




ISTANBUL TECHNICAL UNIVERSITY F INFORMATICS INSTITUTE

An Adaptive Offloading Decision Scheme in Two-Class
Mobile Edge Computing Systems

M.Sc. THESIS

Kahlan HASAN

Informatics Institute

Computer Science Program

JUNE 2018





ISTANBUL TECHNICAL UNIVERSITY F INFORMATICS INSTITUTE

An Adaptive Offloading Decision Scheme in Two-Class
Mobile Edge Computing Systems

M.Sc. THESIS

Kahlan HASAN
(704161009)

Informatics Institute

Computer Science Program

Thesis Advisor: Asst. Prof. Dr. Mehmet Akif YAZICI

JUNE 2018





İSTANBUL TEKNİK ÜNİVERSİTESİ F BİLİŞİM ENSTİTÜSÜ

İki-Sınıflı Mobil Kenar Bilişim Sistemleri için
Uyarlanır Bir Aktarma Karar Yöntemi

YÜKSEK LİSANS TEZİ

Kahlan HASAN
(704161009)

Bilişim Enistitüsü

Bilgisayar Bilimleri

Tez Danışmanı: Asst. Prof. Dr. Mehmet Akif YAZICI

HAZIRAN 2018





Kahlan HASAN, a M.Sc. student of ITU Informatics Institute Engineering and Tech-
nology 704161009 successfully defended the thesis entitled “An Adaptive Offloading
Decision Scheme in Two-Class Mobile Edge Computing Systems”, which he prepared
after fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.

Thesis Advisor : Asst. Prof. Dr. Mehmet Akif YAZICI ..............................
Istanbul Technical University

Jury Members : Prof. Dr. Lütfiye DURAK ATA ..............................
Istanbul Technical University

Asst. Prof. Dr. Kasım ÖZTOPRAK ..............................
KTO Karatay University

Asst. Prof. Dr. Mehmet Akif YAZICI ..............................
Istanbul Technical University

Date of Submission : 04 May 2018
Date of Defense : 06 June 2018

v



vi



To my family, whose love is the fuel of my life

vii



viii



FOREWORD

In the name o f ALLAH the most merci f ul and compassionate
Praise be to ALLAH foremost and last Who gave me strength, determination, and
patience to accomplish this work. To My Family I say thank you all for the endless
support and love, Mother and Father you are the only stars I have in my life’s sky (I
LOV E YOU ALL). To all of my friends with gladly mentioning Şen FERHAT, Maryam
MAJIDI (SHIMA), and Gregorio SPINELLI, I am Happy to have you in my life and
thank you for your help and support throughout my study. Intentionally mentioning
my eldest brother and advisor Asst. Prof. Dr. Mehmet Akif YAZICI lastly so as to
dedicate all of my appreciation and sincere thankfulness for his great effort and support
along with his priceless guidance and motivation. Indeed, my words are ashamed of
being incapable of expressing how happy I am to be your student. From you I learned
countless things, without your advising and recommendations I would never hope to
achieve what I have achieved , THANK YOU.

JUNE 2018 Kahlan HASAN

ix



x



TABLE OF CONTENTS

Page

FOREWORD........................................................................................................... ix
TABLE OF CONTENTS........................................................................................ xi
ABBREVIATIONS ................................................................................................. xiii
SYMBOLS............................................................................................................... xv
LIST OF TABLES ..................................................................................................xvii
LIST OF FIGURES ................................................................................................ xix
SUMMARY ............................................................................................................. xxi
ÖZET .......................................................................................................................xxiii
1. INTRODUCTION .............................................................................................. 1
2. LITERATURE REVIEW................................................................................... 7

2.1 Offloading in Mobile Edge Computing .......................................................... 7
2.2 Queueing Systems .......................................................................................... 9
2.3 Weighted Round-Robin (WRR) Service Discipline....................................... 10

3. SYSTEM MODEL AND NUMERICAL RESULTS ....................................... 13
3.1 System Model................................................................................................. 13
3.2 Numerical Experimentation............................................................................ 15
3.3 The Adaptive Scheme..................................................................................... 20
3.4 Numerical Experimentation for the Adaptive Scheme................................... 22

4. CONCLUSION AND FUTURE WORK.......................................................... 29
REFERENCES........................................................................................................ 31
APPENDICES......................................................................................................... 35
CURRICULUM VITAE......................................................................................... 37

xi



xii



ABBREVIATIONS

CC : Cloud Computing
SC : Small Cell
MCC : Mobile Cloud Computing
ETSI : European Telecommunications Standard Institute
MEC : Mobile Edge Computing
BS : Base Station
AP : Access Point
HN : Heterogeneous Network
MS : Macro Station
MiS : Micro Station
PiS : Pico Station
FS : Femto Station
SP : Service Provider
NFV : Network Function Virtualization
ICN : Information Centric Network
SDN : Software Defined Network
SP : Signal Processing
ML : Machine Learning
AR : Augmented Reality
IoT : Internet of Things
HODA : Heuristic Offloading Decision Algorithm
QoS : Quality of Service
EECO : Energy Efficient Computation Offloading
WRR : Weighted Round Robin
CPU : Central Processing Unit
GPS : Generalized Processor Sharing
MC : Machine Cycle
IT : Information Technology
FIFO : First-In First-Out
FCFS : First Come First Served
PS : Processor Sharing
RR :Round Robin
HU : High Priority User
LU : Low Priority User

xiii



xiv



SYMBOLS

λH : Arrival rate of high priority task per user
λL : Arrival rate of low priority task per user
L : Task size
X : Number of required MC per task
fm : Mobile’s CPU frequency
fs : Server’s CPU frequency
nc : Number of cores in server’s CPU
s : Speed-up factor
r : Data rate
h : Ratio of high service to low service
α : Encoding rate
θ : Damped averaging parameter
Tl : Sojourn time of local execution
To : Sojourn time of remote execution

xv



xvi



LIST OF TABLES

Page

Table 3.1 : Simulation Parameters. U[·, ·] denotes uniform distribution............... 14
Table 3.2 : Simulation Parameters. U[·, ·] denotes uniform distribution............... 22

xvii



xviii



LIST OF FIGURES

Page

Figure 1.1 : The architecture of Mobile Edge Computing. ................................... 2
Figure 1.2 : The main Processes of Face Recognition Application [1]. ............... 4
Figure 1.3 : The main processes of Augmented Reality Application [2].............. 5
Figure 2.1 : A sample scenario with WRR ........................................................... 11
Figure 3.1 : Average tasks sojourn times for different values of qH , (α = 0.01). 16
Figure 3.2 : Average energy consumption per task for different values of qH ,

(α = 0.01). .......................................................................................... 16
Figure 3.3 : Average tasks sojourn times for different values of qH , (α = 0.001). 17
Figure 3.4 : Average energy consumption per task for different values of qH ,

(α = 0.001). ........................................................................................ 17
Figure 3.5 : Average tasks sojourn times for 100≤ qH ≤ 500, (α = 0.01).......... 18
Figure 3.6 : Average energy consumption per task for 100≤ qH ≤ 500, (α =

