1V  increases both torque and flux but 

applying i+1V  increases torque and decreases flux amplitude [21]. 

The switching table for controlling both the amplitude and rotating direction of 

the stator flux linkage is given in Table I. 
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TABLE I 
SWITCHING TABLE FOR DTC OF PMSM DRIVE 

V2(110) V3(010) V4(001) V5(101) V6(110) V1(110)
V6(101) V1(100) V2(010) V3(011) V4(110) V5(110)
V3(010) V4(011) V5(101) V6(100) V1(110) V2(110)
V5(001) V6(101) V1(110) V2(010) V3(110) V4(110)

θ
θ(1) θ(2) θ(3) θ(4) θ(5) θ(6)

ϕ τ

1ϕ=

0ϕ=

1τ =
0τ =
1τ =
0τ =  

 
The voltage vector plane is divided into six sectors so that each voltage vector 

divides each region into two equal parts. In each sector, four of the six non-zero voltage 

vectors may be used. Zero vectors are also allowed. All the possibilities can be tabulated 

into a switching table. The switching table presented by Rahman et al [10] is shown in 

Table I. The output of the torque hysteresis comparator is denoted as τ , the output of the 

flux hysteresis comparator as ϕ  and the flux linkage sector is denoted as θ . The torque 

hysteresis comparator is a two valued comparator; 0τ =  means that the actual value of 

the torque is above the reference and out of the hysteresis limit and 1=τ  means that the 

actual value is below the reference and out of the hysteresis limit. The flux hysteresis 

comparator is a two valued comparator as well where 1ϕ =  means that the actual value 

of the flux linkage is below the reference and out of the hysteresis limit and 0ϕ=  

means that the actual value of the flux linkage is above the reference and out of the 

hysteresis limit. Rahman et al [10] have suggested that no zero vectors should be used 

with a PMSM. Instead, a non zero vector which decreases the absolute value of the 

torque is used. Their argument was that the application of a zero vector would make the 

change in torque subject to the rotor mechanical time constant which may be rather long 
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compared to the electrical time constants of the system. This results in a slow change of 

the torque. This reasoning does not make sense, since in the original switching table the 

zero vectors are used when the torque is inside the torque hysteresis (i.e. when the torque 

is wanted to be kept as constant as possible). This indicates that the zero vector must be 

used. If the torque ripple needs to be kept as small as with the original switching table, a 

higher switching frequency must be used if the suggestion of [10] is obeyed [3]. 

We define ϕ  and τ  to be the outputs of the hysteresis controllers for flux and 

torque, respectively, and (1) (6)θ θ−  as the sector numbers to be used in defining the 

stator flux linkage positions. In Table I, if 1=ϕ , then the actual flux linkage is smaller 

than the reference value. On the other hand, if 0=ϕ , then the actual flux linkage is 

greater than the reference value. The same is true for the torque. 

1.3. Control Strategy of DTC of PMSM 

Fig. 1.10 illustrates the schematic of the basic DTC controller for PMSM drives. 

The command stator flux *
sλ  and torque *

emT  magnitudes are compared with their 

respective estimated values. The errors are then processed through the two hysteresis 

comparators, one for flux and one for torque which operate independently of each other. 

The flux and torque controller are two-level comparators. The digital outputs of the flux 

controller have following logic: 

 1λd =    for *
s s Hλλ λ< −  (1.17) 

 0λd =    for *
s s Hλλ λ< +  (1.18) 
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where λ2H  is the total hysteresis-band width of the flux comparator, and λd  is the 

digital output of the flux comparator. 

By applying the appropriate voltage vectors the actual flux vector sλ  is 

constrained within the hysteresis band and it tracks the command flux *
sλ  in a zigzag 

path without exceeding the total hysteresis-band width. The torque controller has also 

two levels for the digital output, which have the following logic: 

 1
emTd =    for 

em

*
em em TT <T - H  (1.19) 

 0
emTd =     for *

emem em TT T H< +  (1.20) 

where 
emT2H  is the total hysteresis-band width of the torque comparator, and 

emTd  is the 

digital output of the torque comparator. 

 

0

1 11
2 2
3 30
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Q b
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f f
f f

ff

⎡ ⎤
⎢ ⎥− −
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (1.21) 

Knowing the output of these comparators and the sector of the stator flux vector, 

the look-up table can be built such that it applies the appropriate voltage vectors via the 

inverter in a way to force the two variables to predefined trajectories. If the switching 

states of the inverter, the dc-link voltage of the inverter and two of the motor currents are 

known then the stator voltage and current vectors of the motor in the DQ stationary 

frame are obtained easily by a simple transformation. This transformation is called the 

Clarke Transformation [4] (1.21) as shown in Fig. 1.10. The DQ frame voltage and 
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current information can then be used to estimate the corresponding D– and Q–axis stator 

flux linkages Dλ  and Qλ  which are given by 

 { }( ) ( 1) ( 1) ( )D D D s D sλ k λ k v k R i k T= − + − −  (1.22) 

 { }( ) ( 1) ( 1) ( )Q Q Q s Q sλ k λ k v k R i k T= − + − −  (1.23) 

where k  and 1k −  are present and previous sampling instants, respectively, Dv  and Qv  

are the stator voltages in DQ stationary reference frame, ( ) ( ( 1) ( )) / 2D D Di k i k i k= − +  

and  ( ) ( ( 1) ( )) / 2Q Q Qi k i k i k= − +  are the average values of stator currents Di  and Qi  

derived from the present ( )DQi k  and previous ( 1)DQi k−  sampling interval values of the 

stator currents, sR  is the stator resistance, and sT  is the sampling time. The stator flux 

linkage vector can be written as 

 2 2 1 ( )
( ) ( ) ( ) tan

( )
Q

D Q
D

λ k
k λ k λ k

λ k
−
⎛ ⎞⎟⎜ ⎟= + ∠ ⎜ ⎟⎜ ⎟⎜⎝ ⎠

sλ  (1.24) 

where 2 2( ) ( )D Qλ k λ k+  is the magnitude of the stator flux linkage vector and 

1 ( )
tan

( )
Q

D

λ k
λ k

−
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 is the angle of stator flux linkage vector with respect to the stationary D–

axis in DQ frame (or a–axis in abc frame). The developed stationary DQ reference frame 

electromagnetic torque in terms of the DQ frame stator flux linkages and currents is 

given by  

 { }3( ) ( ) ( ) ( ) ( )
2em Q D D QΤ k P λ k i k λ k i k= −  (1.25) 

where P  is the number of pole pairs. 
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As it can be seen form (1.22) and (1.23) the stator resistance is the only machine 

parameter to be known in the flux, and consequently torque, estimation. Even though the 

stator is the direct parameter seen in (1.22) and (1.23), there is an indirect (hidden) motor 

parameter for DTC of PMSM drives. This parameter is the rotor flux magnitude which 

constructs the initial values of the D– and Q–axis stator fluxes. If the rotor flux vector rλ  

is assumed to be aligned with the D–axis of the stationary reference frame, then 

( 1)Dλ k−  equals the rotor flux amplitude r2λ . If the rotor magnetic flux rλ  resides on 

the D–axis (the rotor magnetic flux can be intentionally brought to the known position 

by applying the appropriate voltage vector for a certain amount of time), then the initial 

value of the Q–axis flux ( 1)Qλ k−  is considered to be zero, therefore there will not be 

any initial starting problem for the motor. On the other hand, if the rotor is in a position 

other than the zero reference degree then both the ( 1)Dλ k−  and ( 1)Qλ k−  values should 

be known to start the motor properly in the correct direction without oscillation. 

Moreover, if the initial values of the DQ frame integrators are not estimated correctly 

then those incorrect initial flux values will be seen as dc components in the integration 

calculations of the DQ frame fluxes. This will cause the stator flux linkage space vector 

to drift away from the origin centered circular path and if they are not corrected quickly 

while motor is running then instability in the system will result quickly. 
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CHAPTER II 

 
 

DIRECT TORQUE CONTROL OF BRUSHLESS DC MOTOR WITH 
 

NON-SINUSOIDAL BACK-EMF USING TWO-PHASE CONDUCTION MODE 
 
 
 
 
 

2.1. Introduction 

Permanent magnet synchronous motor (PMSM) with sinusoidal shape back-EMF 

and brushless dc (BLDC) motor with trapezoidal shape back-EMF drives have been 

extensively used in many applications. They are used in applications ranging from servo 

to traction drives due to several distinct advantages such as high power density, high 

efficiency, large torque to inertia ratio, and better controllability [41]. Brushless dc 

motor (BLDC) fed by two-phase conduction scheme has higher power/weight, 

torque/current ratios. It is less expensive due to the concentrated windings which shorten 

the end windings compared to three-phase feeding permanent magnet synchronous 

motor (PMSM) [42]. The most popular way to control BLDC motors is by PWM current 

control in which a two-phase feeding scheme is considered with variety of PWM modes 

such as soft switching, hard-switching, and etc. If the back-EMF waveform is ideal 

trapezoidal with 120 electrical degrees flat top, three hall-effect sensors are usually used 

as position sensors to detect the current commutation points that occur at every 60 

electrical degrees. Therefore, a relatively low cost drive is achieved when compared to a 

PMSM drive with expensive high-resolution position sensor, such as optical encoder. 
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Several current and torque control methods have been employed for BLDC 

motor drives to minimize the torque pulsations mainly caused by commutation and non-

ideal shape of back-EMF. The optimum current excitation method, considering the 

unbalanced three-phase stator windings as well as non-identical and half-wave 

asymmetric back-EMF waveforms, is reported in [43]. Each phase back-EMF versus 

rotor position data is stored in a look-up table. Then, they are transformed to the dq–axes 

synchronous reference frame. The d–axis current is assumed to be zero and the q–axis 

current is obtained from the desired reference torque, motor speed, and the q–axis back-

EMF. Consequently, inverse park transformation is applied to the dq–axes currents to 

obtain the abc frame optimum reference current waveforms. Minimum torque ripple and 

maximum efficiency are achieved at low speeds for a BLDC motor. However, three 

hysteresis current controllers with PWM generation which increases the complexity of 

the drive are used to drive the BLDC motor. Several transformations are required in 

order to get the abc frame optimum reference current waveforms. These transformations 

complicate the control algorithm and the scheme could not directly control the torque, 

therefore fast torque response cannot be achieved. 

In [44], estimating the electromagnetic torque from the rate of change of 

coenergy with respect to position is described. However, the stator flux linkage, the 

coenergy, and the torque versus the estimated position look-up tables are needed to 

generate the optimized current references for the desired torque, therefore more 

complicated control algorithm is inevitable. Moreover, open-loop position estimation 
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using voltages and currents may create drift on the stator flux linkage locus, therefore 

wrong position estimation might occur. 

In [45], electromagnetic torque is calculated from the product of the 

instantaneous back-EMF and current both in two-phase and in the commutation period, 

Then, the pre-stored phase back-EMF values which are obtained using mid-precision 

position sensor. As a result, torque pulsations due to the commutation are considerably 

reduced compared to the conventional PI current controller even for BLDC motor with 

non-ideal trapezoidal back-EMF. However, phase resistance is neglected and the torque 

estimation depends on parameters such as dc-link voltage and phase inductance. 

Moreover, instead of a simple voltage selection look-up table technique more 

complicated PWM method is used to drive the BLDC motor. 

In [46], the stator flux linkage is estimated by the model reference adaptive 

system (MRAS) technique and the torque is calculated using estimated flux and 

measured current. Then, the torque is instantaneously controlled by the torque controller 

using the integral variable structure control (VSC) and the space-vector pulse-width 

modulation (SVPWM). Thus, good steady-state performance and switching 

characteristics are obtained. Torque and speed pulsations are effectively reduced. 

Nevertheless, this technique increases the complexity of the control system and is 

applied only to a PMSM drive employing three-phase conduction instead of a BLDC 

motor with two-phase conduction. In addition, since the stator flux linkage is estimated 

on-line using MRAS technique, the values of the resistance and inductance are regarded 
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as important parameters in determining the estimation and control performance. 

Therefore, the effects on the parameter variations should have been considered. 

In [47], the instantaneous torque is directly controlled by variable structure 

strategy (VSS) in dq–axes synchronous reference frame in which the torque pulsations 

mainly caused by a conventional sinusoidal current control are minimized. Torque 

estimation algorithm operates well down to zero speed, but depends on pre-knowledge 

of the harmonic torque coefficients of the machine, which are subject to motor parameter 

variations. In addition, knowledge of the motor parameters such as phase inductance and 

resistance as well as rotor position is required. Also, three-phase conduction scheme 

instead of a more usual two-phase conduction mode is considered for the BLDC motor. 

Torque coefficients in [47] are updated using an on-line recursive least square 

estimator in [48], however it is computationally intensive and difficult to implement 

because it requires differentiation of the motor current. Real-time harmonics flux 

estimator to calculate the sixth-harmonic current that must be injected to cancel the 

sixth- and twelfth-harmonic pulsating torque components rather than depending on 

stored coefficients is reported in [49]. Unfortunately, the flux estimation algorithm still 

depends on pre-knowledge of the motor resistance and inductance. Also, the parameter 

sensitivity issue is not clarified. 

In [50], predetermination of optimal current wave shapes using Park like dq–axes 

reference frame is obtained by adding some harmonics to the fundamental current to 

cancel specific torque harmonic components. However, these optimal current references 

are not constant and require very fast controllers especially when the motor operates at 
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high speed. Moreover, the bandwidth of the classical proportional plus integral (PI) 

controllers does not allow tracking all of the reference current harmonics. 

Problems in [50] are claimed to be solved in [51] such that a new torque control 

strategy using the ba–ca reference frame is proposed in which easily accessible line-to-

line back-EMFs are measured and stored in a look-up table. Smooth and maximum 

torque is obtained, however this technique presents a steady-state torque error compared 

to the dq–axes reference frame scheme in [50] and the motor is driven by digital scalar 

modulation technique which operates like a SVPWM, therefore a more complicated 

control is inevitable. 

Since the Park Transformation and its extensions proposed in [50] do not 

linearize completely the non-linear model of the machine, state feedback linearization 

technique is applied in order to obtain the desired high performance torque control in 

[52]. However, this DTC technique has the same drawbacks as the torque control in the 

synchronous reference frame for the PMSM with sinusoidal back-EMF drives. 

Additionally, more tedious computations are needed to be performed compared to [50], 

which complicates the real-time implementation of the control strategy. 

Direct torque control scheme was first proposed by Takahashi [53] and 

Depenbrock [54] for induction motor drives in the mid 1980s. More than a decade later, 

in the late 1990s, DTC techniques for both interior and surface-mounted synchronous 

motors (PMSM) were analyzed [55]. More recently, application of DTC scheme is 

extended to BLDC motor drives to minimize the low-frequency torque ripples and 

torque response time as compared to conventional PWM current controlled BLDC motor 
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drives [56]. In [56], the voltage space vectors in a two-phase conduction mode are 

defined and a stationary reference frame electromagnetic torque equation is derived for 

surface-mounted permanent magnet synchronous machines with non-sinusoidal back-

EMF (BLDC, and etc.). It is claimed that the electromagnetic torque and the stator flux 

linkage amplitude of the DTC of BLDC motor under two-phase conduction mode can be 

controlled simultaneously. 

In this section, the DTC of a BLDC motor drive operating in two-phase 

conduction mode, proposed in [56], is further studied and simplified to just a torque 

controlled drive by intentionally keeping the stator flux linkage amplitude almost 

constant by eliminating the flux control in the constant torque region. Since the flux 

control is removed, fewer algorithms are required for the proposed control scheme. 

Specifically, it is shown that in two-phase conduction DTC of BLDC motor drive rather 

than attempting to control the stator flux amplitude, only torque is controlled. It will be 

explained in detail that due to the sharp changes which occur every 60 electrical degrees 

flux amplitude control is quite difficult. Moreover, there is no need to control the stator 

flux linkage amplitude of a BLDC motor in the constant torque region. The stator flux 

linkage position in the trajectory is helpful to find the right sector for the torque control 

in sensorless applications of BLDC motor drives. Therefore, the torque is controlled 

while the stator flux linkage amplitude is kept almost constant on purpose. Furthermore, 

simulations show that using the zero inverter voltage space vector suggested in [56] only 

to decrease the electromagnetic torque could have some disadvantages, such as 

generating more frequent and larger spikes on the phase voltages that deteriorate the 
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trajectory of the stator flux-linkage locus, increase the switching losses, and contributes 

to the large common-mode voltages that can potentially damage the motor bearings [57]. 

To overcome these problems, a new simple two-phase inverter voltage space vector 

look-up table is developed. Simulated and experimental results are presented to illustrate 

the validity and effectiveness of the proposed two-phase conduction DTC of a BLDC 

motor drive in the constant torque region. 

2.2. Principles of the Proposed Direct Torque Control (DTC) Technique 

The key issue in the DTC of a BLDC motor drive in the constant torque region is 

to estimate the electromagnetic torque correctly. The derivation of the electromagnetic 

torque equation for BLDC motor with non-sinusoidal back-EMF is given in the 

following: 

The general electromagnetic torque equation of a PMSM with sinusoidal/non-

sinusoidal back-EMF in the synchronously rotating dq reference frame when the 

influence of the mutual coupling between d– and q–axis winding inductance neglected 

can be expressed as [49], [54]–[56]. 

 3
4

qs rqds rd
em sd sq sd sq sd sq

e e e e

dL ddL dPT i i i i
d d d d

ϕϕ ϕ ϕ
θ θ θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + − + + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2.1) 

where  

 sd ds sd rdL iϕ ϕ= +  (2.2) 

 sq qs sq rqL iϕ ϕ= +  (2.3) 
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and P is the number of poles, θe is the electrical rotor angle, isd and isq are the 

synchronous reference frame (dq–axes) currents, Lds and Lqs are the d– and q–axis 

inductances, respectively, and φrd, φrq, φsd, and φsq are the d– and q–axis rotor and stator 

flux linkages, respectively. 

The motors with high-coercive PM material higher order harmonics in the stator 

winding inductance can be neglected because the torque pulsations are mainly associated 

with the flux harmonics [56]. Therefore, it can be assumed that Lds and Lqs are constant. 

Then, the final synchronous reference frame electromagnetic torque equation for a 

salient pole PMSM becomes 

 3 ( )
4

rqrd
em rq sd rd sq ds qs sd sq

e e

ddPT i i L L i i
d d

ϕϕ ϕ ϕ
θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2.4) 

When the stator flux linkage due to the permanent magnets varies sinusoidally, 

rd mϕ ϕ= , and 0rqϕ =  where φm is the peak rotor flux linkage. Therefore, 

0rd e rq ed d d dϕ θ ϕ θ= = . As a result, the electromagnetic torque equation for an either 

salient or non-salient PMSM including BLDC motor with sinusoidal back-EMF can then 

be simplified as 

 ( ) ( )3 3
4 4em sd sq sq sd s s s s
P PT i i i iα β β αϕ ϕ ϕ ϕ= − = −  (2.5) 

where isd, isq, φsd, φsq, isα, isβ, φsα, and φsβ are the synchronous and stationary reference 

frame currents and flux linkages, respectively. Therefore, the left hand side of (2.5) is 

the electromagnetic torque equation in synchronous reference frame and the right hand 

side of (2.5) represents the stationary reference frame electromagnetic torque equation. 
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For classical DTC scheme the one on the right hand side in (2.5) is used as 

electromagnetic torque estimation algorithm because it does not require rotor position 

information. 

