
ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL

PARAMETER OPTIMIZATION FOR MATHEMATICAL MODELING

Ph.D. THESIS

Mehmet TUNÇEL

Department of Mathematical Engineering

Mathematical Engineering Programme

JUNE 2023

ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL

PARAMETER OPTIMIZATION FOR MATHEMATICAL MODELING

Ph.D. THESIS

Mehmet TUNÇEL
(509132057)

Department of Mathematical Engineering

Mathematical Engineering Programme

Thesis Advisor: Prof. Dr. Ahmet DURAN

JUNE 2023

İSTANBUL TEKNİK ÜNİVERSİTESİ F LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

MATEMATİKSEL MODELLEME İÇİN PARAMETRE OPTİMİZASYONU

DOKTORA TEZİ

Mehmet TUNÇEL
(509132057)

Matematik Mühendisliği Anabilim Dalı

Matematik Mühendisliği Programı

Tez Danışmanı: Prof. Dr. Ahmet DURAN

HAZİRAN 2023

Mehmet TUNÇEL, a Ph.D. student of ITU Graduate School student ID 509132057
successfully defended the thesis entitled “PARAMETER OPTIMIZATION FOR
MATHEMATICAL MODELING”, which he prepared after fulfilling the
requirements specified in the associated legislations, before the jury whose signatures
are below.

Thesis Advisor : Prof. Dr. Ahmet DURAN
Istanbul Technical University

Jury Members : Prof. Dr. İsmail KÖMBE
Istanbul Commerce University

Asst. Prof. Dr. Bahri GÜLDOĞAN
Istanbul Technical University

Prof. Dr. Can ÖZTURAN
Bogazici University

Prof. Dr. Burak SALTOĞLU
Bogazici University

Date of Submission : 24 May 2023
Date of Defense : 9 June 2023

v

vi

To the memory of my father,

vii

viii

FOREWORD

This thesis is lovingly dedicated to my wife Havva TUNÇEL, to my parents Gündoğar
and Veli TUNÇEL, and to my sons Ömer and Muhammed. I would like to express my
sincere gratitude to them in particular for their compassion, and encouragement.

I would like to express my gratitude to Prof. Dr. Ahmet DURAN, my respected
adviser, for his support, inspiration, tolerance, and direction throughout my Ph.D.
studies. He is one of the pioneers of Quantitative Behavioral Finance discipline
using differential equations, statistical methods, mathematical models and parameter
optimization. During my higher education, I would like to express my sincere thanks
once again to my esteemed advisor Prof. Dr. Ahmet DURAN for giving me the
opportunity to work on the following international projects as a researcher:

• Parallel Algorithm (Kernel) Development for Large Scale Sparse Linear Systems
in Oil Reservoir Simulation (PASSOR), Computational Linear Algebra Project for
ARAMCO Overseas, 2012-2017.

• HPC based Design of a Novel Electromagnetic Stirrer for Steel Casting, EU Project,
PRACE-4IP , 2015 - 2016.

• Scalable Parallel Nonlinear Parameter Optimization Algorithm with Parameter
Pools, EU Project, PRACE-2IP WP12 T12.2, 2013 - 2014.

• Scalability of OpenFOAM for Bio medical Flow Simulations, EU Project,
PRACE-3IP WP7 T7.2, 2012 - 2014.

• SuperLU MCDT Many Core Distributed Solver on MIC Architecture, EU Project,
PRACE-1IP WP7 T7.1, 2013 - 2013.

• Structural Analysis of Large Sparse Matrices for Scalable Direct Solvers, EU
Project, PRACE-2IP WP12 T12.2, 2011 - 2013.

• Performance Analysis of BLAS Libraries in SuperLU DIST for SuperLU MCDT
Multi Core Distributed Development, EU Project, PRACE-2IP WP12 T12.2, 2011
- 2013.

• Scalable and Improved SuperLU on GPU for Heterogeneous Systems, EU Project,
PRACE-2IP WP12 T12.2, 2011 - 2013.

• Design and Implementation of New Hybrid Algorithm and Solver on CPU for Large
Sparse Linear Systems, EU Project, PRACE-2IP WP12 T12.2, 2011 - 2013

I really thank the Doctoral Committee members Professor Dr. İsmail KÖMBE from
Istanbul Commerce University, Asst. Prof. Dr. Bahri GÜLDOĞAN from Istanbul
Technical University, Prof. Dr. Can ÖZTURAN from Bogazici University, Prof. Dr.

ix

Burak SALTOĞLU from Bogazici University and especially Prof. Dr. Ahmet DURAN
for providing helpful comments and suggestions. And I would like to thank Prof. Dr.
Fatma ÖZDEMİR from Istanbul Technical University, Prof. Dr. Mine ÇAĞLAR from
Koc University, Prof. Dr. Mustafa S. ÇELEBİ from Istanbul Technical University and
Asst. Prof. Dr. Şenol PİŞKİN from Istinye University.

Sincere appreciation to my friends and colleagues for their helpful communication.

I would also like to thank Saudi Aramco for sponsoring a part of the research
and the Saudi Aramco visit. I’m grateful to Dr. Ali DOGRU for the project
coordination, valuable comments, and suggestions. I thank Larry FUNG for helpful
communications, constructive feedback, and for providing the reservoir simulation test
matrices.

I’m thankful to Istanbul Technical University (ITU) - the National Center for
High-Performance Computing of Turkey (UHeM) for computing resources used partly
in the study of Chapter 3 and 5.

This research was partly supported by the PRACE-2IP project funded in part by
the EU’s 7th Framework Programme (FP7/2011-2014) under grant agreement no.
RI-283493 and Project 2010PA2507 were awarded under the 19th Call for PRACE
Preparatory Access. The suggestions of the editors and two anonymous referees are
also appreciated.

Also, this research was supported as a Ph.D. thesis project under project ID 1323
and project code 39332 in part by Istanbul Technical University - Scientific Research
Project (ITU – BAP). It has been gratefully acknowledged throughout my Ph.D.
education.