0.01). ................................................................................................... 18
Figure 3.7 : Average tasks sojourn times for 1000≤ qH ≤ 5000, (α = 0.01)...... 19
Figure 3.8 : Average energy consumption per task for 1000 ≤ qH ≤ 5000,

(α = 0.01). .......................................................................................... 19
Figure 3.9 : Offload ratios for different values of qH , (α = 0.01). ....................... 20
Figure 3.10: Average task sojourn times for different values of h, (α = 0.01 ,

qH = 100)............................................................................................ 21
Figure 3.11: Average energy consumption per task for different values of h,

(α = 0.01 , qH = 100)......................................................................... 21
Figure 3.12: The evolution of qH and the number of active tasks on the server

for three different values of θ ............................................................. 24
Figure 3.13: The effect of overall load on the system performance....................... 26
Figure 3.14: The effect of h on the system performance. ...................................... 27
Figure 3.15: The effect of the ratio of HU in the population on the system

performance. ....................................................................................... 28
Figure 3.16: qH adapts to changing system load.................................................... 28

xix



xx



An Adaptive Offloading Decision Scheme in Two-Class
Mobile Edge Computing Systems

SUMMARY

With the huge growth of data exchange and the increasing number of connected
devices to the Internet, Mobile Cloud Computing (MCC) paradigm with its centralized
approach will face tremendous loads. Therefore; the European Telecommunication
Standard Institute (ETSI) came up with a new idea to overcome the problem of latency
mainly and decrease the consumed energy of transmission. This new approach, Mobile
Edge Computing (MEC), is proposed to use the capacity at the edge of the network
such as Base Station (BS) or Access Point (AP). In this way, the amount of sent data
to the cloud will be significantly reduced by having the edge server executing all the
offloaded tasks on behalf of mobile users.

In mobile edge computing, the system can be modelled as a single-class MEC system
which considers all the tasks as the same (no differentiation in terms of priorities),
or a multi-class system. In a multi-class system, the tasks originating from different
mobiles may have different priorities. In case of a two-class system, there will be high
and low priorities.

In this study, we investigate the offloading problem in the presence of two user classes:
one is high priority and the other is low priority. The tasks are generated by mobile
users and are offloaded to the edge server to be executed. We assume that the server
is in charge of making offloading decisions. A task is decided to be offloaded or not
based on the comparison between sojourn time in case of local execution (at the mobile
device) and sojourn time in case of remote execution (at the edge server). The task is
offloaded if the sojourn time in case of remote execution is smaller.

We assume that the edge server employs weighted Round-Robin (WRR) processor
scheduling, which can be modeled as a priority Proessor Sharing (PS) queue if the
time slots are considered to be small. (WRR) uses the same principle of Round Robin,
which is basically sharing the CPU service among all the packets for a specific number
of time slots (Machine Cycles (MC) in case of CPU scheduling) without considering
the priorities of arrived tasks. On the other hand, WRR takes into account the priorities
of the tasks. In WRR, a high priority task is served more frequently than others. To
put it another way, a high priority task receives more MCs than lower priority tasks.
It is known that the expected sojourn time in a PS queue is linearly proportional to
the task size. Therefore; we use a factor (queueing delay multiplier) that accurately
captures the sojourn time of an offloaded task. The queueing delay multiplier both
models and affects the queueing delay, and thus acts as an admission rule parameter. If
the multiplier is too high, tasks are discouraged to offload, resulting in a lightly loaded
MEC server which entails a low multiplier value. On the other hand, a too low value for
the multiplier will result in more offloads, yielding high queueing delays. Therefore,
there should be an optimal queueing delay multiplier value that balances the demand
for the MEC server.

xxi



We propose an adaptive scheme that finds an optimum value for the queueing delay
multiplier on the fly, using damped averaging. We show that high priority users
experience much lower average sojourn times compared to the low priority users. We
also illustrate the effect of our method on the energy consumption of the mobile. Using
a stand-alone simulator, we demonstrate the performance of the proposed method in
several different scenarios with numerical experimentation.

xxii



İki-Sınıflı Mobil Kenar Bilişim Sistemleri için
Uyarlanır Bir Aktarma Karar Yöntemi

ÖZET

İnternet’e bağlı cihaz sayısında ve toplam veri trafiğinde görülen önemli artışla
birlikte bulut servislerinin yakın gelecekte ciddi yüklerle karşı karşıya kalması
beklenmektedir. Bunun üstesinden gelinebilmesi amacıyla kenar bilişim sistemleri
önerilmiştir. Kenar bilişim sistemlerinde, ağın kenarında yer alan erişim noktası veya
baz istasyonu gibi cihazların mobil cihazlarda ortaya çıkan hesaplama işlerinin bir
bölümünü yürüterek, sonucunu cihazda kullanılması gerektiği durumda cihaza, buluta
gönderilmesi gerektiği durumda ise buluta yönlendirmesi öngörülmektedir. Hesaplama
kaynaklarının merkezi buluttan ağ kenarına doğru getirildiği bu yöntemle birlikte hem
buluttaki iş yükünün azaltılması, hem de gecikme sürelerinin azaltılması mümkün
olabilecektir.

Aktarma problemi, bir mobil cihazda ortaya çıkan bir hesaplama işinin lokal
olarak mobil cihazda mı yoksa kenar sunucuda mı yürütüleceği kararının verilmesi
problemidir. Literatürde çeşitli parametreleri göz önüne alan aktarma algoritmaları
önerilmiştir. Sık kullanılan parametreler arasında gecikme zamanı, enerji tüketimi,
ve bunların hibrit olarak eniyilenmesi sayılabilir. Literatürde yer alan çalışmaları
ayıran farklılıklar, eniyileme hedef fonksiyonunun yanı sıra, incelenen sistemde
de yatmaktadır. Bir işlem, aktarım yapıldığında tamamen kenar sunucusuna
devrediliyorsa, bu ikili aktarım olarak adlandırılır. Öte yandan, bazı işlemler, parçalara
ayrılarak kısmen mobil cihazda, kısmen de kenar sunucusunda yürütülebilir. Bu
yöntem ise kısmi aktarım olarak adlandırılır. Kısmi aktarımın verimli işlemesi için
hesaplama işinin karakteristiğinin detaylı olarak bilinmesi gereklidir. Bu amaç için,
hesaplama işinin alt parçalarının birbirlerine bağımlılıklarını gösteren çağrı çizgeleri
kullanılır. Verili bir çağrı çizgesi için en iyi kısmi aktarım çözümü üretmeyi hedefleyen
algoritmalar literatürde mevcuttur. Bunun yanısıra, birden fazla kenar sunucusu
olduğunu varsayan, mobil kullanıcı davranışının statik veya rassal olduğunu varsayan,
sunucunun ve/veya mobil kullanıcıların enerji tüketimini azaltmayı önceleyen, ve
farklı enerji tüketim modelleri kullanan çeşitli çalışmalar da bulunmaktadır. Tüm
bu çalışmalarda matematiksel araç olarak genellikle eniyileme kuramı veya oyun
kuramından yararlanıldığı görülmektedir.