For nonsalient-pole machines (Lds = Lqs = Ls), when the stator flux linkage due to 

the permanent magnets varies non-sinusoidally, therefore 0rd e rq ed d d dϕ θ ϕ θ≠ ≠ , 

which is the case for BLDC motor. As a result, the electromagnetic torque equation in 

synchronous reference frame for both surface-mounted PMSM and BLDC motor with 

non-sinusoidal back-EMF can be simplified using (2.4) in below: 

 3
4

rqrd
em rq sd rd sq

e e

ddPT i i
d d

ϕϕ ϕ ϕ
θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2.6) 

It is desired to obtain electromagnetic torque equation in stationary reference 

frame instead of synchronous frame for DTC of BLDC motor drive operation. The 

following is the derivation of the electromagnetic torque equation in stationary reference 

frame for both surface-mounted PMSM and BLDC motor with non-sinusoidal back-

EMF using (2.6): 

Stationary reference frame rotor flux linkages φrα and φrβ can be represented in 

terms of synchronous reference frame components and the electrical rotor position as 

 cos sinr rd e rq eαϕ ϕ θ ϕ θ= −  (2.7) 

 sin cosr rd e rq eβϕ ϕ θ ϕ θ= +  (2.8) 

Derivatives of the stationary αβ–axes reference frame rotor flux linkages given in 

(2.7) and (2.8) over electrical rotor position respectively yield 
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cos sin

cos sin sin cos

r
rd e rq e

e e

rd rd
e e rd e e rq

e e

d d
d d

d d
d d

βϕ
ϕ θ ϕ θ

θ θ

ϕ ϕθ θ ϕ θ θ ϕ
θ θ

⎡ ⎤= −⎣ ⎦

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦

 (2.9) 

and 

 

sin cos

sin cos cos sin

r
rd e rq e

e e

rd rd
e e rd e e rq

e e

d d
d d

d d
d d

βϕ
ϕ θ ϕ θ

θ θ

ϕ ϕθ θ ϕ θ θ ϕ
θ θ

⎡ ⎤= +⎣ ⎦

⎡ ⎤
= + + −⎢ ⎥

⎣ ⎦

 (2.10) 

Stationary reference frame currents isα and isβ can also be represented in terms of 

synchronous reference frame components and the electrical rotor position as 

 cos sins sd e sq ei i iα θ θ= −  (2.11) 

 sin coss sd e sq ei i iβ θ θ= +  (2.12) 

Multiplications of (2.9) and (2.10) by (2.11) and (2.12) respectively result 
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 (2.13) 

and 
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 (2.14) 

The final electromagnetic torque equation for BLDC motor with non-sinusoidal 

back-EMF in stationary reference frame which is equivalent to (2.6) is obtained by 

combining (2.13) and (2.14) with the required coefficients as 

 

3
2 2

rr
s s

e e
em

ddPT i i
d d

βα
α β

ϕϕ
θ θ

⎡ ⎤
⎢ ⎥= +⎢ ⎥⎣ ⎦

 (2.15) 

where r

e e

d e
d

α αϕ
ωθ

=  and r

e e

ed
d

β βϕ
ωθ

= . 

As a result, for a surface-mounted BLDC motor the back-EMF waveform is non-

sinusoidal (trapezoidal), irrelevant to conducting mode (two or three-phase), therefore 

(2.16) which is given in the stationary reference frame should be used for the 

electromagnetic torque calculation [50, 56]. 

 

3 3 ( ) ( )
2 2 2 2em s e s es s

e e

eeP PT i i k i k iβα
α α αβ β βθ θ

ω ω

⎡ ⎤
⎡ ⎤⎢ ⎥= + = +⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (2.16) 

where ωe is the electrical rotor speed, and kα(θe), kβ(θe), eα, eβ are the stationary reference 

frame (αβ–axes) back-EMF constants according to electrical rotor position, motor back-

EMFs, respectively. Since the second equation in (2.16) does not involve the rotor speed 

in the denominator there will be no problem estimating the torque at zero and near zero 
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speeds. Therefore, it is used in the proposed control system instead of the one on the left 

in (2.16). 

In (2.16), it is not necessary to know the line-to-neutral back-EMFs. If the neutral 

point of the motor is not accessible, the phase back-EMFs cannot easily be obtained by 

direct measurements [43], therefore line-to-line back-EMF waveforms eab, ebc, and eca 

should be used. As a result, Line-to-Line Clarke Transformation is performed to derive 

(2.16) as given by 

 

1 2 11
3 3 0 3

⎡ ⎤−
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 (2.17) 

 

s r
s s s s

s r
s s s s

di dV R i L
dt dt

di d
V R i L

dt dt

α α
α α

β β
β β

ϕ

ϕ

= + +

= + +
 (2.18) 

Given the αβ–axes the machine equations in (2.18) where Vsα, Vsβ, Rs, and Ls are 

the αβ–axes stator voltages, phase resistance and inductance, respectively, the αβ–axes 

rotor flux linkages φrα and φrβ are obtained by taking the integral of both sides of (2.18) 

as follows: 

 

s s s r

s s s r

L i
L i

α α α

β β β

ϕ ϕ
ϕ ϕ

− =

− =
 (2.19) 

where φsα and φsβ are the α– and β–axis stator flux linkages, respectively. By using 

(2.19), reference stator flux linkage command |φs(θe)|* for DTC of BLDC motor drive in 

the constant torque region can be obtained similar to the DTC of a PMSM drive as 

 
* 2 2( ) ( ) ( ) ( )s e r e r e r eα βϕ θ ϕ θ ϕ θ ϕ θ= = +  (2.20) 
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where |φs(θe)|* varies with the electrical rotor position θe unlike a PMSM with sinusoidal 

back-EMF. 

A BLDC motor is operated ideally when the phase current is injected at the flat 

top portion of the line-to-neutral back-EMF. The back-EMF is usually flat for 120 

electrical degrees and in transition for 60 electrical degrees during each half cycle. In the 

constant torque region (below base speed) when the line-to-line back-EMF voltage is 

smaller than the dc bus voltage there is no reason to change the amplitude of stator flux 

linkage. Above base speed, however, the motor performance will significantly 

deteriorate because the back-EMF exceeds the dc bus voltage, and the stator inductance 

Xs will not allow the phase current to develop quickly enough to catch up to the flat top 

of the trapezoidal back-EMF. Beyond the base speed, the desired torque cannot be 

achieved unless other techniques such as phase advancing, 180 degree conduction, etc 

[58] are used. Operation of the DTC of a BLDC motor above the base speed is not in the 

scope of this work. 

Conventional two-phase conduction quasi-square wave current control causes the 

locus of the stator flux linkage to be unintentionally kept in hexagonal shape if the 

unexcited open-phase back-EMF effect and the free-wheeling diodes are neglected, as 

shown in Fig. 2.1 with the straight dotted lines forming a hexagon flux trajectory. If the 

free-wheeling diode effect which is caused by commutation is ignored, more circular 

flux trajectory can be obtained similar to a PMSM drive.  
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2Hφ
 

Fig. 2.1. Actual (solid curved lines) and ideal (straight dotted lines) stator flux linkage 

trajectories, representation of two-phase voltage space vectors in the stationary αβ–axes 

reference frame. 

 

It has also been observed from the stator flux linkage trajectory that when 

conventional two-phase PWM current control is used, sharp dips occur every 60 

electrical degrees. This is due to the operation of the freewheeling diodes. The same 

phenomenon has been noticed when the DTC scheme for a BLDC motor is used, as 

shown in Fig. 2.1. Due to the sharp dips in the stator flux linkage space vector at every 

commutation (60 electrical degrees) and the tendency of the currents to match with the 

flat top part of the phase back-EMF for smooth torque generation, there is no easy way 

to control the stator flux linkage amplitude. On the other hand, rotational speed of the 

stator flux linkage can be easily controlled therefore fast torque response is obtained. 
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The size of the sharp dips is quite unpredictable and depends on several factors which 

will be explained in the later part of this section and the related simulations are provided 

in the Section 2.3. The best way to control the stator flux linkage amplitude is to know 

the exact shape of it, but it is considered too cumbersome in the constant torque region. 

Therefore, in the DTC of a BLDC motor drive with two-phase conduction scheme, the 

flux error φ in the voltage vector selection look-up table is always selected as zero and 

only the torque error τ is used depending on the error level of the actual torque from the 

reference torque. If the reference torque is bigger than the actual torque, within the 

hysteresis bandwidth, the torque error τ is defined as “1,” otherwise it is “-1”, as shown 

in Table II. 

TABLE II 
TWO-PHASE VOLTAGE VECTOR SELECTION FOR BLDC MOTOR 

 
Note: The italic grey area is not used in the proposed DTC of a BLDC motor drive. 

2.2.1. Control of Electromagnetic Torque by Selecting the Proper Stator Voltage 

Space Vector 

A change in the torque can be achieved by keeping the amplitude of the stator 

flux linkage constant and increasing the rotational speed of the stator flux linkage as fast 

as possible. This allows a fast torque response to be achieved. It is shown in this section 

that the rotational speed of the stator flux linkage can be controlled by selecting the 
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proper voltage vectors while keeping the flux amplitude almost constant, in other words 

eliminating the flux control. 
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Fig. 2.2. Representation of two-phase switching states of the inverter voltage space vectors for a 

BLDC motor. 
 

When the primary windings, which are assumed to be symmetric fed by an 

inverter using two-phase conduction mode, as shown in Fig. 2.2, the primary voltages, 

Van, Vbn, and Vcn, are determined by the status of the six switches: SW1, SW2, …., and 

SW6. For example, if SW1 is one (turned on), SW2 is zero (turned off), SW3 is zero, and 

SW4 is one then Van = Vdc/2 and Vbn = −Vdc/2 (phase–c is open meaning that SW5 and 

SW6 are zero). Since the upper and lower switches in a phase leg may both be 

simultaneously off, irrespective of the state of the associated freewheeling diodes in two-

phase conduction mode, six digits are required for the inverter operation, one digit for 

each switch [56]. Therefore, there is a total of six non-zero voltage vectors and a zero 

voltage vector for the two-phase conduction mode which can be represented as V0,1,2,…,6 

(SW1, SW2, …., SW6), as shown in Fig. 2.1. The six non-zero vectors are 60 degrees 
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electrically apart from each other, as depicted in Fig. 2.1, but 30 electrical degrees phase 

shifted from the corresponding three-phase voltage vectors which are used in three-phase 

conduction DTC of a PMSM drive. Stationary reference frame (αβ–axes) representations 

of the six non-zero voltage vectors with respect to dc-link voltage and switching states of 

the semiconductor devices are derived in Appendix C. The overall block diagram of the 

closed-loop DTC scheme of a BLDC motor drive in the constant torque region is 

represented in Fig. 2.3. The dotted area represents the stator flux linkage control part of 

the scheme used only for comparison purposes. When the two switches in Fig. 2.3 are 

changed from state 2 to state 1, flux control is considered in the overall system along 

with torque control. In the two-phase conduction mode the shape of stator flux linkage 

trajectory is ideally expected to be hexagonal, as illustrated with the straight dotted line 

in Fig. 2.1. However, the influence of the unexcited open-phase back-EMF causes each 

straight side of the ideal hexagonal shape of the stator flux linkage locus to be curved 

and the actual stator flux linkage trajectory tends to be more circular in shape, as shown 

in Fig. 2.1 with solid curved line [56]. In addition to the sharp changes, curved shape in 

the flux locus between two consecutive commutations complicates the control of the 

stator flux linkage amplitude because it depends on the size of the sharp dips, and the 

depth of the change may vary with sampling time, dc-link voltage, hysteresis bandwidth, 

motor parameters especially the phase inductance, motor speed, snubber circuit, and the 

amount of load torque. For example, if the phase inductance is low the current and 

torque ripples in the direct torque controlled motor drives will be much higher compared 

to the machines with higher phase inductance. Therefore, to obtain low current and
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torque ripples in direct torque controlled motor drives, machines with high inductance 

are preferred. 

If a BLDC motor has an ideal trapezoidal back-EMF having a 120 electrical 

degree flat top, one current sensor on the dc-link can be used to estimate the torque. By 

knowing the sectors using hall-effect sensors the torque can be estimated with Tem = 

2keidc, where ke is the back-EMF constant and idc is the dc-link current. In reality, this 

might generate some low-frequency torque oscillations due to the approximation of the 

back-EMF as ideal trapezoid. To achieve a more accurate torque estimation, in general, 

for non-sinusoidal surface-mounted permanent magnet motors it is suggested that (2.16) 

should be used. 

Usually the overall control system of a BLDC motor drive includes three hall-

effect position sensors mounted on the stator 120 electrical degrees apart. These are used 

to provide low ripple torque control if the back-EMF is ideally trapezoidal because 

current commutation occurs only every 60 electrical degrees, as shown in Fig. 2.1. 

Nevertheless, using high resolution position sensors is quite useful if the back-EMF of 

BLDC motor is not ideally trapezoidal. The derivative of the rotor αβ–axes fluxes 

obtained from (2.18) over electrical position will cause problems mainly due to the sharp 

dips at every commutation point. The actual values of αβ–axes motor back-EMF 

constants kα and kβ vs. electrical rotor position θe can be created in the look-up table, 

respectively with great precision depending on the resolution of the position sensor (for 

example incremental encoder with 2048 pulses/revolution), therefore a good torque 

estimation can be obtained in (2.16). Figures representing the actual line-to-line and αβ–
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axes back-EMF constants kab(θe), kbc(θe), kca(θe), kα(θe) and kβ(θe) are given in the 

Appendix A, respectively. 

2.3. Simulation Results 

The drive system shown in Fig. 2.3 has been simulated for various cases with and 

without stator flux control, switch states 1 and 2, respectively in order to demonstrate the 

validity of the proposed two-phase conduction DTC of a BLDC motor drive scheme. 

To set the gating signals of the power switches easily and represent the real 

conditions in simulation as close as possible the electrical model of the actual BLDC 

motor with R-L elements and the inverter with power semiconductor switches 

considering the snubber circuit are designed in Matlab/Simulink® using the SimPower 

Systems toolbox. 

The dead-time of the inverter and non ideal effects of the BLDC machine are 

neglected in the simulation model. The sampling interval is 25 μs. The switching table, 

which is given in Table II is employed for the proposed DTC of the BLDC motor drive. 

The magnitudes of the torque and flux hysteresis bands are 0.001 N·m, and 0.001 Wb, 

respectively. It may be noted that the zero voltage vector suggested in [56] is not used in 

the proposed scheme due to the reasons explained in Section 2.1. 
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Fig. 2.4. Simulated open-loop stator flux linkage trajectory under the two-phase conduction DTC 

of a BLDC motor drive at no load torque (speed + torque control). 

 

Figs. 2.4 and 2.5 show the simulation results of the uncontrolled open-loop stator 

flux linkage locus when 0 N·m and 1.2835 N·m load torque are applied to the BLDC 

motor with ideal trapezoidal back-EMF, respectively. Fig. 2.4 represents the removal of 

the free-wheeling diode effect on flux locus with unloaded condition. Steady-state speed 

control is performed with an inner-loop torque control without flux control. Stator flux 

linkage is estimated using (2.18) as an open-loop. As can be seen in Fig. 2.5 when the 

load torque level increases, more deep sharp changes are observed which increases the 

difficulty of the flux control if it is used in the control scheme. The steady-state speed is 

30 mechanical rad/s and the dc-link voltage Vdc equals 40 2  V. Since the speed is 

controlled a better open-loop circular flux trajectory is obtained. 
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Under only torque control, when the zero voltage vector V0 is used to decrease 

the torque, as suggested in [56], larger, more frequent spikes on the phase voltages are 

observed in Fig. 2.6 compared to the ones used from the suggested voltage vector look-

up table given in Table II. 
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Fig. 2.5. Simulated open-loop stator flux linkage trajectory under the two-phase conduction DTC 

of a BLDC motor drive at 1.2835 N·m load torque (speed + torque control). 
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Fig. 2.6. Simulated phase–a voltage under 1.2 N·m load when zero voltage vector is used to 

decrease the torque (only torque control is performed). 

 

Using the actual αβ–axes rotor flux linkages in (2.20) looks like the best solution 

for a good stator flux reference similar to the DTC of a PMSM drive. Unlike BLDC 

motor, in PMSM since both α– and β–axis motor back-EMFs are in sinusoidal shape, 

constant stator flux linkage amplitude is obtained. However, for BLDC motor, unexcited 

open-phase back-EMF effect on flux locus and more importantly the size of the sharp 

dips cannot easily be predicted to achieve a good stator flux reference in two-phase 

conduction mode. Fig. 2.7 represents the stator flux locus when back-EMF is not ideally 

a trapezoidal under full-load (1.2835 N·m). The simulation time is 3 seconds. As can be 

clearly seen in Fig. 2.7 that when flux is controlled the sharp changes in the flux locus, 

which are observed in Fig. 2.5, are reduced. Although the flux control is reasonable, 
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unwanted current amplitude is generated as seen in Fig. 2.8 to keep the torque and flux 

in the desired level. 

-0.1 -0.05 0 0.05 0.1 0.15

-0.1

-0.05

0

0.05

0.1

0.15

Alfa-axis stator flux linkage (Wb)

Be
ta

-a
xi

s 
st

at
or

 fl
ux

 li
nk

ag
e 

(W
b)

 

Fig. 2.7. Simulated stator flux linkage locus with non-ideal trapezoidal back-EMF under full load 

(speed + torque + flux control). 

 

Even though the torque control still exists for some time with low-frequency 

oscillations, motor will be damaged because of high terminal current exceeding the peak 

current of 24 A, as shown in Fig. 2.8. Instability in the torque compared to the current 

does not occur except high ripples because hysteresis torque and flux controllers try to 

correct the errors in the torque and flux by applying unwanted voltage vectors. There is 

higher voltage than what is expected (~ 34 V) in the motor terminals compared to when 

just torque control is used without flux control. Because large and distorted terminal 

voltages exist, higher and distorted phase currents as seen in Fig. 2.8 are obvious. All 
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these problems are because of the flux control. There should be exact flux amplitude to 

be given as a reference flux value including sharp changes at every commutation points 

and curved shape between those commutation points, then appropriate flux control can 

be obtained without losing the torque control. However, to predict all these 

circumstances to generate a flux reference is cumbersome work which is unnecessary in 

the constant torque region. 
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Fig. 2.8. Simulated phase–a current when flux control is obtained using (2.20) under full load 

(speed + torque + flux control). 
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Fig. 2.9. Simulated phase–a current when just torque is controlled without flux control under 1.2 

N·m load with non-ideal trapezoidal back-EMF (reference torque is 1.225 N·m). 
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Fig. 2.10. Simulated electromagnetic torque when just torque is controlled without flux control 

under 1.2 N·m load with non-ideal trapezoidal back-EMF (reference torque is 1.225 N·m). 
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Fig. 2.11. Simulated phase–a voltage when just torque is controlled without flux control under 

1.2 N·m load with non-ideal trapezoidal back-EMF (reference torque is 1.225 N·m). 

 

Figs. 2.9–2.11 show phase–a current, electromagnetic torque and phase–a 

voltage, respectively under only torque control when the back-EMF is not ideally 

trapezoidal considering only the first, third and fifth harmonics of the fundamental ideal 

trapezoidal back-EMF. Reference torque is 1.225 N·m and the load torque is 1.2 N·m, 

thereby speed is kept at around 55 electrical rad/s for a better circular flux locus. If high 

resolution position sensor such as incremental encoder is used instead of the three hall-

effect sensors, low-frequency torque oscillations can be minimized by using (2.16), as 

shown in Fig. 2.10. In (2.16), the product of the actual αβ–axes back-EMF constants by 

the corresponding αβ–axes currents and number of pole pairs provide the exact values of 

the α– and β–axis torque, respectively. 
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2.4. Experimental Results 

The feasibility and practical features of the proposed DTC scheme of a BLDC 

motor drive have been evaluated using an experimental test-bed, as shown in Fig. 2.12. 

The proposed control algorithm is digitally implemented using the eZdspTM board from 

Spectrum Digital, Inc. based on TMS320F2812 DSP, as shown in Fig 2.12(a). In Fig. 

2.12(b), the BLDC motor whose parameters are given in the Appendix A is coupled to 

the overall system. 

In this section, transient and steady-state torque and current responses of the 

proposed two-phase conduction DTC scheme of a BLDC motor drive are demonstrated 

experimentally under 0.2 pu load torque condition. The experimental results are obtained 

from the datalog (data logging) module in the Texas Instruments Code Composer 

StudioTM IDE software. 

Fig. 2.13(a) and (b) illustrate the experimental results of the phase–a current and 

torque, respectively when only torque control is performed using (2.16), as shown in Fig. 

2.3 with switch state 1. In Fig. 2.13(b), the reference torque is suddenly increased from 

0.225 pu to 0.45 pu at 9.4 ms under 0.2 pu load torque. One per-unit is 1.146 N·m for 

torque, 5 A for current, and 1800 rpm for speed. The sampling time is chosen as 1/30000 

second, hysteresis bandwidth is 0.001 N·m, dead-time compensation is included, and the 

dc-link voltage is set to Vdc = 40 2  V. As it can be seen in Fig. 2.13(a) and (b), when 

the torque is suddenly increased the current amplitude also increases and fast torque 

response is achieved. The high frequency ripples observed in the torque and current are 

related to the sampling time, hysteresis bandwidth, winding inductance, and dc-link 
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voltage. This is well in accordance with the simulation results in Figs. 2.9 and 2.10 

where the sampling time is chosen as 25 μs. 