June 2023 Mehmet TUNÇEL
(Lecturer)

x

TABLE OF CONTENTS

Page

FOREWORD . ix
TABLE OF CONTENTS . xi
ABBREVIATIONS. xiii
SYMBOLS . xv
LIST OF TABLES . xvii
LIST OF FIGURES . xix
SUMMARY . xxi
ÖZET .xxiii
1. INTRODUCTION . 1
2. EFFECTIVENESS OF GRID AND RANDOM APPROACHES FOR A

MODEL PARAMETER VECTOR OPTIMIZATION . 5
2.1 Parameter Optimization Algorithm for Dynamical System 8

2.1.1 The dynamical system of asset flow differential equations in
matrix form . 11

2.1.2 The nonlinear least squares technique for the optimization problem 13
2.2 Convergence of The Nonlinear Least Squares Technique for The

Differential Equations . 13
2.3 The Experimental Design . 15
2.4 Initial Parameter Vector Pool Selection Results and Convergence

Diagrams . 19
2.4.1 The Comparison of the two approaches according to NLS errors 19
2.4.2 The comparison of the two approaches according to MIF. 26
2.4.3 The comparison of the two approaches according to QN

iteration number . 29
3. EVALUATION OF A NEW PARALLEL NUMERICAL PARAMETER

OPTIMIZATION ALGORITHM FOR A DYNAMICAL SYSTEM 33
3.1 Convergence Results of The Parameter Optimization Depending on

The Number of IPVs and The Role of Volatility . 34
4. EVALUATING THE MATURITY OF OPENFOAM SIMULATIONS

ON GPGPU FOR BIO-FLUID APPLICATIONS . 39
4.1 Test Environment and Flow of Approach . 40
4.2 Test Results . 41

4.2.1 Thin node results . 41
4.2.2 Hybrid node results using MPI+OpenMP+CUDA. 43

5. SPECTRAL EFFECTS OF LARGE MATRICES FROM OIL
RESERVOIR SIMULATORS ON PERFORMANCE OF SCALABLE
DIRECT SOLVERS . 47
5.1 Methods and Results . 48

6. CONCLUSIONS . 59
REFERENCES . 63
APPENDICES . 69

APPENDIX A : Simulation Results . 71
APPENDIX B : Fundamental Concepts . 79

CURRICULUM VITAE . 85

xi

xii

ABBREVIATIONS

AFDE : Asset flow differential equation
BFGS : Broyden-Fletcher-Goldfarb-Shanno
CEF : Closed-end fund
CPU : Central processing unit
CUDA : Compute unified device architecture
EOS : Equation of state
FLOPS : Floating point operations per second
GPU : Graphics processing unit
IPV : Initial parameter vector
IVP : Initial value problem
MP : Market price
MIF : Maximum improvement factor
MPI : Message passing interface
NAV : Net asset value
NLS : Nonlinear least squares
NYSE : New York Stock Exchange
OpenMP : Open multi-processing
PCA : Principal component analysis
QN : Quasi-Newton
RK4 : Runge-Kutta fourth order

xiii

xiv

SYMBOLS

ccc111 : Time scale coefficient for the momentum
ccc222 : Time scale coefficient for the valuation
ccciiiGGGlllOOOpppttt : Minimum error of the NLS error function F for the ith event
KKK : Parameter vector
KKKiiiGGGlllOOOpppttt : Optimal parameter vector for ciGlOpt
KKK : Parameter vector pool
NNN : Natural numbers
qqq111 : Coefficient of the trend-based sentiment
qqq222 : Coefficient of the value-based sentiment
RRR : Real numbers
hhhRRRKKK444 : RK4 step size
eee111 : Threshold for the gradient
eee222 : Threshold for the nonlinear least squares error

xv

xvi

LIST OF TABLES

Page

Table 2.1 : Input variables and their descriptions for Algorithm 1. 8
Table 2.2 : Output variables and their descriptions for Algorithm 1. 8
Table 2.3 : Tuning parameters for optimization algorithms. 15
Table 2.4 : Upper and lower bounds of the initial parameters. 16
Table 2.5 : Statistical properties of the time series Dsc. 17
Table 2.6 : Statistical properties of the time series Prm.. 18
Table 2.7 : The number of successful approaches with respect to NLS error

among the Dsc and Prm time series for the pools with different sizes. 25
Table 2.8 : Number of the average NLS winners according to parameter types

of the each pool sizes. 26
Table 2.9 : Number of the average MIF winners according to parameter types

of the each pool sizes. 29
Table 2.10 :Number of the average QN iteration winners according to parameter

types of the each pool sizes. 30
Table 3.1 : The computational optimization by finding parameter vector in the

AFDE for a large sample data set. QN method with weak line search
is applied.. 36

Table 3.2 : Description of the time series and Monte Carlo simulation results
for various number of IPVs. 38

Table 4.1 : Description of matrices. 41
Table 4.2 : The Configuration of MPI+OpenMP and MPI+OpenMP+CUDA

for the direct solver. 43
Table 4.3 : Wall Clock Times (s) of SuperLU_DIST 4.0 for the large

penta-diagonal matrices for 2D problems and hepta-diagonal
matrices for 3D problems, described in Table 4.1, on MPI+OpenMP
versus MPI+OpenMP+CUDA implementations. 46

Table 5.1 : Description of matrices. 49
Table 5.2 : Optimal wall clock times (s) of SuperLU_MCDT for the

Matrix300k from the black-oil model and five matrices from 7
component EOS model described in Table 5.1. 55

Table 5.3 : Distribution of wall clock time (s) for mC_8M matrix using
ParMETIS for column permutation, at TGCC Curie (a Tier-0
system) at CEA, France . 57

Table A.1 : Converged average NLS error values for Dsc time series group in
order to compare grid and random approaches via simulation results. 72

Table A.2 : Comparison of grid and random approaches via simulation results
with respect to average NLS error values for Prm time series group. . 73

xvii

Table A.3 : Resulting average MIF values for Dsc time series group for
comparison of grid and random approaches via simulation results. . . . 74

Table A.4 : Resulting average MIF values for Prm time series group for
comparison of grid and random approaches via simulation results. . . . 75

Table A.5 : Average QN iteration numbers for Dsc time series group via
simulation, while using grid and random approaches. 76