Bu çalışmada, tek kenar sunucusu olan bir sistemde, hesaplama işi üretme bakımından
rassal davranan mobil cihazların, yüksek ve düşük öncelikli iki sınıfa ayrıldıkları bir
senaryo incelenmiştir. İkili aktarım uygulandığı varsayılmıştır. Aktarım kriteri olarak
hesaplama işinin üretildikteki andan itibaren, hesaplanıp kenar sunucusuna aktarıldığı
ana kadar geçen sürenin enküçüklenmesi seçilmiştir. Bu senaryoda artırılmış
gerçeklik, sanal gerçeklik, çevrimiçi oyun, veya video görüşme gibi bir çokluortam
uygulamasının video kodlama işleri ürettiği varsayılmıştır. Kodlama sonucu ortaya
çıkan veri, ham veriden küçüktür. Dolayısıyla, aktarım yapılmadığı durumda
hesaplama işinin sistemde geçirdiği süre, videonun mobil cihazda kodlanması ve

xxiii



kodlanmış verinin kenar sunucusuna gönderilmesi için geçen süredir. Buna karşılık,
aktarım yapıldığında bu süre, ham videonun kenar sunucusuna gönderilmesi ve burada
kodlanmasından oluşacaktır.

Kenar sunucusunda ağırlıklı round-robin çizelgeleme yapıldığı varsayılmıştır. Buna
göre sunucuda servis alan aynı sınıfa ait hesaplama işleri, küçük periyotlarda eşit
miktar servis alırlar. Buna karşılık yüksek öncelikli işler, her roundda düşük öncelikli
olanların h katı kadar hizmet alır. Round robin çizelgeleme, zaman biriminin sıfıra
gittiği limit durumunda işlemci-paylaşımı modeline dönüşür. Kuyruk kuramından
bilindiği üzere, işlemci-paylaşımı sistemlerinde herbir işin sistemde kalma zamanı, işin
uzunluğu ile doğru orantılıdır. Bu bakımdan, her bir iş için aktarım kararı verilirken
hesaplanması gereken sunucuda geçen hesaplama zamanı, bir kuyruklama katsayısı
ile modellenebilir. Bu kuyruklama katsayısı, düşük öncelikli kullanıcılar için yüksek
öncelikli kullanıcılara göre h kat büyük alınmaktadır. Böylece bu katsayı ile hem bir
kabul mekanizması, hem de servis ayrımı gerçekleştirilmiştir.

Bu sistem modeli için bir benzetim programı yazılmış ve çeşitli senaryolar için sayısal
sonuçlar elde edilmiştir. Öncelikli olarak iki sınıf arasında hizmet kalitesi ayrımını
sağlayabilecek, ancak yüksek öncelikli işlerin performansını düşürmeyecek en iyi
kuyruklama katsayısının bulunması için, bu katsayını çeşitli değerleri için sistemde
kalınan ortalama süre istatistiği elde edilmiştir. Buna göre örnek bir senaryoda bu
katsayının alması gereken değer hakkında çıkarımlar yapılmıştır. Ayrıca aynı senaryo
için mobil cihazın enerji tüketimi grafikleri de elde edilmiştir. Bu senaryoda h
parametresinin başarıma etkisi de incelenmiş ve bir üst sınır bulunmuştur.

Her senaryo için bu katsayının en iyi değerinin değişeceği açıktır. Bu bakımdan bu
en iyi değeri yakalayan uyarlanır bir algoritma önerilmiştir. Bu algoritmaya göre,
bu katsayı ilk değeri 1 olmak üzere çalışmaya başlanır. Her bir işlem sistemi terk
ettiğinde, sistemde kaldığı süre, işin uzunluğuna bölünerek bu işin deneyimlediği
katsayı değeri elde edilir. Bu değer kullanılarak, katsayı değeri güncellenir. Bu
yöntemin sistem dinamiklerini yakaladığı ve değişken senaryolarada uyum gösterdiği
gösterilmiştir. Bu senaryoda, değişen iş yükleri, yüksek öncelikli mobil kullanıcı sayısı
ve h parametresi değerleri için sonuçlar elde edilmiştir.

Daha gerçekçi iş üretim modellerinin yer aldığı modeller, ve enerji tüketiminin de
aktarım kararına entegre edildiği algoritmalar, gelecek çalışmaların konusu olacaktır.

xxiv



1. INTRODUCTION

The previous decade has witnessed the emergence of Cloud Computing (CC) as a new

paradigm of computing. Storage and network management in the cloud were the main

visions of this new paradigm. With the vast resources available in the cloud and the

ability of leveraging these resources, elastic and powerful computing can be offered to

the end users. The Internet has seen a rapid growth, cloud businesses have increased

to become a profitable section. Such as Amazon and Dropbox [3]. The popularity of

mobile devices has been increasing in recent years along with the exponential growth

of mobile internet traffic resulting in a huge progress in wireless communication and

networks. The users were promised gigabit access in the next wireless generation

by the Small Cells (SCs) network and multi-antenna communication [4]. The high

data-rate allows mobile users to run computing services remotely at the data centre of

the cloud, resulting in a new area of research called Mobile Cloud Computing (MCC).

However; the long propagation distance between the mobile device and the remote

cloud data centre, lack of mobility support, and location-awareness are serious inherent

problems of cloud computing. The number of connected devices to the Internet

is expected to reach 50 billion by 2020, and the people, machines, and things are

estimated to produce data around 500 zettabytes by 2019 [5]. With this huge growth

of data exchange and the increasing number of connected devices, MCC paradigm

with its centralized approach will face tremendous loads in the coming years. Hence;

European Telecommunications Standard Institute (ETSI) came up with a new idea to

overcome this problem in 2014 [6]. This approach, namely Mobile Edge Computing

(MEC), is proposed to use the capacity at the edge of the network such as Base Stations

(BSs) or Access Points (APs) to significantly reduce the amount of data sent to the

cloud. In other words, the BS and /or AP executes the mobile users’ computation tasks

on behalf of them. Figure 1.1 illustrates the architecture of MEC.

The basic idea behind MEC is to bring down the resources from the cloud into the

edge to have the resources in close proximity to the end user. In this manner, any edge

1



Figure 1.1 : The architecture of Mobile Edge Computing.

device will be able to use resources available in the edge servers, thus dramatically

diminishing communication latency. On the other hand, a variety of challenges awaits

MEC systems:

(1) Resource management and allocation: It is well known that with this new age of

computing, resource management has become more challenging. It is expected that an

individual MEC would have a limited storage and computing resources, it can serve a

limited number of users, and there is a variety of mobile devices that require a variety

of resources. Therefore; there has to be a method to know which resources are where

and how they can be located. This could be a problem to be solved in the coming days.

(2) Mobility: As MEC will be deployed in Heterogeneous Networks (HetNet) which in

turn has different BSs such as Macro Station (MS), Micro Station (MiS), Pico Station

(PiS), and Femto Station (FS), and these BSs have different coverage areas and thus;

mobile devices that experience frequent hand-offs due to roaming may see significantly

reduced performance due to the need of conveying raw data and/or computation results

to and from an edge server with which they no longer have direct contact.

(3) Security: The conventional mechanisms may not be sufficient to achieve the

desired level of privacy [6]. Several security threats might arise up such as

cyber-attacks due to the integration of the communication and the cloud system.