  
(a) 

 

(b) 

Fig. 2.12. Experimental test-bed. (a) Inverter and DSP control unit. (b) BLDC motor coupled to 

dynamometer and position encoder (2048 pulse/rev). 
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Fig. 2.13. (a) Experimental phase–a current and (b) electromagnetic torque under 0.2292 N·m 

(0.2 pu) load. 
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2.5. Conclusion 

This study has successfully demonstrated application of the proposed two-phase 

conduction direct torque control (DTC) scheme for BLDC motor drives in the constant 

torque region. A look-up table for the two-phase voltage vector selection is designed to 

provide faster torque response both on rising and falling conditions. Compared to the 

three phase DTC technique, this approach eliminates the flux control and only torque is 

considered in the overall control system. Three reasons are given for eliminating the flux 

control. First, since the line-to-line back-EMF including the small voltage drops is less 

than the dc-link voltage in the constant torque region there is no need to control the flux 

amplitude. Second, with the two-phase conduction mode sudden sharp dips in the stator 

flux linkage locus occur that complicate the control scheme. The size of these sharp dips 

is unpredictable. Third, regardless of the stator flux linkage amplitude, the phase currents 

tend to match with the flat top portion of the corresponding trapezoidal back-EMF to 

generate constant torque. 
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CHAPTER III 

 
 

POWER FACTOR CORRECTION OF DIRECT TORQUE CONTROLLED 
 

BRUSHLESS DC MOTOR WITH NON-SINUSOIDAL BACK-EMF USING 
 

TWO-PHASE CONDUCTION MODE 
 
 
 
 
 

3.1. Introduction 

In general, ac motor drives have very poor power factor due to the high number 

of harmonics in the line current. Power factor correction (PFC) method is a good 

candidate for ac-dc switched mode power supply in order to reduce the harmonics in the 

line current, increase the efficiency and capacity of motor drives, and reduce customers’ 

utility bills. There are two general types of PFC methods to obtain a unity power factor: 

analog and digital PFC techniques. In the past, due to the absence of fast 

microprocessors and DSPs, analog PFC methods were the only choice for achieving the 

unity power factor. Many control strategies using analog circuits have been explored in 

the past, including average current control [59], peak current control [60], hysteresis 

control [61], nonlinear carrier control [62], etc. With the recent developments in the 

microprocessor and DSP technologies, there is a possibility of implementing the 

complicated PFC algorithms using these fast processors [63]. 

As compared to conventional analog controllers, digital regulators offer several 

advantages such as possibility of implementing nonlinear and sophisticated control 
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algorithms, reduction of the number of control components, high reliability, low 

sensitivity to component aging, better performance than that in analog implementation 

with the same cost, reduced susceptibility to environmental variations such as thermal 

drifts, and negligible offsets. 

Digital control PFC implementations have been investigated by many researchers 

[64]–[66]. Majority of the work has been done on the implementation of the analog PFC 

techniques in the digital platform. There has been very little work done in the literature 

to implement the digital PFC methods on ac motor drives. The basic idea of the 

proposed PFC method in this paper is to update the required amount of duty cycle for 

boost converter in every sampling time of the DTC of BLDC motor drive. 

In this section, first of all the principle of the average current control boost PFC 

with feed-forward voltage compensation technique is presented in Section 3.2. In 

Section 3.3, the hardware implementation and experimental results of the proposed DTC 

of BLDC motor drive in two-phase conduction mode using average current control with 

input voltage feed-forward compensation boost PFC including load disturbance are 

presented. The conclusion is presented in Section 3.4. 
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3.2. The Average Current Control Boost PFC With Feed-Forward Voltage 

Compensation 

The main topology of the power factor pre-regulator based on boost converter 

includes two parts: rectifier circuit and boost circuit. The block diagram and DSP control 

stage of the boost PFC using average current control with feed-forward voltage 

compensation is shown in Fig. 3.1. As can be seen in Fig. 3.1, in contrast to the 

conventional boost circuit, the large filter capacitor of the power factor pre-regulator is 

placed at the output of the system. As indicated in Fig. 3.1, three signals are required to 

implement the control algorithm. These are, the rectified input voltage Vin, the inductor 

current Iin, and the dc output voltage Vo. There are two feedback loops in the control 

system. The average output dc voltage Vo is regulated by a slow response (high 

bandwidth), whereas the inner loop that regulates the input current Iin is a much faster 

loop (low bandwidth). 

For the purpose of digital control of a boost PFC converter, the instantaneous 

analog signals Vin, Iin, and Vo are all sensed and fed back to the DSP via three ADC 

channels ADCIN2, ADCIN3, and ADCIN4 at every sampling period, Ts respectively. 

Then they are converted to the per-unit equivalents using the gain blocks. The per-unit 

output voltage Vo(pu) is compared to the desired per-unit reference voltage Vref(pu) and the 

difference signal (Vref(pu) − Vo(pu)) is then fed into the voltage loop controller Gv. The 

output of the Gv, indicated as B, controls the amplitude of the per-unit reference current 

Iref(pu) such that for the applied load current and line voltage, the output voltage Vo is 

maintained at the reference level. Then, it is multiplied by the two other feed-forward 
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components, A and C, to generate the reference current command for the inner current 

loop. In Fig. 3.1, the component A represents the digitized instantaneous per-unit input 

sensed signal Vin and the component C is one over square of the per-unit averaged input 

voltage which equals 1/Vdc(pu)
2. The derivation of the feed-forward voltage component C 

is given in Section 3.2.1. The per-unit reference current command Iref(pu) for the inner 

current loop has the shape of a rectified sinewave and its amplitude is such that it 

maintains the per-unit output dc voltage Vo(pu) at per-unit reference voltage Vref(pu) level 

overcoming load and input voltage disturbances. The difference signal (Iref(pu) − Iin(pu)) is 

then passed into the current loop controller Gi in which the PWM duty ratio command is 

generated for the boost converter switch to maintain the per-unit inductor current Iin(pu) at 

the per-unit reference current Iref(pu) level. The multiplier gain Km whose derivation is 

provided in Section 3.2.1 is also added to the control block which allows adjustments of 

the per-unit reference current Iref(pu) signal based on the converter input voltage operating 

range Vmin – Vmax [67]. 

3.2.1. Calculation of Feed-Forward Voltage Component C and Multiplier Gain Km  

For simplicity per-unit system has been used to describe the components and all 

variables in the control system. Therefore, the voltage and current signals are 

automatically saved as per-unit (pu) numbers normalized with respect to their own 

maximum values. 

The multiplier gain Km is useful to adjust the reference current at its maximum 

when the PFC boost converter delivers the maximum load at the minimum input voltage 
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Vin. In Fig. 3.1, per-unit reference current Iref(pu) is expressed in terms of Km, A, B, and C 

as follows: 

 ( )ref pu mI K ABC=  (3.1) 

where A is the per-unit value of the sensed input voltage Vin, B is the output of the 

voltage PI controller Gv, and C is the inverse square of the averaged input rectified 

voltage Vdc, respectively. 

The average per-unit value Vdc(pu) of the input per-unit voltage Vin(pu) is given as 

 
( ) ( )

0

1 T

dc pu in puV V dt
T

= ∫  (3.2) 

where T is the time period of the input voltage corresponding to the grid frequency 

which is 60 Hz in this case and Vin(pu) is the per-unit value of the input rectified voltage 

normalized with respect to its maximum peak value Vmax. In (3.2), the base value of the 

per-unit average rectified input voltage Vdc(pu) is also chosen as Vmax. 

The maximum value of the average value Vdc of the sinewave input voltage is 

only 2Vmax/π. Therefore, the final per-unit representation of the average per-unit voltage 

Vdc(pu) is given by 

 

( )
( ) ( ) (2 / ) 2

dc pumax
dcx pu dc pu

max

VVV V
V

π
π

= =  (3.3) 

The inverse per-unit voltage Vinv(pu) of the average per-unit component Vdc(pu) of 

the per-unit input voltage Vin(pu) can be calculated as follows: 

For per-unit representation of the average inverse voltage Vinv, maximum inverse 

voltage Vinv_max should be found which equals the inverse minimum of the average input 
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voltage 1/Vdc_min = π/(2Vmin) where Vmin is the minimum peak amplitude of the rectified 

input voltage selected based on the input operating voltage range of the PFC boost 

converter. Finally, the per-unit value of the inverse voltage Vinv(pu) in terms of Vdc(pu), 

Vmin, and Vmax is given as 

 

( )
( )

1
2dcx pu dc _ max min

inv pu
inv _ max dc( pu ) max

V V VV
V V Vπ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= =  (3.4) 

where Vdc_max is the maximum average input rectified voltage equals 1/Vinv_min = 2Vmax/π. 

In (3.4), the numerator in parentheses represents the non per-unit value of the inverse 

average input voltage Vinv. 

Once the inverse per-unit voltage Vinv(pu) is calculated, the feed-forward voltage 

component C can be found as 

 

2
2 min

( ) 2 2
( ) max ( )

4 4
( ) ( )inv pu

dc pu dc pu m

VC V
V V V Kπ π

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 (3.5) 

where the multiplier gain Km can be expressed using (3.1) such that the reference per-

unit current Iref(pu) is at its maximum when the PFC boost converter delivers the 

maximum load at the minimum operating input voltage as 

 
max

min
m

VK
V

=  (3.6) 

The overall block diagram of the closed-loop DTC scheme of a BLDC motor 

drive with average current control boost PFC in the constant torque region is represented 

in Fig. 3.1. In Fig. 3.1, since there is no PWM generation required in the proposed DTC 
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scheme, six GPIO pins for DTC scheme and only one PWM output pin for PFC 

algorithm are used to achieve the overall closed-loop control. 

3.3. Experimental Results 

The feasibility and practical features of the proposed DTC scheme of a BLDC 

motor drive with average current control boost PFC have been evaluated using an 

experimental test-bed, shown in Fig. 3.2. The proposed control algorithm is digitally 

implemented using the eZdspTM board from Spectrum Digital, Inc. based on a fixed-

point TMS320F2812 DSP, as shown in Fig 3.2(a). In Fig. 3.2(b), the BLDC motor 

whose parameters are given in the Appendix A is coupled to the overall system. 

The average current control boost PFC with feed-forward voltage compensation 

method has been implemented in a single sampling time of the proposed DTC of a 

BLDC motor drive under two-phase conduction mode in the constant torque region. The 

boost converter switch is FET47N60C3, and the diode is STTH8R06D. The passive 

components of the boost converter are the inductor L3 = 1 mH and output filter 

capacitors C3 = C4 = 270 μF, as seen in Fig. 3.1. The boost converter switches at 80 kHz 

which is the sampling frequency of the overall control system and supplies 80 Vdc at the 

output. The input voltage range, Vmin – Vmax, is 28.28 Vac – 70.71 Vac peak. The EMI 

filter is used in order to reduce the high order switching harmonics in the line current 

which consists of the inductors L1 = L2 = 10 μH and the capacitors C1 = C2 = 1 μF. 

Gain of the feed forward path Km = 2.5 was selected in this implementation. In 

this paper, digital proportional-integral (PI) controllers are used in the voltage and 
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current loops. The coefficients of the PI voltage and current controllers are chosen as Kpv 

= 0.1736, Kiv = 0.01388, Kpi = 0.005, and Kii = 0.03125, respectively. One per-unit is 

1.146 N·m for torque, 5 A for current, and 1800 rpm for speed. Hysteresis bandwidth is 

0.001 N·m, and the dead-time compensation is included as well. 

In the implementation, over-current and voltage protections have been used for 

the inductor current and output voltage. Once the sensed inductor current and output dc 

voltage are higher than 8 A and 140 V, respectively a protection logic signal is generated 

and used to turn off the gate signal of the boost converter. 

Steady-state current response of the proposed two-phase conduction DTC 

scheme of a BLDC motor drive with average current control boost PFC is demonstrated 

experimentally under 0.371 N·m load torque condition in Fig. 3.3 where the reference 

torque is 0.573 N·m. The experimental results are obtained from the datalog (data 

logging) module in the Texas Instruments Code Composer StudioTM IDE software. The 

high frequency ripples in the current observed in Fig. 3.3 depend on the hysteresis 

bandwidth of the torque control, sampling time, especially motor winding inductance, 

and the amount of dc-link voltage. Because the machine used in the tests has low 

winding inductance and the dc-link is selected quite high for better power factor, the 

current ripples are expected to be high as seen in Fig. 3.3. 
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(a) 

 
(b) 

Fig. 3.2. Experimental test-bed. (a) Inverter, DSP control unit, and boost PFC board. (b) BLDC 

motor coupled to dynamometer and position encoder (2048 pulse/rev.). 

 

Fig. 3.4 shows the measured output voltage, line voltage, and line current 

waveforms for the two-phase DTC of BLDC motor drive at no load and at the steady-

state without PFC. The power factor under this operating condition is 0.7667. The 
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measured total harmonic distortion of the input line current and line voltage are 82.23% 

and 4.79%, respectively. The output active power is 55.3 W. 

 

 
 

 

  
Fig. 3.3. Measured steady-state phase-a current of two-phase DTC of BLDC motor drive using 

boost PFC under 0.371 N·m load with 0.573 N·m reference torque. Current: 1.25 A/div. Time 

base: 0.7 ms/div. 
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Fig. 3.4. Measured output dc voltage Vo, line voltage Vline, and line current Iline without PFC 

under no load with 0.4 N·m reference torque. (Top) Output dc voltage Vo = 80 V. (Middle) Line 

voltage Vline = 64.53 Vrms. (Bottom) Line current Iline = 1.122 A. Vo: 20 V/div; Iline: 2 A/div; Vline: 

50 V/div. Time base: 5 ms/div. 

 

Since no PFC control has been applied to the two-phase conduction DTC of 

BLDC motor drive, the power factor is poor and the line current has harmonics in it as 

can be seen in Fig. 3.4. Moreover, the output dc voltage also has some fluctuations due 

to the absence of the PFC control. These problems can be eliminated by using a PFC 

control algorithm during a single sampling period of the DTC of BLDC motor drive 

system. 

The output dc voltage, input line current, and line voltage waveforms for the two-

phase DTC of BLDC motor control at no load and at the steady-state with average 
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current control boost PFC are shown in Fig. 3.5. The measured total harmonic distortion 

of the input line current and line voltage are 5.45% and 3.45%, respectively and the 

measured power factor is 0.9997. The output active power of the total system is 69.3 W. 

Since the PFC algorithm is adapted to the overall DTC of BLDC motor drive system, 

low-frequency oscillations on dc-link voltage is reduced and the line current is more 

sinusoidal, thereby eliminating harmonics as seen in Fig. 3.5 compared to the ones 

shown in Fig. 3.4. Thus, the power factor and the efficiency of the total system are 

improved considerably. 

 

 

Fig. 3.5. Measured steady-state output dc voltage Vo, line voltage Vline, and line current Iline with 

PFC under no load with 0.4 N·m reference torque. (Top) Output dc voltage Vo = 80 V. (Middle) 

Line voltage Vline = 25.43 Vrms. (Bottom) Line current Iline = 2.725 A. Vo: 20 V/div; Iline: 5 A/div; 

Vline: 50 V/div. Time base: 5 ms/div. 
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Fig. 3.6 shows the measured output voltage, line voltage, and line current 

waveforms for the two-phase DTC of BLDC motor control under 0.371 N·m load at the 

steady-state with PFC. The power factor under this operating condition is 0.9997. The 

measured total harmonic distortion of the input line current and line voltage are 5.05% 

and 3.43%, respectively. The output active power of the total system in this case is 108.6 

W. 

Due to the existence of the load torque, output dc voltage in Fig. 3.6 has some 

distortion as compared to the dc output voltage shown in Fig. 3.5. There has not been a 

significant difference observed in the line currents and line voltages between Fig. 3.5 

and Fig. 3.6. 

 

Fig. 3.6. Measured steady-state output dc voltage Vo, line voltage Vline, and line current Iline with 

PFC under 0.371 N·m load with 0.573 N·m reference torque. (Top) Output dc voltage Vo = 80 V. 

(Middle) Line voltage Vline = 25.2 Vrms. (Bottom) Line current Iline = 4.311 A. Vo: 20 V/div; Iline: 5 

A/div; Vline: 50 V/div. Time base: 5 ms/div. 
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3.4. Conclusion 

The digital implementation of the DTC for BLDC motor drive using two-phase 

conduction mode with average current control boost PFC during a single sampling 

period of the motor drive system has been successfully demonstrated on an eZdspTM 

board featuring a TMS320F2812 DSP. A prototype boost PFC controlled by a DSP 

evaluation board was built to verify the proposed digital control PFC strategy along with 

the DTC of BLDC motor drive system. Experimental results show that, based on the 

proposed average current control boost PFC with input voltage compensation algorithm, 

the power factor of 0.9997 is achieved at the steady-state under 20 to 50 Vrms input 

voltage range conditions. Moreover, the proposed PFC control strategy can achieve 

smooth output dc voltage which is applied to the BLDC motor drive and sinusoidal line 

current waveform with THD as low as 5%. Therefore, the power factor and the overall 

efficiency of the DTC of BLDC motor drive are increased considerably. 
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CHAPTER IV 

 
 

DIRECT TORQUE CONTROL OF FOUR-SWITCH BRUSHLESS DC MOTOR 
 

WITH NON-SINUSOIDAL BACK-EMF USING TWO-PHASE CONDUCTION 
 

MODE 
 
 
 
 

4.1. Introduction 

Brushless dc motors have been used in variable speed drives for many years due 

to their high efficiency, high power factor, high torque, simple control, and lower 

maintenance [41]. Low cost and high efficiency variable speed motor drives have had 

growing interest over the years. Minimizing the switch counts has been proposed to 

replace the traditional six-switch three-phase inverter. Van Der Broeck has demonstrated 

the possibility to implement a three phase ac motor drive system employing the four-

switch three phase inverter [68]. In [68], although the topology of the four-switch 

inverter for the induction motor is identical to the BLDC motor, conventional four-

switch PWM schemes used for induction motor drives cannot be directly applied to 

BLDC motor drive. Three phase conduction scheme is presented which is inherently 

difficult to use in brushless dc motor drive systems incorporating only 120 electrical 

degree current conduction. This is due to the limited voltage space vectors of the 

conventional four-switch scheme. Therefore, in order to use the four-switch inverter 

topology for the three-phase BLDC motor drive, only two phase conduction voltage 

space vectors (line-to-line voltage vectors) should be obtained from the four-switch 
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inverter. This theory is presented in [69] where special current control method is 

performed for the two modes of operation (mode 2 and 5) such that when two phases 

which are not connected to the center of the dc-link capacitors conduct, they are 

individually controlled by the hysteresis PWM current controllers. By doing so, current 

distortions on each phase caused by the back-EMF of the inactive third phase, which is 

connected to the center part of the split dc-link capacitors, are reduced. 

One of the other solutions to the limited voltage space vector problem is to 

modify the conventional voltage controlled PWM strategies, such as space vector PWM 

technique presented in [70, 71]. However, in [70, 71] several proportional and integral 

controllers are needed along with abc to αβ (stationary reference frame) and αβ to abc 

transformations for both currents and voltages. Moreover, reference current generation 

scheme is proposed which requires commutation interval times. Those interval times are 

dependant on several motor parameters such as winding inductance, dc-link voltage and 

back-EMF. Therefore, more complicated and parameter sensitive drive system is 

inevitable. 

The most popular way to control BLDC motors using four- or six-switch inverter 

is by PWM current control in which a two-phase feeding scheme is considered with 

variety of PWM modes such as soft switching, hard-switching, and etc. In this work, 

unlike the methods discussed in [68, 70, 71], a novel direct torque control scheme 

including the actual pre-stored back-EMF constants vs. electrical rotor position look-up 

table is proposed for BLDC motor drive with two-phase conduction scheme using four-

switch inverter. Therefore, low-frequency torque ripples and torque response time are 
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minimized compared to conventional four-switch PWM current and voltage controlled 

BLDC motor drives. This is achieved by properly selecting the inverter voltage space 

vectors of the two-phase conduction mode from a simple look-up table at a predefined 

sampling time. 