Table A.6 : Average QN iteration numbers for Prm time series group via
simulation, for the pair of grid and random approaches. 77

xviii

LIST OF FIGURES

Page

Figure 2.1 : Gunduz Caginalp (1952 - 2021) . 6
Figure 2.2 : The projection of the high dimensional feature space into 2D space

using principal component analysis where PC-i corresponds to the
i-th largest eigenvalue.. 20

Figure 2.3 : The projection of the high dimensional feature space into 3D space
using principal component analysis where PC-i corresponds to the
i-th largest eigenvalue.. 20

Figure 2.4 : Comparison of the grid and random approaches for all time series
in the dataset according to average NLS error. 23

Figure 2.5 : Monte Carlo simulation of the NLS error for curve fitting of
Dsc_20 for each approach. 24

Figure 2.6 : Monte Carlo simulation of the NLS error for curve fitting of
Prm_08 for each approach.. 24

Figure 2.7 : Comparison of the grid and random approaches for all time series
in the dataset according to average MIF. 27

Figure 2.8 : Monte Carlo simulation of the maximum improvement factor
(MIF) for curve fitting of Dsc_20 for each approach. 28

Figure 2.9 : Monte Carlo simulation of the maximum improvement factor
(MIF) for curve fitting of Prm_08 for each approach. 28

Figure 2.10 :The Comparison of the two approaches according to QN iteration
number. 30

Figure 2.11 :Monte Carlo simulation of the number of quasi-Newton iteration
for curve fitting of Dsc_20 for each approach. 31

Figure 2.12 :Monte Carlo simulation of the number of quasi-Newton iteration
for curve fitting of Prm_08 for each approach.. 31

Figure 3.1 : The convergence diagram of the model parameters for the curve
fitting via Monte Carlo simulation using 1k_v8 as the number of
IPVs increases up to 512. 35

Figure 3.2 : The convergence diagram of the NLS error for the curve fitting
using 1k_v8 by Monte Carlo simulation as the number of IPVs
increases up to 512.. 36

Figure 3.3 : The performance comparison of the serial algorithm with fixed
initial parameter pool having 64 IPVs versus the parallel algorithm
having 512 IPVs in the classified pool, in terms of NLS errors, in
Table 3.2. 37

Figure 3.4 : The comparison of the serial algorithm with fixed initial parameter
pool having 64 IPVs versus the parallel algorithm having 512 IPVs
in the classified pool, in terms of MIF, in Table 3.2. 37

xix

Figure 3.5 : The average NLS error comparison for the time series having
various volatility levels. 37

Figure 4.1 : Flowchart for the flow of the approach including the main tasks.. . . . 42
Figure 4.2 : Wall-clock time comparison of the solvers for mC_16M_n on

Curie thin nodes.. 43
Figure 4.3 : Wall-clock time comparison of the solvers for mC_20M_n on

Curie thin nodes.. 44
Figure 4.4 : Wall-clock time of direct solver for mC_20M_n on Curie hybrid

nodes. 45
Figure 4.5 : Speed-up of direct solver for mC_20M_n on Curie hybrid nodes. . . . 45
Figure 5.1 : Distribution of eigenvalues for matrix RAND_30K_75. 51
Figure 5.2 : Gerschgorin’s circles of M_UHEM3. 51
Figure 5.3 : Gerschgorin’s circles of spe5Ref_dpdp_a. 52
Figure 5.4 : Gerschgorin’s circles of spe5Ref_dpdp_b. 52
Figure 5.5 : Gerschgorin’s circles of spe5Ref_dpdp_c. 53
Figure 5.6 : Gerschgorin’s circles of spe5Ref_dpdp_d. 53
Figure 5.7 : Gerschgorin’s circles of spe5Ref_dpdp_e. 54
Figure 5.8 : Gerschgorin’s circles of matrix Emilia_923. 54
Figure 5.9 : Gerschgorin’s circles of matrix HELM2D03LOWER_20K. 55

xx

PARAMETER OPTIMIZATION FOR MATHEMATICAL MODELING

SUMMARY

Mathematical modeling is used to explain and forecast complex systems, and
parameter optimization methods have a crucial role to find the optimal set of
parameters obtained by minimizing an objective function. Also, the management of
computational resources is essential for handling big models in real-time scenarios.

A. Duran and G. Caginalp (2008) propose a hybrid parameter optimization forecast
algorithm for asset prices via asset flow differential equations. In this thesis, we
propose a new mathematical method for an inverse problem of parameter vector
optimization in asset flow theory. For this purpose, we use quasi-Newton (QN) and
Monte Carlo simulations to optimize the function F [K̃] for each selected event and
initial parameter vector. We present grid and random methods and conclude that the
grid approach is better than the random approach in the unconstrained optimization
problem.

This study also presents a parallel numerical parameter optimization algorithm for
dynamical systems used in financial applications. It achieves speed-up for up to 512
cores and considers more extensive financial market situations. Moreover, it also
evaluates the convergence of the model parameter vector via nonlinear least squares
error, and maximum improvement factor.

In this thesis, we also examine the performance, scalability, and robustness of
OpenFOAM on the GPGPU cluster for bio-medical fluid flow simulations. It
compared the CPU performance of iterative solver icoFoam with direct solver
SuperLU_DIST 4.0 and hybrid parallel codes of MPI+OpenMP+CUDA versus
MPI+OpenMP implementation of SuperLU_DIST 4.0. Results showed speed-up for
large matrices up to 20 million x 20 million.

Besides that, we investigate the usage of eigenvalues to examine the spectral effects of
large matrices on the performance of scalable direct solvers. Gerschgorin’s theorem
can be used to bound the spectrum of square matrices, and behaviors such as disjoint,
overlapped, or clustered Gerschgorin circles can give clues. We define the minimum
number of cores and show that it depends on the sparsity level and size of the matrix,
increasing slightly as the sparsity level decreases and the order increases.