Protecting the privacy of mobile users’ data is a major concern [7].

2



(4) Interoperability: The variety of the Service Providers (SPs) who own the

infrastructure of MEC makes it a necessity to have a collaboration between the SPs

to have common specifications [8].

(5) Robustness and Resilience: It is important to guarantee the robustness of the MEC

when it is incorporated into mobile base station. Moreover; it is essential that the

incorporation is not affecting the availability of the mobile network.

(6) Offloading: Which refers to the usage of Edge server in MEC or (cloud in case of

MCC) to execute the mobile users’ tasks on behalf of the mobiles. Offloading is one

of the most important challenges that need to be tackled. Decision making of whether

to partition the task or not and what task to offload and where are concerns in MEC.

Recently, even a newer concept was proposed by Cisco called Fog Computing and

networking that is considered as an extension of the cloud computing in the perspective

of Cisco [9]. It is a generalized form of MEC that is a highly virtualized platform that

provides storage, networking services, and computation between the mobile devices

and the traditional cloud server. The two concepts of fog computing and mobile

edge computing are somewhat overlapping and the terminologies are sometimes

interchangeably used, and many technologies are applicable to both.

MEC is based on virtualized platforms that leverage new advances in networking such

as Network Functions Virtualization (NFV), Information Centric Network (ICN), and

Software Defined Network (SDN). Within NFV, a single Edge device can be enabled

and by creating multiple virtual machines (VMs), providing computing services for

multiple mobile devices so as to perform different tasks simultaneously is possible

[10]. On the other hand, the ICN provides an alternative paradigm for an end-to-end

service recognition for MEC. Last but not least, MEC network management is allowed

by SDN to manage services via function abstraction, achieving scalable, and dynamic

computing [11]. Developing these general network technologies is one of the main

focuses of MEC with a view to implement them at the network edge.

The emerging mobile applications that will benefit from MEC by offloading the

computation-intensive tasks to be remotely executed at the edge server are increasing.

Two examples are provided in the following to illustrate the very basic principles of

MEC. Figure 1.2 shows a face recognition application as the first example that has five

essential computation components, starting with image acquisition and followed by

face detection, pre-processing, feature extraction, and ending with classification [1].

3



Figure 1.2 : The main Processes of Face Recognition Application [1].

Image acquisition should be executed at the mobile device so as to support the user

interface and it is not a computational intensive process and thus there is no need for

offloading. The rest of the components could all be offloaded to be executed remotely

at the edge server because each one contains complex algorithms, Signal Processing

(SP), or Machine Learning (ML), and is a very computationally intensive process

that needs heavy resources. For instance face detection requires image processing

to improve the input image whereas feature extraction has very complex algorithms to

distinguish between the faces of the people [1].

Secondly, Augmented Reality (AR) applications which overlie an artificial image into

the reality through the screen of the mobile are very popular applications that can

leverage rich resources at the edge of the network. The procedure of AR applications

is shown in Figure 1.3. The procedure of AR applications consists of five major

components starting with video resource and ending with Renderer [2]. Video resource

along with renderer processes need to be executed locally at the mobile device whereas

the rest of the components that are computationally intensive such as Tracker, Mapper,

and Object recognizer may be offloaded for remote execution at the edge of the

network.

In this study we investigate the offloading problem in the presence of two user classes:

one is high priority and the other is low priority. The rest of the thesis is organized

as follows. In chapter 2, we present a literature review on mobile edge computing

and offloading, as well as background information on weighted round-robin service

scheduling. Chapter 3 contains the description of the proposed method, the system

4



Figure 1.3 : The main processes of Augmented Reality Application [2].

model, and experimentation results. Finally, the conclusion and future works are

presented in chapter 4.

5



6



2. LITERATURE REVIEW

2.1 Offloading in Mobile Edge Computing

Many researchers have investigated a wide range of issues related to MEC in

recent years from both academia and the industry. Standardization, implementation,

multi-user resource allocation, and system and network modelling were all investigated

in those studies. Thereafter, many surveys have been published aiming to provide

overviews of different aspects of MEC including applications, enabling techniques,

edge computation offloading, energy efficiency, single and multi-server systems, and

connections with 5G and Internet of Things (IoT) [8], [12], [13], [14]. In [13], an

overview of MEC was presented along with a discussion of some promising real time

application scenarios of MEC services and a taxonomy that describes the key attributes

of MEC. The survey in [15] provides an overview of MEC and focuses on the key

enabling techniques in addition to the analysis of some deployment scenarios that

offer multi-tenancy support for applications’ developers. A comprehensive survey

of MEC systems was presented in [16] including the concept, technical enablers,

and architecture along with some categorized deployment scenarios and services

models, whereas the survey in [17] provides technical analysis and limitations of

MEC through identifying, discussing, and classifying a variety of applications. [12]

gives an overview of MEC networks with the definition, architecture, and advantages.

Moreover; it surveys the MEC issues of computing, communications technologies,

and caching at the network edge beside key enablers like SDN/NFV. In addition, [18]

describes the role of MEC in IoT through providing some MEC deployment examples

with the essential benefits and challenges of MEC moving toward 5G.

Generally a task generated at a mobile device is either executed in the mobile device or

offloaded to the cloud or to the edge server to be executed there and then, the outcomes

is sent back to the mobile device that generated it. The operation of transmitting the

application to be remotely executed inside the cloud or the edge is called offloading.

7



Tasks offloading can be divided into three different types according to the way the task

is executed:

1−Binary Offloading: In this method the task must be executed either in the mobile

device itself completely or transmitted completely to the MEC server to be executed

there. In another words, it cannot be partitioned and processed [6]. Basically the

simple tasks are not preferred to be offloaded.

2−Partial Offloading: In this method, the task can be partitioned into two or more

parts. After the partitioning, some partitions will be executed in the mobile device,

and the rest will be offloaded to be executed at the edge server [6].The procedure

of offloading and computing should be performed carefully. Parts’ offloading and

execution order cannot be arbitrary, for several reasons for instance some parts are

fed by the output of others, some parts cannot be offloaded and must be executed

locally [6].

3−Full Offloading: In full offloading, the task is always executed at the edge server

[31].

As mentioned in the challenges, offloading is one of the most critical issues that need

to be tackled, hence; there are plenty of studies on the challenges related to offloading.

These studies differ in their choice of offloading strategy, and objective functions when

considering offloading optimization. In [19], the authors study the computational

offloading problem of multi-user in MEC in wireless interference channels and attempt

to achieve efficient computation offloading in a distributed manner through adopting a

game theoretic approach. A strategy of offloading computation for MEC is proposed

in [20] with aiming to derive an optimal partial offloading on a given call graph,

choosing partitions to be executed locally or remotely. Investigation of three different

computation models is carried out in [21], namely local compression, edge cloud

compression, and partial compression offloading with aiming to develop an algorithm

of optimal joint communication and computation resource allocation. In [22] an

efficient computation offloading method for mobile cloud computing is proposed using

a game theoretic approach. A scenario where a full application’s tasks are offloaded

to a computationally enhanced small cell base station is explained in [23], where

the goal is to provide a strategy for uplink, downlink, and remote computational

8



resource allocation and to improve the quality of experience of users. In [24], the

authors’ contribution is the optimization of the offloading decision, communication,

and computation resources via a Heuristic Offloading Decision Algorithm (HODA).