It is believed that the direct torque controlled BLDC motor drive compared to a 

PWM voltage controlled one has higher dynamic speed/torque response and does not 

rely on some tedious calculations. Instead, the DTC of a BLDC motor drive depends on 

a keen and detailed observation of the overall operation, so that it dramatically reduces 

equations from the conventional control scheme, such as space vector PWM and etc. and 

is simple to implement from the hardware and software points of view [69]. 

The four-switch DTC of a BLDC motor drive operating in two-phase conduction 

mode which is similar to [72] is simplified to just a torque controlled drive by 

intentionally keeping the stator flux linkage amplitude almost constant by eliminating 

the flux control in the constant torque region. It is shown that in the constant torque 

region under the two-phase conduction DTC scheme using four-switch (or six-switch) 

inverter, the amplitude of the stator flux linkage cannot easily be controlled due to the 

sharp changes and the curved shape of the flux vector between two consecutive 

commutation points in the stator flux linkage locus. Since the flux control along with 

PWM generation is removed, fewer algorithms are required for the proposed control 

scheme. 

Specifically, it is shown that rather than attempting to control the stator flux 

amplitude in two-phase conduction DTC of BLDC motor drive, only the electromagnetic 
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torque is controlled. It will be shown that due to the sharp changes, which occur every 

60 electrical degrees, flux amplitude control is quite difficult. Moreover, it will be 

explained in detail that there is no need to control the stator flux linkage amplitude of a 

BLDC motor in the constant torque region. The stator flux linkage position in the 

trajectory is helpful to find the right sector for the torque control in sensorless 

applications of BLDC motor drives. Therefore, the torque is controlled while the stator 

flux linkage amplitude is kept almost constant on purpose [72]. In the proposed method, 

a simple two-phase four-switch inverter voltage space vector look-up table is developed 

to control the electromagnetic torque. Moreover, to obtain smooth torque characteristics 

a new switching logic is designed and incorporated with the two-phase four-switch 

voltage space vector look-up table. Simulated and experimental results are presented to 

illustrate the validity and effectiveness of the two-phase four-switch DTC of a BLDC 

motor drive in the constant torque region. 

4.2. Topology of the Conventional Four-Switch Three-Phase AC Motor Drive 

4.2.1. Principles of the Conventional Four-Switch Inverter Scheme 

In four-switch three-phase inverter system, there are four possible switching 

patterns to generate three-phase currents, as shown in Fig. 4.1 with ideal switches; these 

four switching patterns are (0, 0), (0, 1), (1, 0), and (1, 1) where “0” means the lower 

switch is turned on and “1” the upper switch is turned on in each leg of the inverter. In 

the same figure, the free-wheeling diodes as well as phase back-EMFs are ignored. As it 

can be seen in Fig. 4.1 that in three-phase four-switch system the two switches on the 

same leg never turn on and off at the same time. However, in six-switch inverter, two 
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zero voltage space vectors, (0, 0, 0) and (1, 1, 1), cannot supply the dc-link to the load, 

therefore no current flows through the load. The main difference of the four-switch 

inverter compared to its counterpart six-switch one is that one phase is always connected 

to the center tap of the split capacitors, so that there will always be current flowing 

through that phase even with voltage vectors (0, 0) and (1, 1), as shown in Fig. 4.1. 

Under balanced load condition with four-switch topology, there will be no current flow 

through the phase which is connected to the midpoint of the split capacitors using two 

possible non-zero voltage vectors, (1, 0) and (0, 1), as seen in Fig. 4.1. When voltage 

vectors (1, 0) and (0, 1) are used and the load is not completely balanced, only the 

resultant current of the other two phases flow through the phase connected to the 

midpoint of the split capacitors. 

(a) (b) 

(c) (d) 

Fig. 4.1. Conventional four-switch voltage vector topology. (a) (0,0) vector, (b) (1,1) vector, (c) 

(1,0) vector, and (d) (0,1) vector [69]. 
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4.2.2. Applicability of the Conventional Method to the BLDC Motor Drive 

Generating a 120 electrical degree current conduction is inherently difficult with 

the conventional four-switch topology because a BLDC motor with non-sinusoidal back-

EMF (i.e. trapezoidal) requires a quasi-square wave current profile to generate constant 

output torque compared to that of a permanent magnet synchronous motor with 

sinusoidal back-EMF requiring sinewave current. These currents which have 120 

electrical degrees conduction period are synchronized with the flat portion of the 

corresponding phase back-EMFs, therefore a smooth electromagnetic torque can be 

obtained. As a result, at every instant of time only two phases conduct and the other 

phase is supposed to be inactive. Although four voltage vectors in conventional four-

switch inverter system are sufficient enough to control the three-phase ac motors using 

PWM techniques, additional voltage vectors are required for BLDC motor with two-

phase conduction mode in order to control the midpoint current of the split capacitors at 

a desired value. Since the conventional method cannot provide a two-phase conduction 

method completely, a new control scheme with new switching patterns should be 

developed such that only two of the three motor phases conduct. This will be explained 

in detail in Section 4.3. Since for three phase ac induction motor and PMSM drives at 

any instant of time there are always three-phase currents flowing through the machine, 

summation of the three-phase currents under balanced condition is always zero. Also, at 

any time none of the phase currents become zero. This scenario is not true for BLDC 

motor with two-phase conduction where 120 electrical degrees of one complete cycle 

(360 degree) of each phase currents will be zero. There will be cases where only phase–a 
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and –b currents are supposed to be conducting and phase–c current is zero as shown in 

Mode II and V of Fig. 4.2. However, because of the phase back-EMF (phase–c) there 

will be a current flowing in or out of phase–c through the dc-link. Therefore, special 

attention should be given to the phase which is connected to the center of the split 

capacitors in four-switch BLDC motor drive scheme. 

  

Fig. 4.2. Actual (realistic) phase back-EMF, current, and phase torque profiles of the three-phase 

BLDC motor drive with four-switch inverter. 
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4.3. The Proposed Four-Switch Direct Torque Control of BLDC Motor Drive 

4.3.1. Principles of the Proposed Four-Switch Inverter Scheme 

The key issue in the proposed four-switch DTC of a BLDC motor drive in the 

constant torque region is to estimate the electromagnetic torque correctly similar to the 

six-switch version given in [72]. For a surface-mounted BLDC motor the back-EMF 

waveform is non-sinusoidal (trapezoidal), irrelevant of conducting mode (two or three-

phase), therefore (4.1) which is given in the stationary reference frame should be used 

for the electromagnetic torque calculation [50, 56, 72]. 

 3 3 ( ) ( )
2 2 2 2em s e s es s

e e
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α α αβ β βθ θ

ω ω

⎡ ⎤
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 (4.1) 

where P is the number of poles, θe is the electrical rotor angle, ωe is the electrical rotor 

speed, and kα(θe), kβ(θe), eα, eβ, isα, isβ are the stationary reference frame (αβ–axes) back-

EMF constants, motor back-EMFs, and stator currents, respectively. Since the second 

equation in (4.1) does not involve the rotor speed in the denominator there will be no 

problem estimating the torque at zero and near zero speeds. Therefore, it is used in the 

proposed control system instead of the one on the left in (4.1). 

The αβ–axes rotor flux linkages φrα and φrβ are obtained as 
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 (4.2) 

where φsα and φsβ are the α– and β–axis stator flux linkages, respectively. By using (4.2), 

reference stator flux linkage command |φs(θe)|* for DTC of BLDC motor drive in the 

constant torque region can be obtained similar to the DTC of a PMSM drive as 
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* 2 2( ) ( ) ( ) ( )s e r e r e r eα βϕ θ ϕ θ ϕ θ ϕ θ= = +  (4.3) 

Since the electromagnetic torque is proportional to the product of back-EMF and 

its corresponding current, the phase currents are automatically shaped to obtain the 

desired electromagnetic torque characteristics using (4.1). When the actual stationary 

reference frame back-EMF constant waveforms from the pre-stored look-up table are 

used in (4.1), much smoother electromagnetic torque is obtained as shown in Fig. 4.2. 

From the detail investigation of the back-EMF, current, and phase torque profile 

of the three-phase BLDC motor as shown in Fig. 4.2, one can obtain a solution to the 

problems that occur in the conventional four-switch topology explained in Section 4.2.2. 

As can be observed in Fig. 4.2 that to generate constant electromagnetic torque due to 

the characteristics of the BLDC motor, such as two-phase conduction, only two of the 

three phase torque are involved in the total torque equation during every 60 electrical 

degrees and the remaining phase torque equals zero as shown in Table III. The total 

electromagnetic torque of PMAC motors equals the summation of each phase torque 

which is given by 

 
em ea eb ecT T T T= + +  (4.4) 

where /ea a a mT e i ω= , /eb b b mT e i ω= , and /ec c c mT e i ω= . 

In the constant torque region (below base speed) when the line-to-line back-EMF 

voltage is smaller than the dc bus voltage there is no reason to change the amplitude of 

stator flux linkage. Above base speed, however, the motor performance will significantly 

deteriorate because the back-EMF exceeds the dc bus voltage, and the stator inductance 

Xs will not allow the phase current to develop quick enough to catch up to the flat top of 
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the trapezoidal back-EMF. Beyond the base speed the desired torque cannot be achieved 

unless other techniques such as phase advancing, 180 degree conduction, etc are used 

[58]. Operation of the DTC of a BLDC motor above the base speed is not in the scope of 

this work. 

TABLE III 
ELECTROMAGNETIC TORQUE EQUATIONS FOR THE OPERATING REGIONS 

Mode I (0°<θ<30°) Tem = Teb + Tec and Tea = 0 

Mode II (30°<θ<90°) Tem = Tea + Teb and Tec = 0 

Mode III (90°<θ<150°) Tem = Tea + Tec and Teb = 0 

Mode IV (150°<θ<210°) Tem = Teb + Tec and Tea = 0 

Mode V (210°<θ<270°) Tem = Tea + Teb and Tec = 0 

Mode VI (270°<θ<330°) Tem = Tea + Tec and Teb = 0 

 

It has been observed from the stator flux linkage trajectory that when 

conventional two-phase four-switch PWM current control is used sharp dips occur every 

60 electrical degrees. This is due to the operation of the freewheeling diodes. The same 

phenomenon has been noticed when the DTC scheme for a BLDC motor is used, as 

shown in Fig. 4.3. Due to the sharp dips in the stator flux linkage space vector at every 

commutation (60 electrical degrees) and the tendency of the currents to match with the 

flat top portion of the phase back-EMF for smooth torque generation, there is no easy 

way to control the stator flux linkage amplitude. On the other hand, rotational speed of 

the stator flux linkage can be easily controlled, therefore fast torque response is obtained. 

The size of the sharp dips is quite unpredictable and depends on several factors which 

will be explained in the later part of this section and the related simulations are provided 
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in the Section 4.4. The best way to control the stator flux linkage amplitude is to know 

the exact shape of it, but it is considered too cumbersome in the constant torque region. 

If the effect of unexcited open phase back-EMF and the free-wheeling diodes are 

neglected more hexagonal shape of stator flux locus can be obtained as shown in Fig. 4.3 

with straight dotted lines. However, the stator flux locus obtained in the actual 

implementation is shown in Fig. 4.3 with solid curved lines. Therefore, in the four-

switch DTC of a BLDC motor drive with two-phase conduction scheme, the flux error φ 

in the voltage vector selection look-up table is always selected as zero and only the 

torque error τ is used depending on the error level of the actual torque from the reference 

torque. If the reference torque is bigger than the actual torque, within the hysteresis 

bandwidth, the torque error τ is defined as “1,” otherwise it is “-1”, as shown in Table 

III. The BLDC motor model and representation of two-phase switching states of the 

four-switch inverter are illustrated in Fig. 4.4. 
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Fig. 4.3. Actual (solid curved lines) and ideal (straight dotted lines) stator flux linkage 

trajectories, representation of the four-switch two-phase voltage space vectors, and placement of 

the three hall-effect sensors in the stationary αβ–axes reference frame (Vdc_link = Vdc). 
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Fig. 4.4. Representation of two-phase switching states of the four-switch inverter voltage space 

vectors for a BLDC motor. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

(g) 

 

(h) 

Fig. 4.5. Proposed four-switch voltage vector topology for two-phase conduction DTC of BLDC 

motor drives. (a) V1(1000) vector, (b) V2(0010) vector, (c) V3(0110) vector, (d) V4(0100) vector, 

(e) V5(0001) vector, (f) V6(1001), (g) V7(0101), and (h) V0(1010). 
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4.3.2. Control of Electromagnetic Torque by Selecting the Proper Stator Voltage 

Space Vectors 

A change in the torque can be achieved by keeping the amplitude of the stator 

flux linkage constant and increasing the rotational speed of the stator flux linkage as fast 

as possible. This allows a fast torque response to be achieved. It is shown in this section 

that the rotational speed of the stator flux linkage can be controlled by selecting the 

proper voltage vectors while keeping the flux amplitude almost constant, in other words 

eliminating the flux control in the constant torque region. 

To obtain the six modes of operation in four-switch DTC of BLDC motor drive, 

a simple voltage vector selection look-up table is designed as shown in Table IV. 

Normally, six-possible voltage space vectors of four-switch topology are supposed to be 

used in Table IV as shown in Fig. 4.5(a)–(f) similar to the six-switch version, however 

two of the voltage vectors V3 and V6 as shown in Fig. 4.5 create problems in the torque 

control. When they are directly used in the voltage vector selection table (Table IV), 

back-EMF of the uncontrolled phase (phase–c) generates undesired current therefore 

distortions occur in each phase torque. As a result, undesired electromagnetic torque is 

inevitable. Therefore, when the rotor position is in the Sector II and V, special switching 

pattern should be adapted, as shown in Table V (CCW). At Sectors II and V, phase–a 

and –b torque are independently controlled by the hysteresis torque controllers. 

Additional two voltage vectors V0 and V7 which are used in conventional four-switch 

PWM scheme are included in the voltage selection look-up table to obtain smooth torque 

production in two-phase conduction four-switch DTC of BLDC motor drive. 
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TABLE IV 
TWO-PHASE FOUR-SWITCH VOLTAGE VECTOR SELECTION FOR DTC OF BLDC MOTOR DRIVE 

(CCW) 

Note: The italic grey area and vectors in the “X” area are not used in the proposed four-switch 
DTC of a BLDC motor drive. 

 

 
TABLE V 

VOLTAGE VECTOR SELECTION IN SECTORS II AND V FOR FOUR-SWITCH DTC OF BLDC 
MOTOR DRIVE (CCW) 

 

 

Since the upper and lower switches in a phase leg may both be simultaneously 

off, irrespective of the state of the associated freewheeling diodes in two-phase 

conduction mode, four digits are required for the four-switch inverter operation, one 

digit for each switch [56]. Therefore, there is a total of eight useful voltage vectors for 

the two-phase conduction mode in the proposed DTC of BLDC motor drive which can 

be represented as V0,1,2,…,6,7 (SW1, SW2, SW3, SW4), as shown in Fig. 4.3. The eight 
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possible two-phase four-switch voltage vectors and current flow are depicted in Fig. 4.5. 

Stationary reference frame (αβ–axes) representations of the eight voltage vectors with 

respect to dc-link voltage and switching states of the semiconductor devices are derived 

in Appendix D. The purpose of the hysteresis torque regulation is to shape the 

quasisquare wave current within acceptable ripple band as the inverse top portion of the 

actual back-EMF as shown in Fig. 4.2, therefore smoother torque can be obtained. In 

Fig. 4.5, the solid lines represent current direction and the dotted lines show inactive 

sections. The detailed switching sequence and torque regulation are showed in Fig. 4.6 

for four-switch DTC of BLDC motor drive. The overall block diagram of the closed-

loop four-switch DTC scheme of a BLDC motor drive in the constant torque region is 

represented in Fig. 4.7. The dotted area represents the stator flux linkage control part of 

the scheme used only for comparison purpose. When the two switches in Fig. 4.7 are 

changed from state 2 to state 1, flux control is considered in the overall system along 

with torque control. In the two-phase conduction mode the shape of stator flux linkage 

trajectory is ideally expected to be hexagonal, as illustrated with the straight dotted lines 

in Fig. 4.3. However, the influence of the unexcited open-phase back-EMF causes each 

straight side of the ideal hexagonal shape of the stator flux linkage locus to be curved 

and the actual stator flux linkage trajectory tends to be more circular in shape, as shown 

in Fig. 4.3 with solid curved lines [56]. In addition to the sharp changes, the curved 

shape in the flux locus between two consecutive commutations complicates the control 

of the stator flux linkage amplitude because it depends on the size of the sharp dips, and 

the depth of the change may vary with sampling time, dc-link voltage, hysteresis 
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bandwidth, motor parameters especially the winding inductance, motor speed, snubber 

circuit, and the amount of load torque. 

Usually the overall control system of a BLDC motor drive includes three hall-

effect position sensors mounted on the stator 120 electrical degrees apart, as shown in 

Fig. 4.3. These are used to provide good torque control if the back-EMF is ideally 

trapezoidal because current commutation occurs only every 60 electrical degrees. 

Nevertheless, using high resolution position sensors is quite useful if the back-EMF of 

BLDC motor is not ideally trapezoidal. To achieve a more accurate torque estimation, in 

general, for non-sinusoidal surface-mounted permanent magnet motors it is suggested 

that (4.1) should be used. The derivative of the rotor αβ–axes fluxes obtained from (4.2) 

over electrical position, which is described in (4.1), will cause problems mainly due to 

the sharp dips at every commutation point. The actual values of αβ–axes back-EMF 

constants kα and kβ vs. electrical rotor position θe can be created in the look-up table, 

respectively with great precision depending on the resolution of the position sensor (for 

example incremental encoder with 2048 pulses/revolution), therefore a good torque 

estimation can be obtained in (4.1). 

4.3.3. Torque Control Strategies of the Uncontrolled Phase-c 

For direct torque control, Fig. 4.5(a) and (b) are not applicable due to the three-

phase conduction mode instead of a desired two-phase conduction. Modification in 

PWM scheme presented in [70, 71] could be a solution if not for its tedious computation. 

If torque or current is going to be controlled using hysteresis controllers, then those 

voltage space vectors cannot be used in two-phase BLDC motor drive. On the other 
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hand, even though voltage vectors shown in Fig. 4.5(c) and (d) are two-phase 

conductions through phase–a and –b, there will be always current trying to flow in 

phase–c due to its back-EMF and the absence of switches controlling its current. As a 

result, there will be a distorted current in phase–c as well as in phase–a and –b. 

Therefore, voltage space vectors of phase–a and –b conduction can be difficult to 

implement for BLDC motor drive unless some modifications are applied to overcome 

the back-EMF effect of the phase–c in these conditions. Selecting the right switching 

pattern to control the torque on phase–a and –b independently will reduce the distorted 

currents on those phases and result in a smoother overall electromagnetic torque 

production, which is shown in the simulations. Solution to the above phenomenon is 

explained in detail below: 

For BLDC motor with two-phase conduction, one of the phase torque should be 

zero as shown in Table III. This can be achieved in Sectors 1, 3, 4 and 6 whereas in 

Sectors 2 and 5 phase–c torque Tec is uncontrollable due to the split capacitors. In 

Sectors 2 and 5, voltage vectors V3 and V6 cannot be directly used, instead phase torque 

Tea and Teb should be individually controlled by properly selecting the S1, S2, S3, and S4 

switches, such as if the rotor position resides in Sector 2 and the rotor rotates in CCW 

direction then to increase the phase–a torque Tea S1 should be “0” and S2 is “1” and vice 

versa to decrease the Tea. To increase the phase–b torque Teb S3 should be “0” and S4 

should be “1” and vice versa to decrease the Teb. Reference torque value for those phase 

torque should be half of the desired total reference torque Tearef = Tebref = Tref/2. This 

special torque control phenomenon can be explained with the aid of the simplified 
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equivalent circuit in Fig. 4.6. Consequently, in Mode II and V only phase–a and –b 

torque are controlled independently and therefore the Tec is tried to be kept at zero value. 

This will eliminate the distorted torque problem on each phase in two-phase conduction 

four-switch DTC of a BLDC motor drive. 

The direction of the rotor is important to define the specific switching pattern. If 

the rotor direction is CW, then the above claims are reversed, such as in Sector 2 to 

increase the phase–a torque Tea S1 is “1” and S2 is “0” and vice versa for decrementing 

the Tea. The same is true for the phase–b torque Teb. 