In sum, this thesis presents new methods for initial parameter selection and a new
algorithm for parallel numerical parameter optimization. Also, we define new metrics
and show that the importance of right matching for computational systems and the
optimal minimum number of cores are important in mathematical modeling and
simulation.

xxi

xxii

MATEMATİKSEL MODELLEME İÇİN PARAMETRE OPTİMİZASYONU

ÖZET

Dinamik sistemleri, diferansiyel denklemleri ve istatistiksel modelleri içinde barındıra-
bilen matematiksel modellemeler fen bilimleri, mühendislik ve finansın birçok
alanında karşımıza çıkan karmaşık sistemlerin davranışını yorumlamak ve tahmin
etmek için etkili yöntemlerdendir. Model parametrelerinin tahmini matematiksel
modellemenin kritik parçasıdır. Bu parametreler model doğruluğu ve performansı
üzerinde önemli etkiye sahiptirler. Belirli bir objektif fonksiyonu için en optimal
değerleri sağlayan parametreleri belirlemek, parametre optimizasyon yöntemlerinin
amacıdır ve sınırlı bir sürede anlamlı parametrelerle daha fazla doğrulukta sonuca
yakınsamak birçok gerçek hayat uygulaması için önemsenen stratejik amaçlardandır.
Bunun yanı sıra, büyük doğrusal sistem denklemlerinin çözümü, bazı matematiksel
modeller için önemli adımlardandır. Bu nedenle, hesaplama kaynakların yönetimi,
matematiksel modelleme için de önemli bir aşama olarak karşımıza çıkmaktadır.

Etkin başlangıç parametre vektörlerinin seçimi, birçok bilim ve mühendislik
probleminde parametre vektörlerine ve diferansiyel denklemlere sahip matematiksel
modeller için önemli yere sahiptir. A. Duran ve G. Caginalp (2008) varlık
akış diferansiyel denklemleri ile hisse fiyatı için hibrit parametre optimizasyon
tahmin algoritması sundu. Bölüm 2’de, parametre vektör optimizasyonunun ters
bir problemi için yeni bir matematiksel yöntem öneriyoruz. Hiper kutudaki ızgara
ve rasgele yaklaşımların etkinliğini, varlık akışı teorisinden gelen matematiksel
bir modelde parametre vektör optimizasyonunun ters bir problemi için doğrusal
olmayan en küçük kareler hatası, maksimum iyileştirme faktörü ve yineleme sayısı
açısından analiz ediyor ve karşılaştırıyoruz. Bu analiz, yatırımcılar ve makine
öğrenimi uygulamalarında popülasyon dinamiklerinin anlaşılması açısından oldukça
değerlidir. Bu amaçla, seçilen her olay ve başlangıç parametre vektörü için F [K̃]
fonksiyonunu optimize ediyoruz. Burada geri izleme satırı arama algoritmasını
kullanan Broyden-Fletcher-Goldfarb-Shanno (BFGS) formülüne sahip quasi-Newton
(QN) yöntemini kullanıyoruz. F [K̃] simülasyon yoluyla hesaplanıp gerçek piyasa
fiyatını temsil eden değerleri ile hesaplanan piyasa fiyatı değerleri arasındaki üstel
ağırlıklı kare farkların toplamını temsil etmektedir. Bu çalışmamızda (A. Duran
ve G. Caginalp, 2008)’den farklı olarak, Monte Carlo simülasyonları ve yakınsama
diyagramları elde ettik. Bunları kullanarak ve sınırsız optimizasyon problemindeki
simülasyon veri setimize dayanarak ızgara yaklaşımının başarısının rastgele yaklaşıma
nispeten daha iyi olduğunu görmekteyiz.

Bunun yanı sıra, kısa zamanda karar vermenin çok önemli olduğu finansal
uygulamalarda kullanılan dinamik bir sistem için ölçeklenebilir bir paralel sayısal
parametre optimizasyon algoritmasına sahip olmak önemlidir. Bölüm 3’te, Message

xxiii

Passing Interface (MPI) paralel programlamasını kullanıyoruz ve parametre tahmini
için böyle yeni bir paralel algoritma sunmaktayız. Algoritmamızı 1989’dan beri
G. Caginalp ve araştırma ekibi tarafından geliştirilen ve analiz edilen varlık akışı
diferansiyel denklemlerine uygulamaktayız. Bazı zaman serileri için (A. Duran and
M. Tunçel, 2014)’de 512 çekirdeğe kadar hızlanma sağlanmakla birlikte (A. Duran
and M. Tunçel, 2014)’den farklı olarak, bu çalışmada daha kapsamlı finansal piyasa
durumlarını, örneğin düşük volatilite, yüksek volatilite ve borsa fiyatının değişen
büyüklüklerine göre net varlık değerinde iskonto/prim durumlarını da ele alıyoruz.
Ayrıca, ilk parametre vektörlerinin sayısına bağlı olarak optimizasyon işleminin
başarısını ölçmek için model parametre vektörünün yakınsamasını, doğrusal olmayan
en küçük kareler hatasını ve maksimum iyileştirme faktörünü de değerlendirmekteyiz.

Büyük matematiksel modeller için ele alınması gereken bir konu da hesaplama
sistemlerinin doğru eşleştirilmesi ve parametrelerinin ayarlanmasıdır. Bu konu
için Bölüm 4’te farklı yüksek performanslı hesaplama kümelerinde arterlerdeki kan
akışının simülasyonundan gelen büyük matrislerin çözümü için biyomedikal sıvı akışı
simülasyonlarının ve OpenFOAM’da çözücü olan icoFoam’un hesaplama zorluklarını
incelemekteyiz. Akış problemi simülasyonunda üretilen matrisler zaman ilerledikçe
her adımda birbirinden farklı matematiksel özelliklere geçiş yapmaktadır. Bu
çalışmada, çözücülerin kötü koşullu (ing: ill-conditioned) matrisler için davranışlarını
inceledik. Yinelemeli çözücü icoFoam’un ve doğrudan çözücü olan SuperLU_DIST’in
hibrit paralel kodlarını (MPI + OpenMP) CPU performanlarını Fransa CEA TGCC’nin
Curie (Tier-0 sistemi) ince düğümlerinde koşturarak karşılaştırdık. Ayrıca, TGCC’nin
Curie (Tier-0 sistemi) hibrit düğümlerinde SuperLU_DIST’in MPI + OpenMP ve MPI
+ OpenMP + CUDA hibrit paralel çözücü kodlarının performansını farklı parametreler
ile inceleyip karşılaştırdık. 20 milyon x 20 milyona kadar olan büyük matrisler için
çözücülerin hızlandırılmasına ilişkin sonuçları bu bölümde irdelemekteyiz.