On the other hand, researchers tried to enhance the energy efficiency by achieving

an optimal way of offloading. For instance in [25], an endeavour to minimize the

overall cost of energy by jointly optimizing the offloading decision as well as the

resource communication allocation is presented. The contribution in [26] is similar

to [25]. However; [27] proposes to conserve energy and preserve the Quality of

Service (QoS) of the users by using a game theoretical approach in which the mobile

makes its decision of offloading distributively and communication allocation resources

computation are decided by the computing access point.

Energy efficiency of both mobile devices and edge servers deployed at the edge of

the network is an issue to be solved in MEC systems. Therefore; researchers in both

academia and industry are working to find optimal solutions to reduce the consumed

energy by the server and prolong the life time of the mobiles’ battery. In the literature,

many works on this challenge exist aiming to minimize the energy consumed by tasks

offloading taking into account task computing and file transmission. The authors of

[28] propose Energy Efficient Computation Offloading (EECO) mechanism for MEC

in 5G heterogeneous networks. In [29], a novel approach is introduced which is the

green MEC system with harvesting devices and developing an effective strategy of

computational offloading.

To the best of our knowledge, no study considers multi-class users except [30],

where an admission control policy and adaptive resource allocation are proposed to

offload mobile applications’ tasks into a cloudlet in the presence two classes namely

"members" and "non-members" with high and low priorities consecutively. The high

priority user is allowed to utilize more resources compared to the low priority.

2.2 Queueing Systems

Queueing theory is concerned with the analysis of traffic congestion and queueing

and scheduling of services. Models of queueing systems are used in the field of

Information Technology (IT) to analyze the performance of computing systems such

9



as CPU scheduling and router/switch buffering.

When a customer arrives and finds the server(s) busy, the customer joins the queue and

then based on some rule or policy, the customer is selected for service in a queueing

system. After the customer is selected, it will be served by any of the system’s

server(s). This event is referred to as service discipline or scheduling discipline.

holding time is indicated as the service time of that customer, After the customer is

completely served, the customer leaves the system [32].

An important rule is played by the way the scheduling discipline is modelled.

First-in First-out (FIFO) or First Come First Served (FCFS) is the simplest choice

of scheduling discipline, however; it might not be the most desirable method. For

instance, in a multi-class system which contains dissimilar customers in terms of

priorities or the required service time, choosing the best service discipline should take

into account: (i) minimizing the mean latency, (ii) increasing the number of served

customers per time unit (increasing the throughput), or (iii) fairness achievement

among different customers from different classes [32, p.43].

In [33] the notion of Processor Sharing (PS) was proposed as a specific case of

Round-Robin (RR) scheduling where the time portion is allowed to approach zero.

Under such circumstances, when n customers exist in the system, each customer

receives the service with rate K/n, where K indicates the overall capacity of system’s

server.

2.3 Weighted Round-Robin (WRR) Service Discipline

Weighted Round-Robin is an approximation of Generalized Processor Sharing (GPS)

and a discipline in scheduling where all tasks are classified into a number of service

classes with respectively high and low priorities. For holding the packets temporarily,

a set of queues are established, while the tasks await service. WRR uses the very

same principle of Round Robin which basically shares the CPU service among all the

packets for a specific number of time slots (Machine Cycles (MC) in case of CPU

scheduling) with out considering the priorities of arrived tasks. WRR uses the very

same principle of Round Robin except considering the priorities of the tasks. In WRR,

a high priority task is served more frequently than others. To put it another way, a high

priority task receives more MCs than lower priority tasks.

10



Figure 2.1 : A sample scenario with WRR

Figure 2.1 illustrates the WRR service discipline. In this scenario, three different tasks

with different sizes (different MC requirements) arrive to the system in different times

where h factor is 3 (high to low priority service ratio). Task A with high priority and

size 5 arrives first and directly starts receiving the service as the system is empty.

During the second MC, B arrives to the system with low priority and size 2. Just after

the third MC, another high priority task, C, arrives with size 4. B starts receiving the

service for one MC after A receives h = 3 MCs of service, because it arrived before

C, while both A and C are waiting in the queue. After that, A takes the place to be

completely executed as it needs only 2 MCs. Then, C, being the high priority task

remaining, takes precedence in the turn to receive service for h = 3 MCs (high priority

task) while B is waiting in the queue. After C is processed for h = 3 MCs, B comes

again to receive the remaining required MC and then leaves the system. Finally, C is

served for the rest of required MCs and leaves the system.

11



12



3. SYSTEM MODEL AND NUMERICAL RESULTS

3.1 System Model

We consider a MEC system with a single MEC server and N subscribers. There are

two user classes: high priority users (HU) and low priority users (LU). Each mobile

user generates tasks according to Poisson process with intensities λH and λL for HU

and LU, respectively. The tasks’ sizes in bits, denoted LH and LL, are assumed to have

uniform distributions. The CPU of the mobiles are assumed to have a single core with

an operating frequency of fm whereas the server has a CPU with frequency fs, nc cores,

and a speed-up multiplier s due to additional memory, better processor design and so

forth as described in [34]. This yields an effective total speed-up of snc fs/ fm for a

task that is run on the edge server as opposed to a task run locally on the mobile.

A task that is decided to be offloaded is entirely sent to the MEC server (Binary

Offloading). For each task, the required number of Machine Cycles (MCs) are equal to

Li X ; i ∈ {H,L}, where X is the MCs-per-bit and depends on the individual task [35].

To get an idea about commonplace values, we refer the reader to Table 3 in [36]. Some

studies, such as [37], assume load balancing is done at the edge server, that is, “the

CPU cycles are proportionally allocated for each user such that all users experience

the same computing time”. Instead, we assume weighted round-robin scheduling for

tasks where HU tasks are executed h cycles for each cycle of LU tasks.

The energy consumption of the mobiles are modelled as having two major components:

(i) energy consumption due to transmission [36], and (ii) energy consumption due

to computation [37]. Although both components are affected by instantaneous

conditions, we opted for a model with constant transmission energy per-bit and

constant computation energy per-MC. These can be viewed as average values acting

over long windows of operation.

The offloading decision mainly aims to minimize the sojourn time of each task. We

denote with α ∈ (0,1) the encoding ratio, that is, the encoded data size is L ×α bits

13



Table 3.1 : Simulation Parameters. U[·, ·] denotes uniform distribution.