 

Fig. 4.6. Individual phase–a and –b torque control, Tea and Teb , in Sectors 2 and 5. 
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Another problem to overcome is eliminating the high torque ripples in Mode 2 

and 5 where full dc-link is applied to the motor terminals compared to the other sectors 

where only half and one third of the dc-link voltage is used. During Sectors 2 and 5 

where the individual torque control is performed, bandwidth of the hysteresis torque 

controllers are chosen about 1000 times less than the normal case which is used in 

Sectors 1, 3, 4, and 6. Therefore, ripples in the current and eventually in the torque are 

equalized during the entire electrical cycle. 

Normally with four-switch inverter only half of the dc-link voltage is applied to 

the motor terminals compared to the six-switch inverter. This problem can be overcome 

by using voltage doubler half-bridge diode rectifier which can also be used for power 

factor correction if two diodes are replaced with active power semiconductors such as 

IGBTs and MOSFETs. 

From the equivalent circuit given in Fig. 4.6, if phase–a and –b torque are 

individually controlled as explained above, the influence of the back-EMF of the phase–

c can be blocked, there is no current flow in phase–c, therefore its torque (Tec) will be 

almost zero. As a result, in Sectors 2 and 5, phase–a and –b torque should be controlled 

independently, in other words switching signals at S1 (or S2) and S4 (or S3) should be 

created individually making additional voltage vectors V0 and V7 which act as a zero 

voltage vector at Sectors 2 and 5 in four-switch DTC of a BLDC motor drive scheme 

using two phase conduction mode. Additional voltage vectors and their logic depending 

on the errors of phase–a and –b torque are depicted in Table V. 
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At Sectors 2 and 5, complementary switches in both phase–a and –b legs cannot 

be turned off at the same time as in V4 and V5, therefore inverse logic is applied in Fig. 

4.6. 

4.4. Simulation Results 

The drive system shown in Fig. 4.7 has been simulated for various cases with and 

without stator flux control, switch states 1 and 2, respectively in order to demonstrate the 

validity of the proposed four-switch DTC of a BLDC motor drive scheme with two-

phase conduction. 

To set the gating signals of the power switches easily and represent the real 

conditions in simulation as close as possible the electrical model of the actual BLDC 

motor with R-L elements and the inverter with power semiconductor switches 

considering the snubber circuit are designed in Matlab/Simulink® using the SimPower 

Systems toolbox. 

The dead-time of the inverter and non ideal effects of the BLDC machine are 

neglected in the simulation model. The sampling interval is 25 μs. The switching tables, 

which are given in Table IV and V, are employed for the proposed DTC of the BLDC 

motor drive. The magnitudes of the torque hysteresis band used in Sectors 1, 3, 4, and 6 

τ1,3,4,6, and flux hysteresis band are 0.08 N·m and 0.001 Wb, respectively. Torque 

hysteresis bandwidth in Sectors 2 and 5 τ2,5 is chosen as 0.08/1000 N·m to equal the high 

frequency ripple width of both current and torque in one complete electrical cycle. 

Figs. 4.8 and 4.9 show the simulation results of the uncontrolled open-loop stator 

flux linkage locus when 0 N·m and 1.2835 N·m load torque are applied to the BLDC 
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motor with actual back-EMF waveforms, respectively. Steady-state speed control is 

performed with an inner-loop torque control without flux control. Stator flux linkage is 

estimated as an open-loop which is illustrated with dotted area in Fig. 4.7 without 

connection of switch state 1 to the overall control scheme. As can be seen in Fig. 4.9 

when the load torque level increases, more deep sharp changes are observed which 

increase the difficulty of the flux control if it is used in the control scheme. The steady-

state speed is 30 mechanical rad/s and the dc-link voltage Vdc equals 80 2  V. Since the 

speed is controlled a better open-loop circular flux trajectory is obtained. The overall 

time for this simulation is 0.25 second. 

Using the actual αβ–axes rotor flux linkages in (4.3) looks like the best solution 

for a good stator flux reference similar to the DTC of a PMSM drive. Unlike BLDC 

motor, in PMSM since both α– and β–axis motor back-EMFs are in sinusoidal shape, 

constant stator flux linkage amplitude is obtained. However, for BLDC motor, unexcited 

open-phase back-EMF effect on the flux locus and more importantly the size of the 

sharp dips cannot easily be predicted to achieve a good stator flux reference in two-

phase conduction mode. Fig. 4.10 represents the steady-state estimated stator flux locus 

whose reference obtained in (4.3) when back-EMF is not ideally a trapezoidal under full-

load (1.2835 N·m). The simulation time for this case is 3 seconds. The motor speed is 30 

mechanical rad/s. Due to the distorted voltage and current, the estimation of stator flux 

locus goes unstable as can be seen in Fig. 4.10. 
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Fig. 4.8. Simulated open-loop stator flux linkage trajectory under the four-switch two-phase 

conduction DTC of a BLDC motor drive at no load torque (speed + torque control). 
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Fig. 4.9. Simulated open-loop stator flux linkage trajectory under the four-switch two-phase 

conduction DTC of a BLDC motor drive at 1.2835 N·m load torque (speed + torque control). 
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Fig. 4.10. Simulated stator flux linkage locus whose reference is chosen from (4.3) under full 

load (speed + torque + flux control). 
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Fig. 4.11. Simulated electromagnetic torque using actual αβ–axes motor back-EMFs under full 

load (speed + torque + flux control). 
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Instability in the torque is observed in Fig. 4.11 where huge torque transients 

occur mainly at the commutation points. During Sectors 2 and 5 the torque estimation 

results in even larger transients which are unacceptable in real conditions. The reason of 

instability in the torque estimation is because of considering the flux control with a large 

reference flux to estimated flux ratio or vice versa during especially commutation 

periods in two-phase controlled four-switch DTC of a BLDC motor drive. There should 

be exact flux amplitude to be given as a reference flux value including sharp changes at 

every commutation point and curved shape between those commutation points, then 

appropriate flux control can be obtained without losing the torque control. However, to 

predict all these circumstances to generate a flux reference is a cumbersome work which 

is unnecessary in the constant torque region. 

Although the phase currents illustrated in Fig. 4.12 seem to be stable only until 

the second commutation point so as the electromagnetic torque as shown in Fig. 4.11. 

Then, the currents become unstable exceeding the peak current of 24 A due to the huge 

mismatch of the reference flux versus estimated flux in the two-phase conduction DTC 

of BLDC motor drive scheme. Once the currents go unstable the current dependant 

torque estimation is also affected enormously as can be seen in Fig. 4.11. 
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Fig. 4.12. Simulated abc frame phase currents when stator flux reference is obtained from (4.3) 

under full load (speed + torque + flux control). 

 

Figs. 4.13 and 4.14 show abc frame phase currents and electromagnetic torque, 

respectively under only torque control when the actual phase back-EMFs are considered 

in the simulation. Due to the individual torque control at Sectors 2 and 5 ripples on 

phase–c current during zero-crossing points are clearly visible in Fig. 4.13. The torque 

ripples of phase–c as a consequence of individual torque control scheme are not large 

enough to distort the torque estimation as illustrated with grey circle in Fig. 4.14. High-

frequency current and torque ripples observed in Figs. 4.13 and 4.14 are due to the high 

dc-link voltage, high sampling time, low winding inductance, high torque hysteresis 

bandwidth, etc. Those ripples can be minimized by selecting the proper values of dc-link 

voltage and hysteresis band size. Once the dc-link voltage is reduced to obtain less high-
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frequency ripples the hysteresis band size τ1,3,4,6 of Sectors 1, 3, 4, and 6 should also be 

decreased accordingly to get an equal ripple size in one complete electrical cycle for 

both currents and torque. The size of the torque hysteresis bandwidth at Sectors 2 and 5 

τ2,5 is still kept as τ1,3,4,6 /1000 N·m. In Fig. 14, reference torque is 0.51 N·m and the load 

torque is 0.5 N·m, thereby steady-state speed is kept around 30 electrical rad/s for a 

better circular flux locus. If high resolution position sensor such as incremental encoder 

is used instead of the three hall-effect sensors, low-frequency torque oscillations can be 

minimized by using (4.1), as shown in Fig. 4.14. In (4.1), the exact shapes of phase 

back-EMF constants are obtained offline and transformed to αβ–axes. Thus, the product 

of the real back-EMF constant values by the corresponding αβ–axes currents, and 

number of pole pairs provide the exact values of the α– and β–axis torque, respectively. 
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Fig. 4.13. Simulated abc frame phase currents when just torque is controlled without flux control 

under 0.5 N·m load using actual back-EMFs (reference torque is 0.51 N·m). 
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Fig. 4.14. Simulated electromagnetic torque when just torque is controlled without flux control 

under 0.5 N·m load using actual back-EMFs (reference torque is 0.51 N·m). 

4.5. Experimental Results 

The feasibility and practical features of the proposed four-switch DTC of a 

BLDC motor drive scheme have been evaluated using an experimental test-bed, shown 

in Fig. 4.15. The proposed control algorithm is digitally implemented using the eZdspTM 

board from Spectrum Digital, Inc. based on TMS320F2812 DSP, as shown in Fig 

4.15(a). In Fig. 4.15(b), the BLDC motor whose parameters are given in the Appendix A 

is coupled to the overall system. 

 

Phase-c torque Tec effect
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(a) 

 

(b) 

Fig. 4.15. Experimental test-bed. (a) Four-switch inverter and DSP control unit. (b) BLDC motor 

coupled to dynamometer and position encoder (2048 pulse/rev). 
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In this section, transient and steady-state torque and current responses of the 

proposed four-switch two-phase conduction DTC scheme of a BLDC motor drive are 

demonstrated experimentally under 0.5 N·m load torque condition. The experimental 

results are obtained from the datalog (data logging) module in the Texas Instruments 

Code Composer StudioTM IDE software.  

Fig. 4.16 illustrates the experimental results of the torque and abc frame phase 

currents when only torque control is performed using (4.1).. In Fig. 4.16, the reference 

torque is suddenly increased 25 percent from 0.51 N·m to 0.6375 N·m at 0.05 s under 0.5 

N·m load torque. The sampling time is chosen as 25 μs, hysteresis bandwidth is 0.05 

N·m for Sectors 1, 3, 4, and 6, for Sectors 2 and 5 it is selected as 0.0005 N·m to 

equalize the high-frequency ripple widths with the ones in the other sectors, the dead-

time compensation is included, and the dc-link voltage is set to Vdc = 80 2  V. As it can 

be seen in Fig. 4.16, when the torque is suddenly increased the current amplitudes also 

increase and fast torque response is achieved. The high frequency ripples observed in the 

torque and current are related to the sampling time, hysteresis bandwidth, winding 

inductance, and dc-link voltage. Those ripples can be minimized by properly selecting 

the dc-link voltage and torque hysteresis band size. The steady-state experimental results 

are well in accordance with the simulation results obtained in Figs. 4.13 and 4.14. Since 

only the torque is controlled without speed control, the time range of control system 

under transient state is selected short. The motor speeds up to a very large value if the 

motor is run longer under only torque control. 
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Fig. 4.16. Top: Steady-state and transient experimental electromagnetic torque in per-unit under 

0.5 N·m load torque (0.5 N·m/div). Bottom: Steady-state and transient experimental abc frame 

phase currents (2 A/div) and time base: 16.07 ms/div. 

4.6. Conclusion 

This study has successfully demonstrated application of the proposed four-switch 

two-phase conduction direct torque control (DTC) scheme for BLDC motor drives in the 

constant torque region. A look-up table for the two-phase voltage selection is designed 

to provide faster torque response. In addition, for effective torque control, a novel 

switching pattern incorporating with the voltage vector look-up table is developed and 

implemented for the two-phase four-switch DTC of a BLDC motor drive to produce the 

desired torque characteristics. Furthermore, to eliminate the low-frequency torque 

oscillations caused by the non-ideal trapezoidal shape of the actual back-EMF waveform 

Phase–c torque Tec effect
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of the BLDC motor, a pre-stored back-EMF versus electrical rotor position look-up table 

is designed and used in the torque estimation. 

Compared to the three phase DTC technique, this approach eliminates the flux 

control and only torque is considered in the overall control system. Three reasons are 

given for eliminating the flux control. First, since the line-to-line back-EMF including 

the small voltage drops is less than the dc-link voltage in the constant torque region there 

is no need to control the flux amplitude. Second, with the two-phase conduction mode 

sudden sharp dips in the stator flux linkage locus occur that complicate the control 

scheme. The size of these sharp dips is unpredictable. Third, regardless of the stator flux 

linkage amplitude, the phase currents tend to match with the flat top portion of the 

corresponding trapezoidal back-EMF to generate constant torque. The simulation and 

experimental results show that it is possible to achieve two-phase conduction DTC of a 

BLDC motor drive using four-switch inverter. 
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CHAPTER V 

 
 

SENSORLESS DIRECT TORQUE AND INDIRECT FLUX CONTROL OF 
 

BRUSHLESS DC MOTOR WITH NON-SINUSOIDAL BACK-EMF 
 
 
 
 

5.1. Introduction 

The permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) 

motor drives are used extensively in several high-performance applications, ranging 

from servos to traction drives, due to several distinct advantages such as high power 

density, high efficiency, large torque to inertia ratio, and simplicity in their control. 

In many applications, obtaining a low-frequency ripple-free torque and 

instantaneous torque and even flux control are of primary concern for BLDC motors 

with non-sinusoidal back-EMF. If the actual back-EMF of a BLDC motor is not ideal 

trapezoidal having a 120 degrees flat top, control scheme with discrete position sensing 

will generate low-frequency torque pulsations depending on the shape of the back-EMF. 

A great deal of study has been devoted to the current and torque control methods 

employed for BLDC motor drives to minimize the torque pulsations mainly caused by 

commutation and non-ideal shape of back-EMF. One of the most popular approaches is 

a generalized harmonic injection approach by numerical optimization solutions to find 

out optimal current waveforms based on back-EMF harmonics to minimize mutual and 

cogging torque [73]–[78], [47]–[49]. In [47], it is shown that torque ripple can be 

minimized by appropriately selecting the current harmonics to eliminate both excitation 
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and cogging torque ripple components. The complex exponential Fourier series 

decomposition is used in [48] to find a closed-form solution for the current harmonics 

that eliminate torque ripple and maximize efficiency simultaneously. In [49], the prior 

works are extended to include the case of finite supply voltage and verified by di/dt 

capability. Those approaches limit Fourier coefficients up to an arbitrary high harmonic 

order due to calculation complexity [79]. 

In [45], electromagnetic torque is calculated from the product of the 

instantaneous back-EMF and current both in two-phase and in the commutation period. 

Then, the pre-stored phase back-EMF values are obtained using mid-precision position 

sensor. As a result, torque pulsations due to the commutation are considerably reduced 

compared to the conventional PI current controller even for BLDC motor with non-ideal 

trapezoidal back-EMF. However, phase resistance is neglected and the torque estimation 

depends on parameters such as dc-link voltage and phase inductance. Moreover, instead 

of a simple voltage selection look-up table technique more sophisticated PWM method 

is used to drive the BLDC motor. Also, two phase conduction method instead of a three-

phase one is used which is problematic in the high speed applications. 

In [47], the instantaneous torque is directly controlled by variable structure 

strategy (VSS) in dq–axes synchronous reference frame in which the torque pulsations 

mainly caused by a conventional sinusoidal current control are minimized. Torque 

estimation algorithm operates well down to zero speed, but depends on pre-knowledge 

of the harmonic torque coefficients of the machine, which are subject to motor parameter 

variations and difficult to obtain. 
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Torque coefficients in [47] are updated using an on-line recursive least square 

estimator in [48], however it is computationally intensive and difficult to implement 

because it requires differentiation of the motor current. Real-time harmonics flux 

estimator to calculate the sixth-harmonic current that must be injected to cancel the 

sixth- and twelfth-harmonic pulsating torque components rather than depending on 

stored coefficients is reported in [49]. However, obtaining those harmonics is a quite 

complicated task. Moreover, instead of a simple voltage vector selection method more 

complicated SVPWM technique is used to drive the motor. Since the torque is not 

controlled directly, fast torque response cannot be achieved. Also, rotor speed is 

measured by an expensive resolver and back-EMF harmonics higher than sixth order are 

neglected for simplification resulting in a reduction of the accuracy in the estimation 

algorithms in which the knowledge of the fundamental peak magnet flux is required. 

In [46], the disadvantages observed in [47]–[49] are claimed to be improved by 

proposing a new instantaneous torque control. It is based on the model reference 

adaptive system (MRAS) technique and the torque is calculated by using the estimated 

flux and measured current. Then, the torque is instantaneously controlled by the torque 

controller using the integral variable structure control (IVSC) and the space-vector 

pulse-width modulation (SVPWM). Thus, good steady-state performance and switching 

characteristics are obtained. Compared to LSM, this technique does not require the 

differentiation of the motor current and the estimating performance is less sensitive to 

the measurement noise. Torque and speed pulsations are effectively reduced. 

Nevertheless, this technique increases the complexity of the control system. 
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In [50], predetermination of optimal current wave shapes using Park like dq–axes 

reference frame is obtained by adding some harmonics to the fundamental current to 

cancel specific torque harmonic components. However, these optimal current references 

are not constant and require very fast controllers especially when the motor operates at 

high speed. Moreover, the bandwidth of the classical proportional plus integral (PI) 

controllers does not allow tracking all of the reference current harmonics. 

Problems in [50] are claimed to be solved in [51] such that a new torque control 

strategy using the ba–ca reference frame is proposed in which easily accessible line-to-

line back-EMFs are measured and stored in a look-up table. Smooth and maximum 

torque is obtained, however this technique presents a steady-state torque error compared 

to the dq–axes reference frame scheme in [50] and the motor is driven by digital scalar 

modulation technique which operates like a SVPWM, therefore a more complicated 

control is inevitable. 

Since the Park Transformation and its extensions proposed in [50] do not 

linearize completely the non-linear model of the machine, state feedback linearization 

technique is applied in order to obtain the desired high performance torque control in 

[52]. Additionally, more tedious computations are needed to be performed compared to 

[50], which complicates the real-time implementation of the control strategy. 

The optimum current excitation methods, considering the unbalanced three-phase 

stator windings as well as non-identical and half-wave asymmetric back-EMF 

waveforms in BLDC motor, are reported in [43], [79]. These methods avoid the 

complicated harmonic coefficient calculation based on the optimization approach. In 
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[43], each phase back-EMF versus rotor position data is stored in a look-up table. Then, 

they are transformed to the dq–axes synchronous reference frame. The d–axis current is 

assumed to be zero and the q–axis current is obtained from the desired reference torque, 

motor speed, and the q–axis back-EMF. Consequently, inverse park transformation is 

applied to the dq–axes currents to obtain the abc frame optimum reference current 

waveforms. Minimum torque ripple and maximum efficiency are achieved at low speeds 

for a BLDC motor. However, three hysteresis current controllers with PWM generation, 

which increases the complexity of the drive, are used to drive the BLDC motor. Several 

transformations are required in order to get the abc frame optimum reference current 

waveforms. These transformations complicate the control algorithm and the scheme 

could not directly control the torque, therefore fast torque response cannot be achieved. 

Three offline measured back-EMF waveforms are needed for the torque estimation. 

Moreover, stator flux is not controlled, therefore high speed applications are not 

possible. In [79], an alternative simple and straightforward solution to eliminate torque 

ripple in BLDC machines is presented. This method is not dq based approach as in [43] 

and hence do not require the dq transformation which increases the complexity of the 

control system. The copper loss minimization strategy is also utilized. However, the pre-

measured three line-to-neutral back-EMF waveforms are needed and three phase 

currents are controlled instead of dq–axes currents. Therefore, field-weakening operation 

cannot easily be performed. 

In [41, 80], the method of multiple reference frames is employed in the 

development of a state variable model for BLDC drives with non-sinusoidal back-EMF 
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waveforms. This model has the desirable features of being valid for transient and steady-

state analysis as well as having state variables that are constant in the steady-state. This 

method results in the same torque capability during constant torque region as in the six-

step current control technique. Also, the same level of controllability as in the case of 

sinusoidal PMSM over the flux weakening region and regeneration operation compared 

to the conventional six-step BLDC drive system is achieved [41]. However, the method 

involves tedious algorithms which increase the complexity of the control system. 

Moreover, in [41], to determine the right d–axis current in flux-weakening region the 

high order d–axis harmonic current values are required which are quite difficult to 

obtain. Also, the back-EMF is assumed to be ideal trapezoidal and its harmonics higher 

than seventh order are neglected which results in a reduction of the accuracy in the 

overall system. 