Matematiksel modellemelerin içerdiği diğer bir önemli konu da petrol ve gaz
rezervuarı simülasyonlarında olduğu gibi zaman kısıtlı gerçek hayat karar verme
uygulamaları için büyük seyrek doğrusal sistemleri tahmin edilebilir bir sürede
performanslı bir şekilde çözmek için gerekli ön bilgileri ve parametreleri elde etmektir.
Bu nedenle, büyük matrislerin ölçeklenebilir doğrudan çözücülerin performansı
üzerindeki spektral etkilerini özdeğerleri kullanarak incelemeyi amaçladık. Bölüm
5’te, bir matrisin özdeğer dağılımı ile çözücünün performansı arasında bir ilişki
olup olmadığını araştırmaktayız. Çeşitli seyrek matrislerin özdeğer dağılımlarını
ele aldık. Bazen özdeğerlerin dağılım grafiğini elde etmek için tüm özdeğerler
bulunabilmektedir. Ama büyük matrisler için tüm özdeğerleri bulmak hesaplama
ve kaynakları açısından oldukça pahalıdır. Bu nedenle, Gerschgorin teoremi kare
matrislerin spektral durumunun tahmini için kullanılabilmektedir. Gerschgorin
dairelerinin ayrık, üst üste binmesi veya kümelenmesi gibi çeşitli davranışlar,
özdeğerlerin dağılımı ve çözücünün bu matris için performansı hakkında ipucu
verebilmektedir. Bu merkezde Bölüm 5’te, rastgele doldurulmuş seyrek matrisleri ve
rezervuar modellemesinden gelen çeşitli desenli matrisleri içeren bir test matrisleri
portföyünü tek gözeneklilik tek geçirgenlikden çift gözeneklilik çift geçirgenlik
modellerine kadar ele almaktayız. 3 fazlı modelden ve 7 bileşenli EOS modelinden
desenli matrislere ek olarak Florida Üniversitesi seyrek matris koleksiyonundan
modifiye edilmiş HELM2D03LOWER_20K matrisimizi ve EMILIA_923 matrislerini

xxiv

ayrıntılı incelemekteyiz. En uygun minimum çekirdek sayısını, belirli bir problem
boyutu için minimum çözüm süresini sağlayan çekirdek sayısı olarak tanımlamaktayız.
Burada problem boyutu ile matrisin spektral etkileri ve bellek gibi kullanılabilir
kaynaklar arasında bir ilişki görünmektedir. Gerekli en uygun minimum çekirdek
sayısının, matrisin seyreklik seviyesine ve boyutuna bağlı olduğunu görüyoruz.
Matrisin seyreklik seviyesi azaldıkça ve matrisin boyutu arttıkça, optimal minimum
çekirdek sayısının artmasını beklemekteyiz.

Sonuç olarak yukarıdaki çalışmaları içeren bu tez, parametre optimizasyon yöntemleri
ve matematiksel modellemede yaygın olarak kullanılan doğrusal denklem çözümleri
için önemli olan yeni yöntem ve stratejiler sunmaktadır. Her bölüm, çalışmanın
ayrıntılarıyla ilgili ayrı ayrı literatür taramasını da içermektedir. Tez özetle aşağıdaki
gibi düzenlenmiştir. Bölüm 2’de, daha iyi yakınsama performansı elde etmek
için parametre optimizasyonunda kullanılan başlangıç parametre vektörü seçimi için
yeni bir yöntem sunmaktayız. Bölüm 3’te, matematiksel modellemenin çözümü
için çok önemli olan zaman sınırlamasını dikkate alarak paralel sayısal parametre
optimizasyonu için yeni bir algoritma önermekteyiz. Bölüm 4’te, hesaplamalı sistem
için doğru kaynakların ve kombinasyonlarının eşleştirilmesinin önemi, yaygın olarak
kullanılan senaryolar ve testlerle gösterilmektedir. Bölüm 5’te, hesaplamalı kaynak
büyüklüğü ile problemin doğru ve verimli eşleşmesi, özdeğer spektrumu kullanılarak
doğrusal sistemin ön değerlendirmesi ile incelenmiş ve optimal minimum çekirdek
sayısı tanımlanmıştır. Bölüm 6’da bu tezden elde edilen sonuçlar bütünüyle ele alınıp
değerlendirilmektedir.

xxv

xxvi

1. INTRODUCTION

Mathematical modeling including dynamical systems, differential equations and

statistical models is an effective method for explaining and forecasting the behavior

of complex systems in many disciplines of science, engineering, and finance.

The estimation of model parameters, which can have a major impact on model

correctness and performance, is a critical component of mathematical modeling [1–3].

Finding the optimal set of parameter values to minimize a specified objective function

is the goal of parameter optimization methods, and more accuracy with meaningful

parameters in a limited time is the strategy for many real-life applications [4]. Besides

that, the solution for large system of linear equations is an important operation for

fitting the mathematical model with real use cases. Hence, the management of

computational resources arises as an important operational case for mathematical

modeling.

The selection of effective initial parameter vectors is important for mathematical

models having parameter vectors and differential equations in many science and

engineering problems. In Chapter 2, we propose a new mathematical method for

an inverse problem of parameter vector optimization [5]. We analyse and compare

the effectiveness of grid and random approaches in hyperbox in terms of nonlinear

least squares error, maximum improvement factor and number of iterations for an

inverse problem of parameter vector optimization in a mathematical model coming

from asset flow theory. This analysis is valuable to understand the population dynamics

of investors and machine learning applications. For this purpose, we use quasi-Newton

(QN) method having the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula with

backtracking line search algorithm to optimize the function F [K̃] for each selected

event and initial parameter vector, where F [K̃] represents the sum of exponentially

weighted squared differences between the proxy for actual market price values via

simulation and the computed market price values. Moreover, we employ Monte Carlo

1

simulations and obtain convergence diagrams. We find that the success of the grid

approach is relatively better than that of the random approach based on our simulation

data set in the unconstrained optimization problem.

It is important to have a scalable parallel numerical parameter optimization algorithm

for a dynamical system used in financial applications where time limitation is crucial.