Parameter Value
Number of Mobile users 100

Number of HL 30
Number of LU 70

λH = λL 1 task / 2 hours
LH ,LL U [20 MB,100 MB]

X U[200 , 1000]
fm 1 GHz
fs 10 GHz
nc 32
s 10

Computation energy per MC 20×10−11 j/MC
Transmission energy per bit 2.0833×10−9 j/bit

r U[200kbps , 20Mbps]
h 10
α ∈ {0.1,0.01,0.001}

Number of tasks simulated 5000

for raw data of L bits. The sojourn time in case of local execution can be written as:

Tl =
LX
fm

+
Lα

r
(3.1)

where r is the data rate of the associated mobile user. In (3.1), the first term corresponds

to execution time, whereas the second term corresponds to the transmission time of the

encoded data. The sojourn time in case of offloading is expressed as:

To =
L
r
+qi

LX
snc fs

(3.2)

where qi > 1; i∈ {H,L}, is the factor of queueing delay. It is clear that the MEC server

will be running multiple concurrent tasks. Since we employ weighted round-robin

scheduling, the queueing discipline can be modelled as a priority processor-sharing

(PS) discipline. It is well known that the expected sojourn time in a PS queue is

linearly proportional to the task size [32, p.215]. Therefore using a factor such as qi

(with qL = hqH) accurately captures the sojourn time of an offloaded task. In local

computation, the load on the mobile is expected to be much lower. Thus, we ignore

queueing delay on the mobile device, although a second multiplier for local queueing

delay can also be defined.

The offloading decision can be assumed to take place either at the mobile or at the

MEC server. In either case, signalling between the mobile and the MEC server should

14



take place to exchange relevant information such as task size, or queue backlog. We

will assume that the MEC server is in charge of the offloading decision and informs

the mobile whether to offload or not based on the comparison of the Tl value to the To

value. An important parameter in this setting is qH , which not only models but also

affects the queueing delay, and thus acts as an admission rule parameter. If qH is too

high, tasks are discouraged to offload, resulting in a lightly loaded MEC server which

entails a low qH value. On the other hand, a too low value for qH will result in more

offloads yielding high queueing delays. Therefore, there should be an optimal qH value

that balances the demand for the MEC server. This also acts as a service differentiator

between HU and LU through the relation qL = hqH .

3.2 Numerical Experimentation

We wrote a stand-alone simulation program in Matlab that simulates the described

system. Simulation parameters are summarized in Table 3.1. Average task sojourn

times for different values of qH are given in Figure 3.1 for α = 0.01, and in Figure

3.3 for α = 0.001. If the objective is to provide the best performance for HU, then

the optimal qH value can said to be around 1000 for these two cases. It is clear that

LU starts getting discouraged from offloading when qH > 100, and HU starts getting

discouraged from offloading when qH > 1000. To see the behavior in more detail, we

plot the average task sojourn times and energy consumptions for 100 ≤ qH ≤ 500 in

Figures 3.5 and 3.6, and for 1000≤ qH ≤ 5000 in Figures 3.7 and 3.8.

On the other hand, looking at the average energy consumptions that are given in Figure

3.2 for α = 0.01, and in Figure 3.4 for α = 0.001, it is evident that qH = 1000 does

not provide the best performance in terms of energy efficiency especially for LU, and

thus the overall population of users. Taking this into account, a more modest value

of qH = 100 seems to provide a much better overall performance all around without

sacrificing much from HU service quality.

The performance degradation in energy efficiency as qH increases beyond a point is

clearly due to the fact that less and less tasks are offloaded with increasing qH , which

is demonstrated in Figure 3.9.

15



Figure 3.1 : Average tasks sojourn times for different values of qH , (α = 0.01).

Figure 3.2 : Average energy consumption per task for different values of qH ,
(α = 0.01).

16



Figure 3.3 : Average tasks sojourn times for different values of qH , (α = 0.001).

Figure 3.4 : Average energy consumption per task for different values of qH ,
(α = 0.001).

17



Figure 3.5 : Average tasks sojourn times for 100≤ qH ≤ 500, (α = 0.01).

Figure 3.6 : Average energy consumption per task for 100≤ qH ≤ 500, (α = 0.01).

18



Figure 3.7 : Average tasks sojourn times for 1000≤ qH ≤ 5000, (α = 0.01).

Figure 3.8 : Average energy consumption per task for 1000≤ qH ≤ 5000, (α = 0.01).

19



Figure 3.9 : Offload ratios for different values of qH , (α = 0.01).

Keeping the queueing delay multiplier qH = 100, and the encoding ratio α = 0.01,

we plot the average task sojourn time and average energy consumption per task in

Figure 3.10 and Figure 3.11, respectively, for varying values of the PS priority factor,

h. Clearly, increasing h increases the service discrimination between HU and LU. The

effect of increasing h on the service HU gets does not seem to be significant, whereas

the impact it has on LU is evidently profound. This is obviously due to the fact that the

sojourn time in case of offloading for LU is directly proportional to h, and increasing h

increasingly forbids LU tasks from being offloaded. Thus, we conclude that since the

effect on the HU service is slight, the service provider should choose to keep h modest

(below 26 for the specific scenario investigated here) to be inclusive so as to improve

overall system performance.

3.3 The Adaptive Scheme

The optimum value of qH depends on the load on the server buffer, which is a function

of traffic intensity of each class, task size distribution, MC required per bit, and the

CPU speed. Hence, to use a fixed qH , one needs to have all these information and pick

qH accordingly. Furthermore, this method will lead to sub-optimal performance when

any of these parameters are time dependent and changes over the course of operation.

Therefore, we propose to use an adaptive scheme for the value of qH . We start the

20



Figure 3.10 : Average task sojourn times for different values of h, (α = 0.01 ,
qH = 100).

Figure 3.11 : Average energy consumption per task for different values of h,
(α = 0.01 , qH = 100).

21



Table 3.2 : Simulation Parameters. U[·, ·] denotes uniform distribution.

Parameter Value
Number of Mobile users 250

Number of HL 50
Number of LU 200

λH = λL 1 task / 10 seconds
L U [1 MB,10 MB]
X U[103 , 104]
fm 1 GHz
fs 4 GHz
nc 32
s 5

Computation energy per MC 20×10−11 j/MC
Transmission energy per bit 2.0833×10−9 j/bit

r U[200kbps, 20Mbps]
h 10
α 0.2
θ 0.02

Number of tasks simulated 104

decision algorithm on the MEC server with an initial qH value, and we update it after

the completion of each task using damped averaging as follows:

q′H =


(1−θ)qH +θ Ts

snc fs

LX
, for HU,

(1−θ)qH +θ Ts max
{

snc fs

LX h
,1
}
, for LU.

(3.3)

Here, Ts denotes the time that the task spends on the MEC server, and θ ∈ {0,1} is the

damping coefficient. Note that under a sufficiently loaded regime, LU tasks will see a

runtime that is h-fold on the average compared to HU tasks. However, when the load

is sufficiently low, an LU task might experience little or no queueing delay, resulting

in a (snc f s)/(LX) value that is close to 1. In such cases, we impose a max{·,1}

function so that qH is not pulled down more than necessary (to below 1). In this way,

qH value can adapt to changing conditions. Initially, the MEC server starts with an

empty queue, which means that an arriving task will not experience queueing delay.

Hence, it is reasonable to start with qH = 1.