Direct torque control (DTC) scheme was first proposed by Takahashi [53] and 

Depenbrock [54] for induction motor drives in the mid 1980s. More than a decade later, 

in the late 1990s, DTC techniques for both interior and surface-mounted synchronous 

motors (PMSM) were analyzed [55]. More recently, application of DTC scheme is 

extended to BLDC motor drives to minimize the low-frequency torque ripples and 

torque response time as compared to conventional PWM current controlled BLDC motor 

drives [56, 72]. In [56] and [72], the voltage space vectors in a two-phase conduction 

mode are defined and a stationary reference frame electromagnetic torque equation is 

derived for surface-mounted permanent magnet synchronous machines with non-

sinusoidal back-EMF (BLDC, and etc.). It is shown in [72] that only electromagnetic 
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torque in the DTC of BLDC motor drive under two-phase conduction mode can be 

controlled. Flux control is not trivial due to the sharp changes whose amplitudes are 

unpredictable depending on several factors such as load torque, dc-link voltage, winding 

inductance, etc. 

In this chapter, the torque control method presented in [56] and [72] is adapted to 

the position sensorless direct torque control scheme for three-phase conduction BLDC 

motor by using the new Line-to-Line Park Transformation which forms a 2x2 matrix 

instead of the conventional 2x3 matrix. Therefore, rather than three line-to-neutral back-

EMF waveforms which are not directly available in the motor easily accessible two line-

to-line back-EMF waveforms (eba and eca) are obtained offline and converted to the 

electrical rotor position dependant line-to-line back-EMF constants (kba(θe) and kca(θe)). 

Then, they are converted to dq–axes equivalents (kd(θe) and kq(θe)) using Line-to-Line 

Park Transformation. dq–axes back-EMF constants versus electrical rotor position data 

(kd(θe) and kq(θe)) are stored in a look-up table for the torque estimation. As opposed to 

the prior two-phase conduction methods, this DTC technique can control both torque and 

stator flux of the BLDC motor simultaneously, therefore field-weakening operation is 

possible. The electrical rotor position is estimated using winding inductance and 

stationary reference frame stator flux linkages and currents. The proposed sensorless 

DTC method controls the torque directly and stator flux amplitude indirectly using d–

axis current. Since the stator flux is estimated, position sensorless DTC of BLDC motor 

drive scheme can be achieved. Unlike those for motor with sinusoidal back-EMFs, 

optimal current references for a non-sinusoidal back-EMF motor (BLDC) in the 
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synchronous reference frame are not constant, therefore current wave shapes require 

very fast controllers in particular at high speed. Classical bandwidth of the controller 

(such as proportional-integral–PI) does not allow tracking all of the reference current 

harmonics [51]. Since the hysteresis controllers used in the proposed DTC scheme are 

not fast controllers like PI, they can easily regulate not only constant but also the varying 

references (torque and flux). Simulation and experimental results are presented to 

illustrate the validity and effectiveness of the sensorless three-phase conduction DTC of 

a BLDC motor drive. 

5.2. The Proposed Line-to-Line Clarke and Park Transformations in 2x2 Matrix 

Form 

5.2.1. Conventional Park Transformation for Balanced Systems 

In 1929, R. H. Park [81] introduced a new approach to electric machine analysis. 

In [81], Park Transformation is developed such that stator quantities of a synchronous 

machine are transformed onto a dq reference frame that is fixed to the rotor, with the 

positive d–axis aligned with the magnetic axis of the field winding and the positive q–

axis is defined as leading the positive d–axis by π/2 [82]. Therefore, from the rotor point 

of view, all the variables can be observed as constant values. As a result, this 

transformation has created a revolutionary idea that all the time varying quantities in a 

polyphase machine are converted to orthogonal two-phase equivalents which are 

controllable constant values. For the balanced n–phase to two-phase case, Park 

Transformation can be expressed excluding the zero-sequence term as 
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 [ ][ ]123( )dq nX T Xθ⎡ ⎤ =⎣ ⎦ …  (5.1) 

where 

 [ ]
cos cos cos ( 1)

2 2 22( )
3

sin sin sin ( 1)
2 2 2

P P P n
T

P P P n

θ θ ξ θ ξ
θ

θ θ ξ θ ξ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

…

…
 (5.2) 

The coefficient 2/3 in (5.2) is used to make the transformation power invariant 

and θ is the electrical angle between adjacent magnetic axes of the uniformly distributed 

n–phase windings. The transformation angle θ is the angular displacement of the rotor 

reference frame. 

The more general balanced three-phase to two-phase Park Transformation 

without a zero-sequence term X0 can be expressed as 

 [ ]( )
a

d
b

q
c

X
X

T X
X

X
θ

⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (5.3) 

where the dq transformation matrix [ ]( )T θ  is defined as 

 [ ] ( ) ( )
( ) ( )

cos cos 2 / 3 cos 2 / 32( )
sin sin 2 / 3 sin 2 / 33

T
θ θ π θ π

θ
θ θ π θ π

− +⎡ ⎤
= ⎢ ⎥− +⎣ ⎦

 (5.4) 

In (5.4), q–axis is lagging the d–axis by π/2. Another method uses a qd 

transformation in which the q–axis leads the d–axis and the transformation angle θ is 

between the q–axis and the a–axis instead of d–axis and a–axis as in (5.4) [82]. 

However, both methods will produce the same results. 
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5.2.2. The Proposed Line-to-Line Clarke and Park Transformations for Balanced 

Systems 

Since the balanced systems in dq–axes reference frame do not require a zero 

sequence term, first the Line-to-Line Clarke Transformation from the balanced three-

phase quantities is derived and, then the Line-to-Line Park Transformation forming a 

2x2 matrix instead of a 2x3 matrix as in (5.4) for three-phase systems can be obtained in 

the followings: 

Line-to-Line Clarke Transformation which requires only two input variables (bc 

and ca frame) can be obtained from conventional abc frame version as follows: 

First, classical Clarke Transformation, abc to αβ frame, is derived by replacing 

zero with the transformation angle θ in (5.4) and the matrix form is obtained as 

 

a

b

c

X
X

T X
X

X

α
αβ

β

⎡ ⎤
⎡ ⎤ ⎢ ⎥⎡ ⎤=⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (5.5) 

where 

 

1 11
2 2 2
3 3 30

2 2

Tαβ

⎡ ⎤− −⎢ ⎥
⎡ ⎤ ⎢ ⎥=⎣ ⎦ ⎢ ⎥−⎢ ⎥⎣ ⎦

 (5.6) 

Xα and Xβ are the stationary reference frame components, and Xa, Xb, and Xc are 

the abc frame components. In (5.5), X represents machine variables such as currents, 

voltages, flux linkages, back-EMFs, and etc. 

If Xα and Xβ are expanded and algebraically manipulated, the line-to-line 

representations of Xα and Xβ in ba–ca reference frame are attained respectively as 
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2

3 3 3
a b c a b a c ba caX X X X X X X X XX α
− − − + − − −

= = =  (5.7) 

and 

 ( ) ( ) ( )3 3 3
3 3 3b c b a a c ba caX X X X X X X X Xβ = − = − + − = −  (5.8) 

where ba b aX X X= − and ca c aX X X= − . 

Using the results obtained in (5.7) and (5.8), Xα and Xβ can be rewritten in matrix 

form as 

 [ ] ba
LL

ca

X X
T

X X
α

β

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (5.9) 

where 

 [ ]

1 1
3 3
3 3

3 3

LLT

⎡ ⎤− −⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥⎣ ⎦

 (5.10) 

As it can be seen in (5.10) that original Clarke Transformation forming a 2x3 

matrix given in (5.8) excluding the zero-sequence term can be simplified to a 2x2 matrix 

which requires only two input variables. 

Second, to obtain abc to ba–ca frame transformation the inverse of the Clarke 

Transformation matrix Tαβ⎡ ⎤⎣ ⎦  given in (5.6) is required. Since the zero-sequence term is 

removed, Tαβ⎡ ⎤⎣ ⎦  is not square anymore, but it is still singular and therefore pseudo-

inverse can be found in the followings: 

 ( ) 1T T
T T T Tαβ αβ αβ αβ

−+
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (5.11) 
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where Tαβ

+
⎡ ⎤⎣ ⎦  and 

T
Tαβ⎡ ⎤⎣ ⎦  are the pseudo-inverse and transpose of the original Clarke 

Transformation matrix Tαβ⎡ ⎤⎣ ⎦ , respectively. 

Abc to ba–ca transformation matrix can be derived using the pseudo-inverse 

matrix Tαβ

+
⎡ ⎤⎣ ⎦ , original Clarke Transformation matrix Tαβ⎡ ⎤⎣ ⎦  and Line-to-Line Clarke 

Transformation matrix [ ]LLT  as follows: 

 [ ]
a

ba
b LL

ca
b

X
X

T T X T T
X

X
αβ αβ αβ

+ +
⎡ ⎤

⎡ ⎤⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 (5.12) 

hence 

 

1 1
3 3

2 1
3 3
1 2
3 3

a
ba

b
ca

b

X
X

X
X

X

⎡ ⎤− −⎢ ⎥
⎡ ⎤ ⎢ ⎥

⎡ ⎤⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥−
⎢ ⎥⎣ ⎦

 (5.13) 

Then, the ba–ca to dq frame Line-to-Line Park Transformation can be written 

using (5.4) in (5.13) as 

 [ ]

1 1
3 3

2 1( )
3 3
1 2
3 3

d ba

q ca

X X
T

X X
θ

⎡ ⎤− −⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

 (5.14) 

After (5.14) is expanded and simplified using some trigonometric equivalence, 

the following 2x2 Line-to-Line Park Transformation matrix form is obtained: 
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( ) ( )
( ) ( )

sin / 6 sin / 62
cos / 6 cos / 63

d ba

q ca

X X
X X

θ π θ π
θ π θ π
− − +⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥− − + ⎣ ⎦⎣ ⎦ ⎣ ⎦
 (5.15) 

5.3. The Proposed Sensorless DTC of BLDC Drive Using Three-Phase Conduction 

5.3.1. Principles of the Proposed Method 

In this work, indirect torque control method of BLDC motor explained in [43] is 

extended to a direct torque and indirect flux control technique which is suitable for 

sensorless and field-weakening operations. The proposed method transforms abc frame 

quantities to dq frame ones using the new 2x2 Line-to-Line Park Transformation matrix. 

Rather than three measured phase back-EMFs which are used in [43], in the proposed 

balanced system only two electrical rotor position dependant back-EMF constants (kd(θe) 

and kq(θe)) are required in the torque estimation algorithm. Since the numbers of input 

variables (current and back-EMF) are reduced from three to two, much simpler Park 

Transformation can be used as given in (5.15). Therefore, the amount of multiplications 

and sine/cosine functions are minimized. 

Unlike previous two-phase conduction DTC of BLDC motor drive techniques 

which are proposed in [56, 72], this method uses DTC technique with three-phase 

conduction, therefore field-weakening operation as well as a much simpler position 

sensorless technique can easily be achieved. Compared to the two-phase conduction 

DTC scheme, this DTC method differs by its torque estimation and voltage vector 

selection table which is similar to the one used for DTC of PMSM drives explained in 

[10]. Although stator flux estimation algorithm in both methods (two-phase and three-

phase conduction) is the same due to the similar machine model in which the back-EMF 
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shape separates the two from each other, in two-phase conduction scheme the stator flux 

amplitude is uncontrollable. Since the proposed technique adopts three-phase 

conduction, there is a possibility to control the stator flux amplitude without 

commutation issue, therefore field-weakening and sensorless operations which involve 

back-EMF estimation can easily be performed. Moreover, this DTC method controls the 

voltage vectors directly from a simple look-up table depending on the outcome of 

hysteresis torque and indirect flux controllers, thus the overall control is much simpler 

and faster torque response can be achieved compared to the conventional PWM control 

techniques. 

Unless the harmonic components of field distribution and inductance variation 

are considered, the synchronously rotating dq reference frame analysis is no longer valid 

for BLDC motors with non-sinusoidal back-EMF because the stator to rotor mutual 

inductance does not vary sinusoidally [43]. Since the proposed DTC of BLDC motor 

drive method does not consider performing a modeling and simulation of the motor itself 

as in the Fourier analysis and multiple reference frame operations, the dq reference 

frame approach can easily be adopted to the DTC scheme to obtain a low-frequency 

ripple free torque based on the minimum input power. 

Most of the previous work to eliminate low-frequency torque ripples for BLDC 

motors assumed that the neutral point of the motor is available. Measurement of the 

three-phase back-EMFs requires access to the neutral point connection of the stator. In 

most cases, this represents extra cost and inconvenience to the motor installation. 
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Especially, in Y-connected systems, the neutral point is generally not available. 

Therefore, it is not practical and cumbersome to extract the neutral point [43]. 

For PMSM with non-sinusoidal back-EMF constituting odd harmonics, stator 

flux linkages r
dsϕ and r

qsϕ  in the dq–axes rotor reference frame can be obtained, 

respectively as [47] 

 
r r r

ds ds ds dqs qs dsf fL i L i L iϕ = + +  (5.16) 

 
r r r

qs qs qs qds ds qsf fL i L i L iϕ = + +  (5.17) 

where dqsL  and qdsL  are the mutual inductances between d– and q–axis, respectively. 

r
dsi and r

qsi , dsL  and qsL  are the d– and q–axis currents and inductances, respectively. 

dsfL and qsfL  are the mutual inductances between dq–axes and permanent magnet, 

respectively. fi  is the equivalent current generated by PM. 

All the machine inductances given in (5.16) and (5.17) can be written 

considering the flux harmonics which are multiple of six as [43] 

 0 6 12cos 6 cos12ds ds ds r ds rL L L Lθ θ= + + +"  (5.18) 

 6 12sin 6 cos12dqs dqs r dqs rL L Lθ θ= + +"  (5.19) 

 6 12sin 6 cos12dsf dsf dsf r dsf rL L L Lθ θ= + + +"  (5.20) 

 0 6 12cos 6 cos12qs qs qsf r qsf rL L L Lθ θ= + + +"  (5.21) 

 6 12sin 6 sin12qds qds r qds rL L Lθ θ= + +"  (5.22) 

 6 12cos 6 cos12qsf qsf qsf r qsf rL L L Lθ θ= + + +"  (5.23) 
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As it can be seen in (5.18)–(5.23) that the inductances in the rotor reference 

frame are not constant as in pure sinewave machines and represented by the fundamental 

term and/or multiple of six because the third harmonic and its multiples are internally 

cancelled out in the Y-connected three-phase systems and from the remaining 

harmonics, 5th and 7th harmonics transform into 6th harmonics, 11th and 13th harmonics 

transform into 12th harmonics, and so on. 

The motors with high-coercive PM material, the effects of the inductance 

harmonics in the stator winding can be negligible for the torque pulsation which is 

mainly produced by the flux harmonics in the PM. Therefore, for machines with surface-

mount magnet rotor (BLDC) it can be assumed that dsL  and qsL  are constant, i.e., 

0 0ds qs ds qs sL L L L L= = = = , and 0dqs qdsL L= =  Thus, stator flux linkages in rotor dq 

reference frame given in (5.16) and (5.17) can be rewritten as 

 
r r

ds ds ds dsf fL i L iϕ = +  (5.24) 

 
r r

qs qs qs qsf fL i L iϕ = +  (5.25) 

If the second term on the right hand side in (5.24) and (5.25) is expanded into the 

time-varying equivalence, the following equations are obtained: 

 ( ) ( )6 1 6 1
1

cos 6r r
ds s ds r n n r r

n
L i K K nϕ ϕ θ ϕ

∞

− +
=

′ ′= + − +∑  (5.26) 

 ( ) ( )6 1 6 1
1

sin 6r r
qs s qs r n n r

n
L i K K nϕ ϕ θ

∞

− +
=

′= + +∑  (5.27) 
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where rϕ ′  is the peak value of the fundamental rotor magnetic flux linkage, the 

coefficients 6 1nK −  and 6 1nK +  represent the odd harmonics of the phase back-EMF other 

than the third and its multiples. 6 1nK −  equals ( ) ( )3sin 6 1 / 6 1 sinn nα α⎡ ⎤⎡ ⎤− −⎣ ⎦ ⎣ ⎦ , and 

6 1nK +  is ( ) ( )3sin 6 1 / 6 1 sinn nα α⎡ ⎤⎡ ⎤+ +⎣ ⎦ ⎣ ⎦ . α is the angle between zero-crossing and 

phase back-EMF where it becomes flat at the top. Fundamental peak value of the rotor 

magnet flux linkage rϕ ′  equals ( )4 / sinek απ α  where ke is the line-to-neutral back-EMF 

constant. 

Although the equations to obtain coefficients 6 1nK −  and 6 1nK +  are approximations 

considering the back-EMF of BLDC motor consists of odd harmonics, they can also be 

obtained by Fourier analysis with more precise results, however it is a cumbersome 

work. Furthermore, the amounts of harmonics are limited due to the complication. In this 

work, the exact shape of only two line-to-line back-EMFs (eba and eca) are used without 

Fourier decomposition, therefore more realistic results can be achieved. 
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Fig. 5.1. Rotor and stator flux linkages of a BLDC motor in the stationary αβ–plane and 

synchronous dq–plane. 

 

Equations (5.26) and (5.27) are very close approximations of stator flux linkages 

in dq reference frame for the PMSM with non-sinusoidal back-EMF. It can be seen that 

they are not constant as in pure sinusoidal ac machines. Inductances and stator flux 

linkages vary by the six times of the fundamental frequency. One of the reasons to 

derive the equivalent inductance and then the dq frame stator flux linkages in BLDC 

motor is that it can be easily observable which parameters affect the amplitude of the 

stator flux linkages. Stator flux linkage amplitude ( ) ( )2 2r r
s ds qsϕ ϕ ϕ= + can be 

changed by varying the d–axis current r
dsi  in (5.26) assuming the torque is constant and 
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it is proportional to r
qsi , therefore an indirect flux control can be achieved in the 

proposed DTC of BLDC motor drive. Although r
qsi  is assumed constant meaning that it 

has an offset to generate an average torque, to obtain a smooth electromagnetic torque it 

varies by six times the fundamental frequency because flux harmonics given in (5.26) 

and (5.27) generate torque pulsations on the order of six and multiples of six. Since flux-

weakening operation is not in the scope of this paper, d–axis current reference is selected 

zero. The phasor diagram for stator flux linkage vectors in BLDC motor can be drawn in 

the rotor dq and stationary (αβ) reference frames as shown in Fig. 5.1 where 

0dqs qdsL L= = . In Fig. 5.1, unlike PMSM with sinusoidal back-EMF synchronous 

reference frame flux linkages r
dsϕ and r

qsϕ  vary with time, therefore stator flux 

amplitude sϕ  is not constant anymore in the trajectory. γ, ρ, and δ in Fig. 5.1 can be 

obtained respectively as 

 ( ) ( )1 1sin / cos / / 2r r r
qs qs qs qs qs sL i L iγ ϕ ϕ π− −= + −  (5.28) 

 ( )/ 2sρ θ γ π= − + −  (5.29) 

and 

 ( )1/ 2 cos /r
qs qs sL iδ π ϕ−= −  (5.30) 

Moreover, x in Fig. 5.1 can be expressed as 

 ( )1cos sin /r r
qs qs qs sx L iϕ ϕ−⎡ ⎤= ⎣ ⎦  (5.31) 
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5.3.2. Electromagnetic Torque Estimation in dq and ba–ca Reference Frames 

Because of the rotor position dependant terms in the dq frame stator flux linkages 

in (5.26) and (5.27) and inductances in (5.18)–(5.23), conventional torque estimation in 

stator reference frame used for DTC of sinusoidal ac motors is no longer valid for BLDC 

motor, therefore a new torque estimation algorithm is derived in dq frame consisting of 

actual dq–axes back-EMF constants and currents. Instead of the actual back-EMF 

waveforms, Fourier approximation of the back-EMFs could have been adopted in the 

torque estimation, but the results would not truly represent the reality and more complex 

computations are required. 

The torque estimation is the key factor in the proposed DTC scheme. First, two 

line-to-line back-EMF waveforms ( )ba ee θ  and ( )ca ee θ  are obtained offline and converted 

to the ba–ca frame back-EMF constants ( )ba ek θ  and ( )ca ek θ . The Line-to-Line Park 

Transformation matrix in (5.15) is used to obtain the dq reference frame back-EMF 

constants ( )d ek θ  and ( )q ek θ , where eθ  is the electrical rotor angular position. Then, they 

are stored in a look-up table for electromagnetic torque estimation. 