The asset flow differential equations that have been developed and analyzed since

1989 (see [4,6–9] and references contained therein). The asset flow differential

equations have several versions. In Chapter 3, we use Message Passing Interface

parallel programming and present such a new parallel algorithm for model parameter

estimation [10]. For example, we apply the algorithm to the 3rd version of the asset

flow differential equations (see [7,8]). We achieve speed-up for some time series to run

up to 512 cores (see [11]). Unlike [11], we consider more extensive financial market

situations, for example, in presence of low volatility, high volatility and stock market

price at a discount/premium to its net asset value with varying magnitude, in this work.

Moreover, we examine the convergence of the model parameter vector, the nonlinear

least squares error and maximum improvement factor to quantify the success of the

optimization process depending on the number of initial parameter vectors.

The right matching of computational systems and tuning their parameters are important

to handle large mathematical models. So, we cope with the computational challenges

for bio-medical fluid flow simulations and an OpenFOAM solver, icoFoam, for the

large matrices coming from the simulation of blood flow in arteries on different HPC

clusters in Chapter 4 [12]. The flow problem produces different kind of matrices as the

time advances in extensive simulation. In this study we examine the behaviour of the

solvers for ill-conditioned matrices. We compare the CPU performance of the iterative

solver icoFoam and the hybrid parallel codes (MPI+OpenMP) of a direct solver

SuperLU_DIST 4.0 (see [13]) at TGCC Curie (a Tier-0 system) thin nodes at CEA,

France (see [14]). Moreover, we compare the performance of the hybrid parallel codes

of MPI+OpenMP+CUDA versus MPI+OpenMP implementation of SuperLU_DIST

4.0 at TGCC Curie (a Tier-0 system) hybrid nodes of CPU + GPU at CEA, France

(see [14]). We discuss the performance, scalability and robustness of OpenFOAM on

2

GPGPU cluster. We show our results about the speed-up of the solvers for the large

matrices of size up to 20 million x 20 million.

It is valuable to estimate the elapsed time to solve large sparse linear systems for

time-restricted real life decision making applications such as oil and gas reservoir

simulators. Challenging matrices should be distinguished and handled separately

because they may lead to performance bottleneck. Therefore, we need to examine

the spectral effects of large matrices on the performance of scalable direct solvers

by using eigenvalues. In Chapter 5, we check whether there is relationship between

the eigenvalue distribution of a matrix and the performance of the solver [15]. We

try to examine the eigenvalue distribution of various sparse matrices. We may find

all eigenvalues in order to obtain the distribution graph of eigenvalues, if possible.

However, it is very expensive to find all eigenvalues. Therefore, Gerschgorin’s theorem

may be used to bound the spectrum of square matrices. Several behaviors such as

being disjoint, overlapped or clustered of Gerschgorin circles may give clue regarding

the distribution of the eigenvalues and the performance of the solver for that matrix.

In Chapter 5, we consider a portfolio of test matrices which include randomly

populated sparse matrices and various patterned matrices coming from reservoir

modeling from single porosity single permeability to dual porosity dual permeability

models (see [16]). We examined our modified HELM2D03LOWER_20K matrix and

EMILIA_923 matrix from the University of Florida sparse matrix collection (see [17]),

in addition to the patterned matrices from 3 phase black-oil model and 7 component

EOS model. We define an optimal minimum number of cores as the number of cores

that provides the minimum wall clock time for a given size of problem, where a right

match occurs between the problem size, the spectral effects of matrix and the available

resources such as memory, in presence of communication overhead. We find that the

optimal minimum number of cores required depends on the sparsity level and size of

the matrix. As the sparsity level of matrix decreases and the order of matrix increases,

we expect that the optimal minimum number of cores increases slightly.

In these contexts, this thesis provides new methods and strategies which are crucial

for parameter optimization methods and linear equation solutions commonly used in

3

mathematical modeling. Each chapter also contains its literature review separately

related to the details of the study.

The remainder of the thesis is organized as follows. In Chapter 2, we present a new

method for initial parameter selection used for parameter optimization to get better

convergence performance. In Chapter 3, we propose a new algorithm for parallel

numerical parameter optimization to handle time limitation that is crucial for the

solution of the mathematical modeling. In Chapter 4, the importance of right matching

for the computational system is demonstrated with commonly used scenarios and

tests. In Chapter 5, right matching for the computational resource is examined with

pre-evaluation of the linear system using the eigenvalue spectrum, and the optimal

minimum number of cores is defined. Chapter 6 concludes the thesis.

4

2. EFFECTIVENESS OF GRID AND RANDOM APPROACHES FOR A
MODEL PARAMETER VECTOR OPTIMIZATION

It is important to understand the dependence on initial parameter vector values of a

nonlinear dynamical system for an inverse problem of parameter vector estimation in

science and engineering problems. In this chapter, we propose a new mathematical

method and focus on Monte Carlo simulation to find out the effectiveness of two

approaches including grid approach and random approach in hyperbox based on

our experimental design for selection of initial parameter vectors in a large-scale

unconstrained optimization problem. The study in this chapter was published in

"Journal of Computational Science" with title "Effectiveness of grid and random

approaches for a model parameter vector optimization" [5].

Numerical optimization methods in inverse problems and simulations play important

role in many science, engineering and econophysics applications. For example, [2]

proposes a method for estimation of biochemical kinetics parameters with treatment of

initial value problem (IVP) simulation for a system of nonlinear ordinary differential

equations. Moreover, parameter vector optimization is a central part of machine

learning applications in econophysics, mathematical finance and economics (see

[4,18–20]).

Duran and Caginalp [4] propose a hybrid parameter optimization forecast algorithm

including daily based learning with two streaming windows such as long window

of most recent days (for example, 10-day window) to compute the relative valuation

change and short window (for example, 5-day window) to compute optimal parameter

vector, using a semi-dynamic initial parameter vector pool K having not only fixed

but also most recently used successful parameter vectors from a set of grid points in a

hyper-box and out-of-sample prediction.

The coefficient, q1, for the trend-based investors’ sentiment is the dominant parameter

for the market price according to the forward sensitivity analysis done by Duran [21].

5

Figure 2.1 : Gunduz Caginalp (1952 - 2021)

Such parameters like q1, c1, q2 and c2 should be obtained via suitable parameter

optimization techniques in a mathematical model having differential equations.