3.4 Numerical Experimentation for the Adaptive Scheme

22



In this setting, we consider a video conference session in which a mobile user uses

his/her device’s camera to send video to other users. The task is the encoding of

high-definition video captured by the camera of the mobile into a lower resolution

video for transmission to the other end. The simulation parameters for this scenario

(unless specified otherwise for some figures) are summarized in Table 3.2. To

determine realistic job sizes, we consulted YouTube’s “Live encoder settings, bit rates,

and resolutions” documentation [38]. For HD videos such as 720p and 1080p, video

bit rates range from 1500 Kbps to 9000 Kbps. Hence; we used the range from 1 Mb to

10 Mb for the job size, which is assumed to have a uniform distribution. For ease of

modelling, we assumed Poisson arrivals for tasks at each mobile, resulting in a Poisson

overall arrival stream. In this scenario, we may assume that the video becomes 240p

or 360p, whose bit rates range from 300 Kbps to 1000 Kbps, after encoding. Thus, we

opted for an encoding rate of α = 0.2.

The evolutions of qH as well as the number of active tasks on the server are plotted in

Figure 3.12 for three different values of θ . It can be observed that starting from the

initial value of 1, qH adapts to the incoming traffic as reaches steady-state behaviour

after some initial transient behaviour. Smaller θ values yield smoother evolution,

whereas larger θ values lead to faster response. In the remainder of this chapter, we

use θ = 0.02, as this value shows sufficient response speed with less fluctuations.

The high correlation between the number of tasks in the server and the qH value is also

evident from the plots. As jobs leave the system, the remaining ones see less queueing

delay, and thus pull qH down. This results in more offloading decisions, resulting in an

increase in queueing delay, thus qH. This alternating behaviour is best seen in the first

plot in Figure 3.12 with θ = 0.005.

Next, we investigate the effect of the load on the server. The overall load can be

expressed as (NH λH +NL λL)E[LX/ fs], where NH and NL denote the number of HU

and LU, and λH and λL denote arrival rates for HU and LU, respectively. Although

the system in consideration is one with rejections (non-offloading decisions) and thus

stability is not a big concern, performance of the system is affected by the overall

load. In Figure 3.13, the ratio of the tasks that are offloaded, mean task sojourn time,

and mean energy consumption per task are plotted against varying mean interarrival

times (1λ ). As the mean inter-arrival time is increased, the load on the system is

23



Figure 3.12 : The evolution of qH and the number of active tasks on the server for
three different values of θ

24



decreased, and thus more and more LU tasks are offloaded. On the other hand, HU

tasks are almost entirely offloaded. As the load is decreased, queueing delays are

also decreased, leading to reduced mean task sojourn times. When it comes to energy

consumption, we consider the consumption of the mobile user. Therefore, energy

consumption consists of task execution energy and transmission energy for encoded

data in case of local execution, whereas only transmission energy for raw data (which

is larger than encoded data) is taken into account in case of offloading. Figure 3.13

shows that the performance of the system in terms of energy consumption is not trivial,

and may also be incorporated into the offloading decision.

Next, we look at h, the number of MCs each HU task is executed per one MC of an

LU task. We plot the system performance under varying values of h in Figure 3.14.

From these plots, we can conclude that the value of h does not drastically effect system

performance, although the mean task sojourn time for HU tasks seems to be cut in half

when h = 15 compared to h = 5.

Then, we examine the effect of the ratio of HU in the total population of the users.

In Figure 3.15, we plot the average task sojourn time and energy consumption versus

varying HU ratios. From this figure, we can conclude that increasing the number of

HU has a big impact on the performance and the performance degrades very rapidly

before settling down due to reduced number of offloads. This shows the significance

of the total load on the system.

Finally, in Figure 3.16, we plot the evolution of qH as well as the number of active

tasks on the server when the system starts with 10 seconds of inter-arrival time, but

it becomes 2.5 seconds later on. The figure clearly shows qH adapting to changing

incoming traffic (around 280 seconds). Due to the increase in arrival rate, the number

of tasks at the server increases, but then is steadied by the increasing qH .

25



Figure 3.13 : The effect of overall load on the system performance.

26



Figure 3.14 : The effect of h on the system performance.

27



Figure 3.15 : The effect of the ratio of HU in the population on the system
performance.

Figure 3.16 : qH adapts to changing system load

28



4. CONCLUSION AND FUTURE WORK

In this study, we investigate a two-class MEC system where high-priority users (HU)

and low-priority users (LU) have access to a single MEC server. The server executes

the offloaded tasks in a weighted round-robin fashion so that the queueing performance

can be modelled as a priority processor sharing (PS) system. A key property of

the PS system is that the sojourn time of a task is proportional to its size, enabling

us to formulate the sojourn time estimate of a job via a constant multiplier. This

multiplier both models the queueing delay, and acts as an admission control parameter.

Moreover, we propose an adaptive offloading decision algorithm so as to minimize the

task sojourn time in the same system. The algorithm is based on the priority-processor

sharing queueing discipline. Through numerical results presented, we conclude that

there is an optimal value for this multiplier that also affects the energy efficiency of the

entire system. Furthermore, we show that the prioritization factor that differentiates the

service HU and LU obtain from the MEC server should be kept below a certain point to

be inclusive to LU without harming HU performance. Conversely, one could argue that

keeping HU and LU performance further apart gives incentive to clients to subscribe

to the MEC service and thus, the service provider should increase the prioritization

factor to obtain revenue. On the other hand, this can be refuted by claiming that such a

policy may alienate customers and decrease revenue. Such economical and marketing

related issues are beyond the scope, although we believe that service providers can

devise pricing and operational policies based on the framework provided in this thesis.

Future work will be on incorporating energy consumption for both the mobiles and

the server into the offloading decision, and investigation of the effect of parameters

such as h and θ more thoroughly. Furthermore, a more realistic model would be on-off

sources model, where a mobile generates tasks every second it is in the on state, and the

29



transitions between on-off states are modelled as a discrete or continuous-time Markov

chain. This is left as future work.

30



REFERENCES

[1] Jaber, Z.Q. and Younis, M.I. (2014). Design and implementation of real time
face recognition system (RTFRS), International Journal of Computer
Applications, 94(12).

[2] Al-Shuwaili, A. and Simeone, O. (2017). Energy-efficient resource allocation
for mobile edge computing-based augmented reality applications, IEEE
Wireless Communications Letters, 6(3), 398–401.

[3] N. Wingfield, “Amazon’s profits grow more than 800 percent, lifted by cloud
services,” The New York Times, Jul. 2016. [Online]. Available:
http://www.nytimes.com/2016/07/29/technology/amazon-earnings-profit.html?
r=0.

[4] Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C. and
Zhang, J.C. (2014). What will 5G be?, IEEE Journal on selected areas in
communications, 32(6), 1065–1082.

[5] Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L. (2016). Edge computing: Vision
and challenges, IEEE Internet of Things Journal, 3(5), 637–646.

[6] Mao, Y., You, C., Zhang, J., Huang, K. and Letaief, K.B. (2017). A survey
on mobile edge computing: The communication perspective, IEEE
Communications Surveys & Tutorials, 19(4), 2322–2358.

[7] Li, H., Shou, G., Hu, Y. and Guo, Z. (2016). Mobile edge computing: progress
and challenges, Mobile Cloud Computing, Services, and Engineering
(MobileCloud), 2016 4th IEEE International Conference on, IEEE,
pp.83–84.

[8] Tran, T.X., Hajisami, A., Pandey, P. and Pompili, D. (2017). Collaborative
mobile edge computing in 5G networks: New paradigms, scenarios, and
challenges, IEEE Communications Magazine, 55(4), 54–61.