The electromagnetic torque emT  estimation algorithm can be derived for a 

balanced system in dq reference frame by equating the electrical power absorbed by the 

motor to the mechanical power produced ( i m em mP P T ω= = ) as follows: 

 ( ) ( )3 3( ) ( ) ( ) ( )
4 4

r r r r
em q e qs d e ds q e qs d e ds

re

P PT e i e i k i k iθ θ θ θ
ω

= + = +  (5.32) 
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where P is the number of poles, eω  is the electrical rotor speed, ( )q ee θ  and ( )d ee θ , r
qsi  

and r
dsi , ( )q ek θ  and ( )d ek θ  are the dq–axes back-EMFs, currents, and back-EMF 

constants according to the electrical rotor position, respectively. As it can be noticed that 

the right hand-side equation in (5.32) eliminates the speed term in the denominator 

which causes problem at zero and near zero speeds. 

Instead of dq frame torque equation in (5.32), much more computation intensive 

ba–ca frame torque estimation could have been used. Ba–ca frame electromagnetic 

torque equation whose derivation provided in Appendix B can be expressed as 

 
( ) ( )2 ( ) ( ) 2 ( ) ( )

6em ba e ca e ba ca e ba e ca
PT k k i k k iθ θ θ θ⎡ ⎤= − + −⎣ ⎦  (5.33) 

where ( ) ( ) ( )ba e b e a ek k kθ θ θ= − , and ( ) ( ) ( )ca e c e a ek k kθ θ θ= − , bai and cai  are the line-to-

line back-EMF constants according to the electrical rotor position, and line-to-line 

currents, respectively. 

However, because ba–ca frame torque equation in (5.33) involves more 

calculations, the dq frame torque equation in (5.32) instead of (5.33) is used in the 

proposed DTC scheme. 

5.3.3. Control of Stator Flux Linkage Amplitude 

The stator voltage equations of a BLDC motor can be obtained in the stationary 

reference frame similar to PMSM as follows: 
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dV R i
dt

d
V R i

dt

α
α α

β
β β

ϕ

ϕ

= +

= +
 (5.34) 

where 

 

s s s r

s s s r

L i
L i

α α α

β β β

ϕ ϕ
ϕ ϕ

= +

= +
 (5.35) 

In (5.35), rαϕ  and rβϕ  are the rotor flux linkages. It is obvious that they do not 

vary sinusoidally as opposed to PMSM due to the non-sinusoidal back-EMF. 

Since BLDC motor does not have sinusoidal back-EMF, the stator flux trajectory 

is not pure circular as in PMSM. It is more like a decagonal shape as shown in Fig. 5.2. 

Thus, direct stator flux amplitude control in a BLDC motor is not trivial as in PMSM 

such that rotor position varying flux command should be considered. However, this is a 

complicated way to control the stator flux linkage amplitude. Therefore, in this work 

instead of sϕ  itself its amplitude is indirectly controlled by d–axis current. In the 

constant torque region ids is controlled as zero and in the flux-weakening region it is 

decreased for a certain amount depending on the operational speed to achieve maximum 

torque. As a result, in this work stator flux linkage amplitude is indirectly kept at its 

optimum level while the motor speed is less than the base speed. 

Since stationary reference frame voltage equations in BLDC motor are same as 

the ones for PMSM, stator flux linkages in stationary reference frame can be depicted in 

a similar fashion as 
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( )

( )
s s s s

s s s s

V R i dt

V R i dt

α α α

β β β

ϕ

ϕ

= −

= −

∫
∫

 (5.36) 

where sV α  and sV β  can be found from a dc-link voltage sensor depending on the sector 

where stator flux linkage is located. 

During the sampling interval time, one out of the six voltage vectors is applied, 

and each voltage vector applied during the pre-defined sampling interval is constant, 

then (5.36) can be rewritten as: 

 

(0)

(0)

s s s s s

s s s s s

V t R i dt

V t R i dt

α α α α

β β β β

ϕ ϕ

ϕ ϕ

= − +

= − +

∫
∫

 (5.37) 

where (0)sαϕ  and (0)sβϕ  are the initial stator flux linkages at the instant of switching. If 

the line-to-line back-EMF constant kLL is roughly known, and let say the rotor is brought 

to zero position (phase–a), initial stator flux linkages at start-up can be obtained by 

integrating the back-EMF in which the ideal trapezoidal is assumed as given in 

Appendix E. Therefore, approximate initial starting flux values at zero position can be 

obtained as ( )(0) 2 / 3 3s LLkαϕ π=  and (0) 0sβϕ = . 
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Fig. 5.2. Decagon trajectory of stator flux linkage in the stationary αβ–plane. 

5.3.4. Control of Stator Flux Linkage Rotation and Voltage Vector Selection for 

DTC of BLDC Motor Drive 

In BLDC motor, if the load angle δ in Fig. 5.1 is increased then the torque 

variation is increased. To increase the load angle δ the stator flux vector should turn 

faster than rotor flux vector. The rotor flux rotation depends on the mechanical speed of 

the rotor, so to decrease load angle δ the stator flux should turn slower than rotor flux. 
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Therefore, the electromagnetic torque can be controlled effectively by controlling the 

amplitude and rotational speed of stator flux vector sϕ . 

The switching table for controlling both the amplitude and rotating direction of 

the stator flux linkage is given in Table VI. 

TABLE VI 
SWITCHING TABLE FOR DTC OF BLDC MOTOR USING THREE-PHASE CONDUCTION 

 
 

The output of the torque hysteresis comparator is denoted as τ, the output of the 

flux hysteresis comparator as φ and the flux linkage sector is denoted as θ. The torque 

hysteresis comparator is a two valued comparator; τ = -1 means that the actual value of 

the torque is above the reference and out of the hysteresis limit and τ = 1 means that the 

actual value is below the reference and out of the hysteresis limit. The same is applied to 

the flux hysteresis comparator. 

5.3.5. Estimation of Electrical Rotor Position 

Electrical rotor position θe which is required in the Line-to-Line Park 

Transformation and torque estimation algorithm can be found using (5.35) and (5.36) as 

 

1tan s s s
e

s s s

L i
L i

β β

α α

ϕ
θ

ϕ
− −⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 (5.38) 

V2 ( 110) V3(010) V4(001) V5(101) V6(110) V 1(110 )
V6 ( 101) V1(100) V2(010) V3(011) V4(110) V 5(110 )
V3 ( 010) V4(011) V5(101) V6(100) V1(110) V 2(110 )
V5 ( 001) V6(101) V1(110) V2(010) V3(110) V 4(110 )

θ
θ(1) θ(2) θ(3) θ(4) θ(5) θ(6) 

ϕ τ

1ϕ= 

-1 ϕ= 

1 τ =
-1 τ =
1τ =
-1 τ =



133 

Practical implementation of an integrator for stator flux linkage estimation in 

(5.37) is not an easy task. Using a pure integrator causes a dc drift and initial value 

problems. A small dc offset in the measured voltage and current signals due to noise or 

measurement error can cause the pure integrator to saturate. 

Many attempts have been made to modify the pure integrator by implementing it 

using a low pass filter. However, low pass filter produces errors in magnitude and phase 

angle, especially when the motor runs at a frequency lower than the filter cutoff 

frequency [83]. 

To solve the above common problems for integrators, a special integration 

algorithm for estimating the stator flux linkage proposed in [83] is used in this work. 

Although the method in [83] is designed for sinewave systems, the algorithm is still 

applicable to a BLDC motor with varying stator flux linkage amplitude as shown in Fig. 

5.2 in which ωc is the cut-off frequency and θs is the stator flux linkage position. Second 

algorithm in [83] which is the modified integrator with an amplitude limiter illustrated in 

Fig. 5.3 is used for the stator flux linkage estimation in the proposed position sensorless 

three-phase conduction DTC of BLDC motor drive scheme. The maximum amplitude of 

the stator flux linkage reference approximated as ( )2 / 3 3LLk π is set for the limiter in 

Fig. 5.3 when the motor speed is less than the base speed. If the motor operates in the 

field weakening region, the limiter value should be selected properly, but this is not in 

the scope of this work. 
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Fig. 5.3. BLDC motor stator flux linkage estimation with an amplitude limiter [83]. 

5.4. Simulation Results 

The drive system shown in Fig. 5.4 has been simulated in order to demonstrate 

the validity of the proposed position sensorless three-phase conduction DTC of a BLDC 

motor drive scheme using line-to-line machine model. 

To set the gating signals of the power switches easily and represent the real 

conditions in simulation as close as possible the electrical model of the actual BLDC 

motor with R-L elements and the inverter with power semiconductor switches 

considering the snubber circuit are designed in Matlab/Simulink® using the SimPower 

Systems toolbox. 

The dead-time of the inverter and non ideal effects of the BLDC machine are 

neglected in the simulation model. The sampling interval is 15 μs. The switching table, 

which is given in Table VI is employed for the proposed DTC of the BLDC motor drive. 

The magnitudes of the torque and flux hysteresis bands are 0.001 N·m, and 0.001 Wb, 

respectively. 
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Fig. 5.5. Simulated indirectly controlled stator flux linkage trajectory under the sensorless three-

phase conduction DTC of a BLDC motor drive at 0.5 N·m load torque (ids
r* = 0). 

 

Fig. 5.5 shows the simulation results of the indirectly controlled stator flux 

linkage locus by controlling the d–axis rotor ref. frame current (ids
r* = 0) when 0.5 N·m 

load torque is applied to the BLDC motor. Actual line-to-line back-EMF waveforms are 

used in the BLDC motor model. Due to the non-sinusoidal waveform of the actual back-

EMFs the dodecagon shape in the flux locus is observed in Fig. 5.5. The simulation 

system is run 0.7 second. It is seen from Fig. 5.5 that the amplitude of the stator flux 

linkage is indirectly controlled quite well at its required value, which is the amplitude of 

the magnet flux linkage, in the constant torque region. It is noted that the amplitude of 

the magnet flux varies non-sinusoidally as expected. Actual values of the stationary 

reference frame rotor flux linkages ( )r eαϕ θ  and ( )r eβϕ θ can be obtained by integrating 
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the corresponding actual stationary reference frame back-EMFs ( )eeα θ  and ( )eeβ θ over 

time. Torque reference is selected as 0.51 N·m to obtain a steady-state condition under 

0.5 N·m load torque. Since ids
r* = 0, motor runs in the constant torque region (ωe<ωbase). 

The steady-state speed is 30 mechanical rad/s and the dc-link voltage Vdc equals 

40 2 V. In the simulation, it is assumed that the rotor starts at its initial position θe = 0 

[region θ(1)]. 
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Fig. 5.6. Simulated indirectly controlled stator flux linkage trajectory under the sensorless three-

phase conduction DTC of a BLDC motor drive when ids
r is changed from 0 A to -5 A under 0.5 

N·m load torque. 

 

In Fig. 5.6, the possibility of the flux-weakening region operation is simulated 

when ids
r* is changed from 0 A to -5 A at 0.125 second. Total simulation time in this case 



138 

is 0.3 second. As it can be seen in Fig. 5.6 that the shape of stator flux linkage trajectory 

is kept same, however its amplitude is smaller compared to the initial case which means 

that the flux in the machine is weakened to obtain maximum possible torque above the 

base speed. It is concluded that in the proposed control scheme flux-weakening 

operation is viable by properly selecting the d–axis current reference as in PMSM drives. 

As a result, there is no need to use position-varying stator flux linkage amplitude 

*( )s eϕ θ  as a reference which is complicated to obtain especially in the field-weakening 

region. Proper selection of the d–axis current reference respective of speed for field-

weakening region operation is not in the scope of this paper. This is left as a future 

research study. 
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(a) 

Fig. 5.7. Steady-state and transient behavior of (a) simulated ba–ca frame currents, (b) actual 

electromagnetic torque, and (c) estimated electromagnetic torque under 0.5 N·m load torque. 
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Fig. 5.7. Continued. 
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Steady-state and transient behavior of ba–ca axes line-to-line currents, actual and 

estimated electromagnetic torque are shown in Fig. 5.7(a), (b) and (c), respectively. The 

reference torque is suddenly increased 25 percent from 0.51 N·m to 0.6375 N·m at 0.65 s 

under 0.5 N·m load torque. Actual and estimated electrical rotor positions are illustrated 

in Fig. 5.8(a) and (b), respectively under the same control conditions. The estimated 

electrical rotor position tracks the actual electrical rotor position quite well as shown in 

Fig. 5.8(b). As it can be seen in Fig. 5.7(a) and (b), when the torque is suddenly 

increased the current amplitudes also increase and fast torque response is achieved. Also, 

the estimated torque follows the desired torque satisfactorily as seen in Fig. 5.7(c). The 

high frequency ripples observed in the torque and current are related to the sampling 

time, hysteresis bandwidth, winding inductance, and dc-link voltage. Those ripples can 

be minimized by properly selecting the dc-link voltage and torque hysteresis band size. 

It can be seen in Fig. 5.7(a) that the top of the ba–ca frame currents are reciprocal of the 

corresponding back-EMFs to generate smooth torque profile. 
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Fig. 5.8. Steady-state and transient behavior of (a) estimated electrical rotor position, (b) actual 

electrical rotor position under 0.5 N·m load torque. 
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Figs. 5.9 and 5.10 show the actual ba–ca frame back-EMF constants versus 

electrical rotor position ( ( )ba ek θ and ( )ca ek θ ) obtained offline using the constant-speed 

test in generation mode. Line-to-line back-EMF constants according to the electrical 

rotor position are converted to the dq frame equivalents ( ( )d ek θ and ( )q ek θ ) using (5.15) 

as shown in Fig. 5.10 and then they are set up in the look-up table for torque estimation. 

q– and d–axis currents used in (5.32) are illustrated in Fig. 5.11 from top to 

bottom, respectively under 0.5 N·m load torque. At 0.65 second the torque reference is 

increased and the change in the q–axis frame current is noted in Fig. 5.11. In the same 

figure, q–axis current fluctuates around a dc offset to obtain smooth electromagnetic 

torque. It is seen in Fig. 5.11 that the d–axis current oscillates around the desired zero 

reference value which means that the stator flux amplitude equals the magnet flux. 
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Fig. 5.9. Actual ba–ca frame back-EMF constants versus electrical rotor position ( ( )ba ek θ and 

( )ca ek θ ). 
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Fig. 5.10. Actual q– and d–axis rotor reference frame back-EMF constants versus electrical rotor 

position ( ( )q ek θ and ( )d ek θ ). 
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Fig. 5.11. Steady-state and transient behavior of the simulated q– and d–axis rotor reference 

frame currents when ids
r*= 0 under 0.5 N·m load torque. 



144 

5.5. Experimental Results 

The feasibility and practical features of the proposed three-phase conduction 

DTC of a BLDC motor drive scheme have been evaluated using an experimental test-

bed, as shown in Fig. 5.12. The proposed control algorithm is digitally implemented 

using the eZdspTM board from Spectrum Digital, Inc. based on TMS320F2812 DSP, as 

shown in Fig 5.12(a). In Fig. 5.12(b), the BLDC motor whose parameters are given in 

the Appendix A is coupled to the overall system. The sampling interval is 15 μs. The 

magnitudes of the torque and flux hysteresis bands are 0.001 N·m, and 0.001 Wb, 

respectively. The steady-state speed is 30 mechanical rad/s and the dc-link voltage Vdc 

equals 40 2 V. The experimental results are obtained from the datalog (data logging) 

module in the Texas Instruments Code Composer StudioTM IDE software. 

Implementations of steady-state and transient torque and line-to-line current 

responses of the proposed DTC of a BLDC motor drive scheme are demonstrated in Fig. 

5.13(a) and (b), respectively under 0.5 N·m load torque condition. The torque reference 

is changed abruptly from 0.52 N·m to 0.65 N·m at 0.425 second. As seen in Fig. 5.13(a) 

that fast torque response is obtained and the estimated torque tracks the reference torque 

closely. Reference torque value in experimental test is selected a little bit higher than the 

load torque to compensate the friction of the total experimental system such that the 

rotor speed is kept at steady-state level (30 mechanical rad/s). Since there was no torque-

meter coupled to the system, actual torque value was not available for comparison 

purpose. The high frequency ripples observed in the torque and current are related to the 

sampling time, hysteresis bandwidth, winding inductance, and dc-link voltage. Those 
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ripples can be minimized by properly selecting the dc-link voltage and torque hysteresis 

band size. It can be seen in Fig. 5.13(b) that the top of the ba–ca frame currents are 

reciprocal of the corresponding back-EMFs to generate smooth torque profile. 

 
(a) 

 
(b) 

Fig. 5.12. Experimental test-bed. (a) Inverter and DSP control unit. (b) BLDC motor coupled to 

dynamometer and position encoder (2048 pulse/rev) is not used. 
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Fig. 5.13. Steady-state and transient behavior of the experimental (a) estimated electromagnetic 

torque and (b) ba–ca frame currents under 0.5 N·m load torque. 
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The αβ–axes stator flux linkages are estimated using (5.36) in which the αβ–axes 

voltages are measured using a dc-link voltage sensor and the estimated position of the 

stator flux linkage vector θs. The motor is initially locked at zero position (phase–a) for 

proper starting. Although stator flux linkage amplitude is not directly used in the control 

scheme, its position in the look-up table is quite important for proper voltage vector 

selection as shown in Fig. 5.4. However, the amplitudes of the αβ–axes stator flux 

linkages are required in the estimation for the electrical rotor position algorithm. Since 

the voltage model is used to estimate the stator flux linkages, eliminating any dc offsets 

generated by the measurement devices is quite important in the proposed control 

scheme. Therefore, the stator flux linkage is estimated using an effective integration 

algorithm with an amplitude limiter as shown in Fig. 5.3. The cut-off frequency ωc in the 

stator flux linkage estimation algorithm is selected as 20 rad/s which is capable of 

accurately obtaining the stator flux over a wide speed range (0-100). Fig. 5.14 shows the 

experimental results of the indirectly controlled stator flux linkage locus by controlling 

the d–axis rotor reference frame current at 0 A when 0.5 N·m load torque is applied to 

the BLDC motor. The dodecagon shape in the stator flux locus is observed in Fig. 5.14 

due to the non-sinusoidal waveform of the actual back-EMFs. Because the actual line-to-

line back-EMF is not completely uniform over one electrical cycle, peak value of the 

stator flux linkage along the trajectory (αβ frame) may vary slightly. It is seen in Fig. 

5.14 that the amplitude of the stator flux linkage, which is the amplitude of the magnet 

flux linkage, is indirectly controlled quite well at its required value in the constant torque 
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region. In the same figure, it is noted that the amplitude of the magnet flux varies non-

sinusoidally as expected. 
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Fig. 5.14. Experimental indirectly controlled stator flux linkage trajectory under the sensorless 

three-phase conduction DTC of a BLDC motor drive when ids
r*= 0 at 0.5 N·m load torque. 
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Fig. 5.15. Steady-state and transient behavior of the experimental q– and d–axis rotor reference 

frame currents when ids
r*= 0 under 0.5 N·m load torque. 
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q– and d–axis currents used in (5.32) are illustrated in Fig. 5.15 from top to 

bottom, respectively under 0.5 N·m load torque. At 0.425 second the torque reference is 

increased and the change in the q–axis frame current is noted in Fig. 5.15. In the same 

figure, q–axis current fluctuates around a dc offset to obtain smooth electromagnetic 

torque. It is seen in Fig. 5.15 that the d–axis current oscillates around the desired zero 

reference value which means that the stator flux amplitude equals the magnet flux. 

Actual and estimated electrical rotor positions are shown in Fig. 5.16 from top to 

bottom, respectively. Experimental estimated electrical rotor position is capable of 

tracking the actual position quite well. Because the estimation algorithm depends on the 

winding inductance as well as resistance, their variations should be considered. 

However, this is left as a future research study. 
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Fig. 5.16. Steady-state and transient behavior of the actual and estimated electrical rotor 

positions from top to bottom under 0.5 N·m load torque. 

 

26143 data for each line-to-line back-EMF (eba and eca) is obtained using an 

oscilloscope. Then, it is converted to back-EMF constant (kd and kq) and down sampled 

to 252 data in Matlab/Simulink for real-time DSP implementation. Moreover, to obtain a 
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much realistic result linear interpolation technique is performed on the 252 data in the 

DSP implementation. 