In literature, there are various approaches such as multi-start methods (see [22,23]

and hyperbox methods [24] for different global unconstrained optimization problems

[25]. Considering global optimization problem on the multidimensional space, the

selection of the initial parameter vectors has critical importance to converge a candidate

solution in a reasonable time/iteration for real-time applications. At this point, another

important issue is that the appropriate initial parameter vectors in a feasible region

should be selected so that they can generate candidate feasible solutions that are

especially meaningful for the real-world problems.

The parameter optimization algorithm solves the complex stiff problem of nonlinear

dynamical system called as the asset flow differential equations (AFDEs) and optimize

its parameters for a certain interval of day [4]. AFDEs have been developed

by Caginalp (see Figure 2.1) and collaborators since 1989 [6,7]. This important

mathematical model may describe different nonlinear behaviors of asset markets

(see [26–28]). The dynamical microeconomic model suggests valuable constraints

analogous to conservation laws in physics, instead of the classical time series analysis

with a single stage approach (see [4]).

6

Duran [29] and Duran and Caginalp [4] introduced a serial algorithm called the asset

flow optimization forecast algorithm. Later, Duran and Tuncel [10] proposed message

passing interface (MPI) based scalable parallel algorithm for parameter optimization

of AFDEs with fixed parameter pools using central processing unit (CPU).

In this study, we use time series of market price and net asset value data obtained via

our Monte Carlo simulation rather than real closed-end fund data, since the simulation

may capture more various scenarios than that of real data for a particular time interval,

unlike Duran and Caginalp [4]. Moreover, we do not use learning algorithm. We have

static initial parameter vector pools instead of semi-dynamic pools, in order to examine

the impact of the static pools. Our goal is to explore information about optimal/feasible

parameters in various market scenarios based on asset flow theory.

We use the first four moments including mean, standard deviation, skewness and

kurtosis in addition to minimum and maximum values for MP and NAV as an input

feature, unlike Duran and Caginalp [4]. Volatility is measured by standard deviation of

the daily closing price time series. Moreover, as a binary feature we use the discount

and premium status as 1 and 0, respectively. Furthermore, we apply the principal

component analysis (PCA) in order to detect the pattern of the dominant features and

check the representation success of the initial parameter vector pool. We project the

high dimensional feature space into 2D and 3D spaces using PCA.

To the best of our knowledge, this is the first study to compare the grid and random

approaches in hyperbox for parameter optimization of asset flow differential equations.

We find that the grid approach is relatively better than the random approach in our data

set. Our study is important to develop an optimization software for algorithmic trading.

The remainder of this chapter is organized as follows. In Section 2.1, parameter

optimization algorithm for the dynamical system is introduced. In Section 2.2,

we present the related theorems for the convergence of the nonlinear least squares

technique for the differential equations. In Section 2.3, we illustrate our design of

experiments and the principal component analysis. In Section 2.4, we apply the

parameter optimization algorithm with two different approaches for initial parameter

vector pools. We show the test results for the performance of the two approaches

7

Table 2.1 : Input variables and their descriptions for Algorithm 1.

Variable name Description
K Parameter vector pool

MP Sequence of market prices
NAV Sequence of net asset value prices

i Event number to be searched for optimal parameter
n Short window size to compute optimal parameter vector
m Long window size to compute relative valuation change

hRK4 RK4 step size
e1 Threshold for the gradient
e2 Threshold for the nonlinear least squares error

Table 2.2 : Output variables and their descriptions for Algorithm 1.

Variable name Description
KiGlOpt Optimal parameter vector for ciGlOpt
ciGlOpt Minimum error of the NLS error function F for the ith event

MIFiGlOpt MIF for optimal parameter vector KiGlOpt
QNiteriGlOpt QN iteration for optimal parameter vector KiGlOpt

according to nonlinear least squares error, maximum improvement factor and number

of QN iterations via simulation and convergence diagrams. Moreover, we present the

tables of our simulation results for additional information in Appendix A.

2.1 Parameter Optimization Algorithm for Dynamical System

Parameter vector optimization in a mathematical model coming from asset flow

theory is a challenging inverse problem. Using hybrid of hyperbox and multi-start

methods, we examine the effectiveness of grid and random approaches to obtain

suitable parameters like q1, c1, q2 and c2. The main structure of the algorithm with

nested function call is represented in Algorithm 1. Table 2.1 and Table 2.2 show the

description of the input and the output variables, respectively.

Hyperbox is a non-degenerate closed interval (see [30]). Let l = (l1, l2, ..., ln) and

u = (u1,u2, ...,un) be two points in Rn with li ui for i = 1,2, ...,n. The n-dimensional

hyperbox is a set X = {x = (x1,x2, ...,xn) 2 Rn : li xi ui and li 6= ui,8 i 2 Nn} for

a given l and u points. In our study, we use this set for parameter vector optimization

application to set the boundaries according to expert opinion. Numerical optimization

algorithms generally start from an initial point and try to converge the minimum or

8

Algorithm 1 Parameter vector optimization algorithm on a single event.
1: . Look at Table 2.1 and Table 2.2 for the description of the input and the output

variables, respectively.
2: function OPT(K,MP,NAV, i,n,m,hRK4,e1,e2)
3: Set time indices ts = [i, i+n�1] for ithevent
4: Set x2 = 0.5,x3 = 0 and x4 = 0
5: Initialize A = [], K̂ = [], ĉlocOpt = [], ˆMIFlocOpt = [] and ˆQNiterlocOpt = []
6: M̂P = MP[i�m : i+n�1]
7: ˆNAV = NAV [i�m : i+n�1]
8: M̃P = M̂P[m+1 : m+n]
9: A = zeros(n,1)

10: . Relative valuation change loop
11: for s = 1 : n do
12: . Chronic discount loop
13: for k = 1 : m do
14: u = s+m� k
15: A[s] = A[s]+ (ˆNAV [u]� M̂P[u])/ ˆNAV [u]e0.25k