[9] Yi, S., Li, C. and Li, Q. (2015). A survey of fog computing: concepts, applications
and issues, Proceedings of the 2015 Workshop on Mobile Big Data, ACM,
pp.37–42.

[10] Hu, Y.C., Patel, M., Sabella, D., Sprecher, N. and Young, V. (2015). Mobile edge
computing—A key technology towards 5G, ETSI white paper, 11(11),
1–16.

[11] Chang, C.Y., Alexandris, K., Nikaein, N., Katsalis, K. and Spyropoulos,
T. (2016). MEC architectural implications for LTE/LTE-A networks,
Proceedings of the Workshop on Mobility in the Evolving Internet
Architecture, ACM, pp.13–18.

31



[12] Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J. and Wang, W. (2017). A
survey on mobile edge networks: Convergence of computing, caching and
communications, IEEE Access, 5, 6757–6779.

[13] Ahmed, A. and Ahmed, E. (2016). A survey on mobile edge computing, 2016
10th International Conference on Intelligent Systems and Control (ISCO),
pp.1–8.

[14] Ahmed, E. and Rehmani, M.H. (2017). Mobile Edge Computing: Opportunities,
solutions, and challenges, Future Generation Computer Systems, 70, 59 –
63.

[15] Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S. and Sabella, D. (2017).
On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration, IEEE Communications Surveys
& Tutorials, 19(3), 1657–1681.

[16] Liu, H., Eldarrat, F., Alqahtani, H., Reznik, A., de Foy, X. and Zhang,
Y. (2017). Mobile edge cloud system: Architectures, challenges, and
approaches, IEEE Systems Journal.

[17] Beck, M.T., Werner, M., Feld, S. and Schimper, S. (2014). Mobile edge
computing: A taxonomy, Proc. of the Sixth International Conference on
Advances in Future Internet, Citeseer, pp.48–55.

[18] Sabella, D., Vaillant, A., Kuure, P., Rauschenbach, U. and Giust, F. (2016).
Mobile-edge computing architecture: The role of MEC in the Internet of
Things, IEEE Consumer Electronics Magazine, 5(4), 84–91.

[19] Chen, X., Jiao, L., Li, W. and Fu, X. (2016). Efficient multi-user computation
offloading for mobile-edge cloud computing, IEEE/ACM Transactions on
Networking, 24(5), 2795–2808.

[20] Di Lorenzo, P., Barbarossa, S. and Sardellitti, S. (2013). Joint optimization of
radio resources and code partitioning in mobile edge computing, arXiv
preprint arXiv:1307.3835.

[21] Ren, J., Yu, G., Cai, Y. and He, Y. (2017). Latency optimization for
resource allocation in mobile-edge computation offloading, arXiv preprint
arXiv:1704.00163.

[22] Chen, X. (2015). Decentralized computation offloading game for mobile cloud
computing, IEEE Transactions on Parallel and Distributed Systems, 26(4),
974–983.

[23] Molina, M., Muñoz, O., Pascual-Iserte, A. and Vidal, J. (2014). Joint scheduling
of communication and computation resources in multiuser wireless ap-
plication offloading, Personal, Indoor, and Mobile Radio Communication
(PIMRC), 2014 IEEE 25th Annual International Symposium on, IEEE,
pp.1093–1098.

32



[24] Lyu, X., Tian, H., Sengul, C. and Zhang, P. (2017). Multiuser joint
task offloading and resource optimization in proximate clouds, IEEE
Transactions on Vehicular Technology, 66(4), 3435–3447.

[25] Chen, M.H., Liang, B. and Dong, M. (2016). Joint offloading decision and re-
source allocation for multi-user multi-task mobile cloud, Communications
(ICC), 2016 IEEE International Conference on, IEEE, pp.1–6.

[26] Chen, M.H., Liang, B. and Dong, M. (2017). Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point, INFOCOM 2017-IEEE Conference on Computer
Communications, IEEE, IEEE, pp.1–9.

[27] Chen, M.H., Dong, M. and Liang, B. (2016). Multi-user mobile cloud offloading
game with computing access point, Cloud Networking (Cloudnet), 2016
5th IEEE International Conference on, IEEE, pp.64–69.

[28] Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan,
S. and Zhang, Y. (2016). Energy-efficient offloading for mobile edge
computing in 5G heterogeneous networks, IEEE Access, 4, 5896–5907.

[29] Mao, Y., Zhang, J. and Letaief, K.B. (2016). Dynamic computation offloading
for mobile-edge computing with energy harvesting devices, IEEE Journal
on Selected Areas in Communications, 34(12), 3590–3605.

[30] Hoang, D.T., Niyato, D. and Wang, P. (2012). Optimal admission control
policy for mobile cloud computing hotspot with cloudlet, Wireless
Communications and Networking Conference (WCNC), 2012 IEEE, IEEE,
pp.3145–3149.

[31] https://www.igi-global.com/dictionary/offloading/54962.

[32] Kobayashi, H. and Mark, B.L. (2009). System modeling and analysis:
Foundations of system performance evaluation, Pearson Education India.

[33] Kleinrock, L. (1967). Time-shared systems: A theoretical treatment, Journal of
the ACM (JACM), 14(2), 242–261.

[34] Kumar, K. and Lu, Y.H. (2010). Cloud computing for mobile users: Can
offloading computation save energy?, Computer, 43(4), 51–56.

[35] Melendez, S. and McGarry, M.P. (2017). Computation offloading decisions
for reducing completion time, Consumer Communications & Networking
Conference (CCNC), 2017 14th IEEE Annual, IEEE, pp.160–164.

[36] Miettinen, A.P. and Nurminen, J.K. (2010). Energy Efficiency of Mobile Clients
in Cloud Computing., HotCloud, 10, 4–4.

[37] You, C., Huang, K., Chae, H. and Kim, B.H. (2017). Energy-efficient resource
allocation for mobile-edge computation offloading, IEEE Transactions on
Wireless Communications, 16(3), 1397–1411.

[38] YouTube, “Live encoder settings, bitrates, and resolutions,”
Accessed: 17-March-2018. [Online]. Available:
https://support.google.com/youtube/answer/2853702?hl=en.

33



34



APPENDICES

35



36



CURRICULUM VITAE

Name Surname: Kahlan Faaq Hasan

Place and Date of Birth: Iraq / April-1-1991

E-Mail: kahlan87@yahoo.com

EDUCATION:

• B.Sc.: 2013, University of Tikrit, College of Computer Science and Mathematics ,
Computer Science

PROFESSIONAL EXPERIENCE AND REWARDS:

• Certificate of participation for participating in the Database programming with
so f tware Engineering Topics Class presented by BALL STATE UNIVERSITY,
April 2013

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• Accepted paper entitled "Effect of Queueing Delay and Service Discrimination
on Offloading Performance in Two-Class Mobile Edge Computing Systems", SIU
conference, Izmir, TURKEY, May 2-5 2018.

• Accepted paper entitled "An Adaptive Offloading Decision Scheme in Two-Class
Mobile Edge Computing Systems", TSP conference, Athens, GREECE, July 4-6
2018

37