5.6. Conclusion 

This study has successfully demonstrated application of the proposed position 

sensorless three-phase conduction direct torque control (DTC) scheme for BLDC motor 

drives. It is shown that the BLDC motor could also operate in the field-weakening region 

by properly selecting the d–axis current reference in the proposed DTC scheme. First, 

practically available actual two line-to-line back-EMF constants (kba and kca) versus 

electrical rotor position are obtained using generator test and converted to the dq frame 

equivalents using the new Line-to-Line Park Transformation in which only two input 

variables are required. Then, they are used in the torque estimation algorithm. Electrical 

rotor position required in the torque estimation is obtained using winding inductance, 

stationary reference frame currents and stator flux linkages.  

Since the actual back-EMF waveforms are used in the torque estimation, low-

frequency torque oscillations can be reduced convincingly compared to the one with the 

ideal-trapezoidal waveforms having 120 electrical degree flat top. A look-up table for 

the three-phase voltage vector selection is designed similar to a DTC of PMSM drive to 

provide fast torque and flux control. Because the actual rotor flux linkage is not 

sinusoidal, stator flux control with constant reference is not viable anymore. Therefore, 

indirect stator flux control is performed by controlling the flux related d–axis current 

using bang-bang (hysteresis) control which provides acceptable control of time-varying 

signals (reference and/or feedback) quite well. Since the proposed DTC scheme does not 
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involve any PWM strategies, PI controllers as well as inverse Park and Clarke 

Transformations to drive the motor, much simpler overall control is achieved. 
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CHAPTER VI 

 
 

SUMMARY AND FUTURE WORK 
 
 
 
 

This work presented the direct torque control (DTC) techniques, implemented in 

four- and six-switch inverter, for brushless dc (BLDC) motors with non-sinusoidal back-

EMF using two and three-phase conduction modes. 

In Chapter II, the proposed two-phase conduction mode for DTC of BLDC 

motors is introduced as opposed to the conventional three-phase conduction DTC of 

PMSM drives in the constant torque region. Much faster torque response is achieved 

compared to conventional PWM current and especially voltage control techniques. It is 

also shown that in the constant torque region under the two-phase conduction DTC 

scheme, the amplitude of the stator flux linkage cannot easily be controlled due to the 

sharp changes and the curved shape of the flux vector between two consecutive 

commutation points in the stator flux linkage locus. Furthermore, to eliminate the low-

frequency torque oscillations caused by the non-ideal trapezoidal shape of the actual 

back-EMF waveform of the BLDC motor, pre-stored back-EMF constants in αβ–axes 

versus electrical rotor position look-up tables are designed and used in the torque 

estimation algorithm. 

In Chapter III, the avarege current controlled boost power factor correction 

(PFC) method is applied to the previously discussed proposed DTC of BLDC motor 

drive in the constant torque region. The duty cycle of the boost converter is determined 
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by a control algorithm. This control algorithm is based on the input voltage, output 

voltage which is the dc-link of the BLDC motor drive, and the inductor current using the 

average current control method with input voltage feed-forward compensation during 

each sampling period of the drive system. The test results verify that the proposed PFC 

for DTC of BLDC motor drive improves the power factor from 0.77 to about 0.9997 

irrespective of the load. 

In Chapter IV, the DTC technique for BLDC motor using four-switch inverter in 

the constant torque region is studied. The results show that the direct torque controlled 

four-switch three-phase BLDC motor drive could be a good alternative to the 

conventional six-switch counterpart with respect to low cost and high performance. 

Since the flux control and PWM generation are removed in the above two methods, 

fewer algorithms are required for the proposed control schemes. 

Finally, the position sensorless direct torque and indirect flux control (DTIFC) of 

BLDC motor with non-sinusoidal (non-ideal trapezoidal) back-EMF has been 

extensively investigated using three-phase conduction scheme with six-switch inverter. 

In the literature, several methods have been proposed to eliminate the low-frequency 

torque pulsations for BLDC motor drives such as Fourier series analysis of current 

waveforms and either iterative or least-mean-square minimization techniques. Most 

methods do not consider the stator flux linkage control, therefore possible high-speed 

operations are not feasible. In this work, a novel and simple approach to achieve a low-

frequency torque ripple-free direct torque control with maximum efficiency based on dq 

reference frame similar to permanent magnet synchronous motor (PMSM) drives is 



154 

presented. The electrical rotor position is estimated using winding inductance, and the 

stationary reference frame stator flux linkages and currents. The proposed sensorless 

DTC method controls the torque directly and stator flux amplitude indirectly using d–

axis current. Since stator flux is controllable, flux-weakening operation is possible. 

Moreover, this method also permits to regulate the varying references. Simple voltage 

vector selection look-up table is designed to obtain fast torque and flux control. 

Furthermore, to eliminate the low-frequency torque oscillations, two actual and easily 

available line-to-line back-EMF constants (kba and kca) according to electrical rotor 

position are obtained offline and converted to the dq frame equivalents using the new 

Line-to-Line Park Transformation. Then, they are set up in the look-up table for torque 

estimation.  

Theoretical concepts are developed, and the validity and effectiveness of the 

proposed three-phase conduction DTC of BLDC motor drive scheme discussed above 

are verified through the simulations and experimental results. 

Possible future research of the previously explained DTC of BLDC motor drive 

techniques will be discussed in the following: 

In Chapter II and IV, a position estimation technique can be used both in six- and 

four-switch DTC of BLDC motor drive instead of an expensive and bulky position 

encoder for a cost-effective system. When back-EMF estimation method is selected as a 

position sensorless technique, parameter variations should also be considered especially 

in low speed region. Because at very low speeds the back-EMF information is very weak 

and quite comparable with the supply voltage, any variation in resistance in conjunction 
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with current and voltage sensing errors (offset errors causing a drift in integration) will 

degrade the flux estimation and the overall system may become unstable. 

In Chapter III, the power factor control technique can be coupled with the 

proposed two-phase conduction DTC of BLDC motor drive to improve the current and 

torque performance at high dc-link voltage conditions while keeping the dc-link voltage 

fluctuations at minimum and power factor at maximum level. 

In Chapter IV, the control of phase torque (Tea and Teb) can be replaced with the 

line-to-line torque control which eliminates the need for phase back-EMFs, therefore 

easily available line-to-line back-EMFs can be used in the torque control scheme. 

In Chapter V, resistance, inductance and even back-EMF constant variations can 

be updated online for adaptive control to improve the efficiency and controllability of 

the overall system in any conditions. Back-EMF used in the torque estimation algorithm 

can be obtained in real-time instead of the offline look-up table method. Accuracy of the 

real-time back-EMF information which is used in the torque equation can be analyzed 

and compared with the look-up table method. Results of the overall control when torque 

is estimated with online back-EMF and with look-up table can be compared under low 

speed and saturation conditions. Effects of the back-EMF constant variations can also be 

studied in both cases. 

When the motor speed is above the rated (base) speed, the motor torque 

decreases very quickly since the back-EMF rapidly approaches the dc-link voltage if the 

small switch voltage drops are ignored. Eventually, the current (torque) regulators 

saturate, losing the ability to force the commanded current into the motor phase. In order 
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to solve this problem, the flux-weakening technique can be developed for the proposed 

DTC of BLDC motor drive in which the properly selected negative d–axis current 

should be applied to weaken the field produced by the permanent magnet rotor 

considering the voltage and current limitations of the BLDC machine. 

Moreover, SVPWM technique can be combined with the proposed sensorless 

direct torque and indirect flux control (DTIFC) method to reduce the current and torque 

ripples while keeping the robustness in the torque control. Also, instead of six-switch 

inverter four-switch one as in Chapter IV can be used to minimize the cost of the overall 

system. 

Because the possible mechanical/magnetic discrepancy of the rotor magnets over 

one mechanical rotation using actual back-EMF data containing one complete 

mechanical cycle will be more effective to eliminate the low-frequency torque ripples in 

the proposed DTC of BLDC motor drives. If the pole number of the machine is high 

more data is required to obtain the back-EMF in one mechanical cycle. Therefore, the 

memory requirement will be increased. 
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Fig. A.1. (a) Actual line-to-line back-EMF constants (kab(θe), kbc(θe), and kca(θe)) and (b) 

stationary reference frame back-EMF constants (kα(θe) and kβ(θe)). 
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SPECIFICATIONS AND PARAMETERS OF THE BLDC MOTOR 

Symbol Quantity Value 
P Number of poles 4 

VLL Maximum line-to-line voltage (Vrms) 115  
Ipk Maximum peak current (A) 24 

Irated Rated current (A) 5.6 
Trated Rated torque (N·m) 1.28352 

Ls Winding inductance (mH)   1.4 
M Mutual inductance (mH) 0.3125 
Rs Winding resistance (ohm) 0.315 
λf Rotor magnetic flux linkage (Wb) 0.1146 
λfmax Maximum rotor magnetic flux linkage (Wb) 0.1304 
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APPENDIX B 

 
 

The electromagnetic torque equation for a BLDC motor consisting of ba–ca 

reference frame variables can be derived as follows: 

The line-to-line components constituting the electromagnetic torque equation can 

be obtained by using Clarke Transformation which is given by 

 

1 11
2 2 2
3 3 30

2 2

a

b

c

X
X

X
X

X

α

β

⎛ ⎞⎛ ⎞− −⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠

 (B.1) 

where Xα and Xβ are the stationary reference frame components, and Xa, Xb, and Xc are 

the abc frame components. X in (B.1) represents currents and/or rotor flux linkages in 

the electromagnetic torque equation. 

If Xα and Xβ are expanded and algebraically manipulated, the line-to-line 

representations of Xα and Xβ in ba–ca reference frame are attained respectively as 

 

2
3 3

3

a b c a b a c

ba ca

X X X X X X XX

X X

α
− − − + −

= =

− −
=

 (B.2) 

and 

 

( ) ( )

( )

3 3
3 3
3

3

b c b a a c

ba ca

X X X X X X X

X X

β = − = − + −

= −

 (B.3) 
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where Xba = Xb − Xa and Xca = Xc − Xa. 

Using the results obtained in (B.2) and (B.3), Xα and Xβ can be rewritten in matrix 

form as 

 

1 1
3 3
3 3

3 3

ba

ca

X X
X X

α

β

⎛ ⎞− −⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟⎝ ⎠⎝ ⎠ −⎜ ⎟
⎝ ⎠

 (B.4) 

If the matrix in (B.4) is used in (2.16), the electromagnetic torque equation in 

terms of ba–ca frame line-to-line components can be expressed as follows: 

 

( )

( )

1/ 3 1/ 33 ( 1/ 3 1/ 3 )
2 2

3 / 3 3 / 3
( 3 / 3 3 / 3 )

rba rca
em ba ca

e

rba rca
ba ca

e

dPT i i
d

d
i i

d

ϕ ϕ
θ

ϕ ϕ

θ

⎧ − −
= − − +⎨

⎩
⎫− ⎪− ⎬
⎪⎭

 (B.5) 

After algebraically simplifying (B.5), the electromagnetic torque equation is 

obtained as 

 

2 2

6
rba rca rca rba

em ba ca
e e e e

d d d dP
T i i

d d d d

ϕ ϕ ϕ ϕ

θ θ θ θ
= − + −

⎡ ⎤⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟⎜ ⎜⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (B.6) 

where P is the pole number, dφrba/dθ e and dφrca/dθ e are the derivatives of the ba– and 

ca–axis rotor flux linkages over electrical rotor position,  iba = ib − ia, and  ica = ic − ia. 

If (B.6) is rewritten in terms of line-to-line back-EMFs the torque equation can 

be given in the following: 

 

2 2
6

ba ca ca ba
em ba ca

e e

e e e ePT i i
ω ω

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟= +⎜ ⎜⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (B.7) 
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where eba = eb − ea, eca = ec − ea, and ωe is the electrical rotor speed. As a result, two 

line-to-line back-EMFs (eba, eca) and currents (iba, ica) are enough to estimate the 

electromagnetic torque. The problematic electrical rotor speed ωe in (B.7) can be 

removed if the two electrical rotor position dependant line-to-line back-EMF constants 

are used in the electromagnetic torque equation which is given by 

 
( ) ( )2 ( ) ( ) 2 ( ) ( )

6em ba e ca e ba ca e ba e ca
PT k k i k k iθ θ θ θ⎡ ⎤= − + −⎣ ⎦  (B.8) 

Another torque equation similar to (2.16) using line-to-line model in ab–bc–ca 

reference frame can be obtained as 

 2 3
ab ab bc bc ca ca

em
e

e i e i e iP
T

ω

+ +
=

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (B.9) 

where ebc = eb − ec, and ibc = ib − ic. 

Even though (B.9) has fewer components compared to (B.8), there are additional 

line-to-line back-EMF and current components in bc–axis. Equation (B.9) can further be 

simplified by removing the electrical rotor speed ωe in the denominator allowing zero 

and near zero speed torque estimation possible as follows: 

 
( )) ) )( ( (

6em ab ab bc bc ca cae e e
P

T k i k i k iθ θ θ= + +  (B.10) 

As a result, the electromagnetic torque equations given in (B.8) and (B.10) avoid 

the use of the line-to-neutral back-EMF components. They only require line-to-line 

back-EMFs which can be measured directly even if the motor neutral connection is not 

accessible. 
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APPENDIX C 

 
 

Switching functions of the six non-zero voltage space vectors V1, V2, ..., V6 of the 

six-switch DTC of BLDC motor drive, which are represented in stationary reference 

frame (Vxα and Vxβ), can be derived as follows: 

Six non-zero voltage space vectors which are used in six-switch DTC of BLDC 

motor drive can be shown in the following form: 

 1 2 3 4 5 6(      )xV S S S S S S  (C.1) 

where x is between 1 and 6, and S1, S2,…, S6 are the switch states. “1” represents on state 

and “0” is off state of the corresponding switch. 

αβ–axes six-switch voltage vectors (Vxα and Vxβ) can be obtained using Fig. 2.1 

as follows: 

 1 1 1
3(1 0 0 0 0 1)  ,
2 2

dc dcV VV V Vα β⇒ = =  (C.2) 

 2 2 2(0 0 1 0 0 1)  0,
2
dcVV V Vα β⇒ = =  (C.3) 

 3 3 3
3(0 1 1 0 0 0)  ,
2 2

dc dcV VV V Vα β⇒ = − =   (C.4) 

 4 4 4
3(0 1 0 0 1 0)  ,
2 2

dc dcV VV V Vα β⇒ = − = −  (C.5) 

 5 5 5(0 0 0 1 1 0)  0,
2
dcVV V Vα β⇒ = = −  (C.6) 

 6 6 6
3(1 0 0 1 0 0)  ,
2 2

dc dcV VV V Vα β⇒ = = −  (C.7) 
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By performing some algebraic manipulations on (C.1) through (C.7), the final 

switching function of αβ–axes four-switch voltage vectors (Vxα and Vxβ) can be given 

respectively as 

 ( ) ( )1 6 4 2 3 5
3

2x dcV V S S S S S Sα = + − +⎡ ⎤⎣ ⎦  (C.8) 

 ( ) ( ) ( )6 1 3 2 3 5 4 5 12
dc

x
VV S S S S S S S S Sβ = + + − − +⎡ ⎤⎣ ⎦  (C.9) 
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APPENDIX D 

 
 

Switching functions of the eight voltage space vectors V0, V1, ..., V7 of four-

switch DTC of BLDC motor drive, which are represented in stationary reference frame 

(Vxα and Vxβ), can be derived as follows: 

Eight voltage space vectors which are used in four-switch DTC of BLDC motor 

drive can be shown in the following form: 

 1 2 3 4(    )xV S S S S  (D.1) 

where x is between 0 and 7, and S1, S2,…, S4 are the switch states. “1” represents on state 

and “0” is off state of the corresponding switch. 

αβ–axes four-switch voltage vectors (Vxα and Vxβ) can be obtained using Fig. 4.3 

as follows: 

 1 1 1
3(1 0 0 0)  ,
4 4

dc dcV VV V Vα β⇒ = =  (D.2) 

 2 2 2(0 0 1 0)  , 0
2
dcVV V Vα β⇒ = =  (D.3) 

 3 3 3
3(0 1 1 0)  ,
2 2

dc dcV VV V Vα β⇒ = − =  (D.4) 

 4 4 4
3(0 1 0 0)  ,
4 4

dc dcV VV V Vα β⇒ = − = −  (D.5) 

 5 5 5(0 0 0 1)  , 0
2
dcVV V Vα β⇒ = − =  (D.6) 

 6 6 6
3(1 0 0 1)  ,
2 2

dc dcV VV V Vα β⇒ = = −  (D.7) 
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 0 0 0
3(0 1 0 1)  ,

6 6
dc dcV VV V Vα β⇒ = =  (D.8) 

 7 7 7
3(1 0 1 0)  ,

6 6
dc dcV VV V Vα β⇒ = − = −  (D.9) 

By performing some algebraic manipulations on (D.1) through (D.9), the final 

switching function of αβ–axes four-switch voltage vectors (Vxα and Vxβ) can be given 

respectively as 

( )1 2 2 3 1 4 2 4 1 3 2 4 1 3
3 2

4 3 3x dcV V S S S S S S S S S S S S S Sα
⎡ ⎤= − − + + − + +⎢ ⎥⎣ ⎦

 (D.10) 

 

( )

( )

1 3 2 3 2 4 1 4 2 4 1 3

2 4 1 3

1 2 2 2 2 3
4

2 3
3

x dcV V S S S S S S S S S S S S

S S S S

β
⎛= + + − − − + −⎜
⎝

⎞
+ − ⎟⎟

⎠

 (D.11) 
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APPENDIX E 

 
 

Peak value of the rotor flux linkage in stationary reference frame (φrαβ(pk)) can be 

derived for a BLDC motor with an ideal trapezoidal back-EMF using easily accessible 

line-to-line back-EMF waveforms as follows: 

Ideal line-to-line back-EMF waveforms (eab, ebc, eca) can be illustrated in Fig. E.1 

below: 

bce

cae

abe

270°0° 30° 60° 90° 120° 150° 180° 210° 270°240° 360°330°300° 90°60°30° 180°150°120° 240°210°

eθ

eθ

eθ

300°

LL ek ω

 

Fig. E.1. Line-to-line back-EMF waveforms (eab, ebc, and eca). 
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Line-to-line back-EMF waveforms (eab, ebc, eca) shown in Fig. E.1 are converted 

to αβ–axes equivalents (eα, and eβ) using Line-to-Line Clarke Transformation given by 

 

2 1 1
3 3 3 3 3 3

1 10
3 3

ab

bc

ca

e
e

e
e

e

α

β

⎡ ⎤ ⎡ ⎤− −⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥− ⎣ ⎦⎢ ⎥⎣ ⎦

 (E.1) 

Every 60°, eα, and eβ values can be obtained using (E.1) as follows: 

 
2At 0  0,  
3 LL ee e kα β ω⇒ = = −  (E.2) 

 
1 1At 60  ,  

33 LL e LL ee k e kα βω ω⇒ = = −  (E.3) 

 
1 1At 120  ,  

33 LL e LL ee k e kα βω ω⇒ = =  (E.4) 

 
2At 180  0,  
3 LL ee e kα β ω⇒ = =  (E.5) 

 
1 1At 240  ,  

33 LL e LL ee k e kα βω ω⇒ = − =  (E.6) 

 
1 1At 300  ,  

33 LL e LL ee k e kα βω ω⇒ = − = −  (E.7) 

 
2At 360  0,  
3 LL ee e kα β ω⇒ = = −  (E.8) 
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( )eeα θ

e etθ ω=
e

tπ
π
ω

=

1
3 LL ek ω

 

Fig. E.2. α–axis back-EMF (eα) waveform. 
 

α–axis back-EMF (eα) can be drawn using (E.2) through (E.8) as shown in Fig. 

E.2. Finally, the stationary reference frame peak value of the rotor flux linkage φrαβ(pk) 

can be found by integrating the α-axis back-EMF (eα) over time as 

 ( )
2 [Wb]
3 3

LL
r pk

k
αβ

πϕ =  (E.9) 

The same result in (E.9) can be obtained using only two line-to-line back-EMFs 

(eba and eca) and the proposed Line-to-Line Clarke Transformation with two input 

variables which is given in (5.10). 
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