16: end for
17: A[s] = (ˆNAV [s+m]� M̂P[s+m])/ ˆNAV [s+m]�A[s]/3.23180584357794
18: end for
19: . Multi-start initial parameter loop
20: for j = 1 : length(K) do
21: K̃ j =K[j, :]
22: . The dynamical system is solved via Runge-Kutta (RK4) method. Then
23: . the function and its gradient are evaluated as a nested call at each QN
24: . iteration.
25: [K̄,QNiter,success] = QN(K̃ j, ts,hRK4,A,M̃P,x2,x3,x4,e1)
26: if success then
27: cNLS = NLS(K̄, ts,hRK4,A,M̃P,x2,x3,x4)
28: if (cNLS < e2)&(K̄ � 0) then
29: cNLSinit = NLS(K̃ j, ts,hRK4,A,M̃P,x2,x3,x4)
30: Append K̄ to K̂
31: Append cNLS to ĉlocOpt
32: Append (cNLS/cNLSinit) to ˆMIFlocOpt
33: Append QNiter to ˆQNiterlocOpt
34: end if
35: end if
36: end for
37: ciGlOpt = min(ĉlocOpt)
38: jiGlOpt = find(ĉlocOpt == ciGlOpt)
39: KiGlOpt = K̂[jiGlOpt , :]
40: MIFiGlOpt = ˆMIFlocOpt [jiGlOpt , :]
41: QNiteriGlOpt = ˆQNiterlocOpt [jiGlOpt , :]
42: end function

9

maximum value which is under local or global space, considering the mathematical

metrics. The selection of the initial values in its large search space with an appropriate

method is an important issue. For a dynamical system we examine the effect of the

two different types of the initial parameter vector pool with attention to aspects such

as selection the initial vector for getting reasonable solution in an efficient manner and

methods using Monte Carlo simulation. In this study, we use two types of approaches

including grid approach and random approach to generate initial parameter vector

pools for our problem and compare them, unlike [4].

In the grid approach, we divide the given hyperbox space X into grid along its

dimensions and the set of grid points are chosen as parameter vector. For example,

given the rectangle [l1,u1]⇥ [l2,u2] of 2-dimensional hyperbox, and number of the

grid points n1 and n2 for each two dimensions, we obtain totaly n1 ⇥ n2 grid points

after n1 � 1 and n2 � 1 division along each dimension. In our optimization problem,

we use an initial parameter vector K = (c1,q1,c2,q2) 2 R4
+. Let [l1,u1]⇥ [l2,u2]⇥

[l3,u3]⇥ [l4,u4] be the 4-dimensional hyperbox, and n1, n2, n3, and n4 be number of

the grid points for the corresponding dimensions respectively. Therefore, we obtain

totaly n1 ⇥ n2 ⇥ n3 ⇥ n4 grid points after n1 � 1, n2 � 1, n3 � 1, and n4 � 1 division

along each dimension for our problem. Thus, they are perfectly uniformly distributed

in the hyperbox.

In the random approach, the points are chosen according to uniform distribution of

the numbers in each dimension. For example, given the rectangle [l1,u1]⇥ [l2,u2] of

2-dimensional hyperbox, we generate two uniformly distributed random numbers r1

and r2 in the interval (0,1) using Matlab rand function (see [31]) and then stretch it to

hyperbox interval [l,u] as ((u1 � l1)r1 + l1, (u2 � l2)r2 + l2) for the initial parameter.

Similarly, for our optimization problem, we obtain hyperbox interval [l,u] as ((u1 �

l1)r1 + l1, (u2 � l2)r2 + l2,(u3 � l3)r3 + l3,(u4 � l4)r4 + l4). We repeat this process for

each size of the initial parameter pool K for both approaches.

Closed-end funds (CEFs) trade on the New York Stock Exchange (NYSE) and a fund

may trade on lower than the net asset value (NAV) (called a discount) or higher

(called a premium) than the NAV with lots of challenges [32]. Given an n-day

10

period of market price (MP) and net asset value (NAV) pair, we compute optimal

parameter vector K̄ = (c1,q1,c2,q2) 2 R4
+ for related period using initial parameter

vector pool K. In this study, we use proxy for time series of MP and NAV via

simulation, unlike [4]. We continue this process for overlapping periods starting

i-th and i + 1-th days respectively throughout the time series of MP and NAV. For

each selected event and initial parameter vector, we use quasi-Newton (QN) method

having the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula with backtracking line

search algorithm to optimize the function F [K̃] where F [K̃] represents the sum of

exponentially weighted squared differences between the proxy for actual MP values via

simulation and the computed MP values. K̃ 2 K is an initial or a candidate parameter

vector.

2.1.1 The dynamical system of asset flow differential equations in matrix form

In this study, we use the following 3rd version of AFDEs in Eq. (2.1) in the matrix

form with problem constraints in [7] and [8]. Duran [8] studied the stability analysis

of the solutions for the dynamical system of nonlinear AFDEs in R4 analytically and

numerically.
2

6664

1
x1

0 0 0
�x2(1�x2)

x1
1 0 0

�c1q1
1
x1

0 1 0
0 0 0 1

3

7775

2

664

x01
x02
x03
x04

3

775

=

2

6664

d log(k
1�k

1�x2
x2

)
k(1� x2)� (1� k)x2

�c1x3

c2

⇣
q2

⇣
Pa�x1

Pa
�D(x1(t �1),Pa(t �1), ...,x1(t �n),Pa(t �n))

⌘
� x4

⌘

3

7775

(2.1)

The corresponding variables and parameters are as follows:

x1(t) : The market price of the single asset at time t.
1

x1(t)
x01(t) : The relative price change.

Pa(t) : The fundamental value.

V (t) : The net asset value price at time t where V (t) can be taken as a proxy for Pa(t)

in practice.

x2(t) : The fraction of total funds in the asset.

x3(t) : The trend-based component of the investor preference.

11

x4(t) : The value-based component of the investor preference.

k(t) : The transition rate.

K = (c1,q1,c2,q2) 2 R4
+: The parameter vector for which we seek optimal/ feasible

values.

D(x1(t�1),Pa(t�1),x1(t�2),Pa(t�2), ...,x1(t�n),Pa(t�n)): The chronic discount

amount measured approximately over the previous few finite n � 1 days.

The constants d , 1
c1

and 1
c2

are the time scales for the price equation, the momentum

and valuation investment strategies, respectively. d can be taken as 1.

Equation (2.1) can be rewritten in the form of

U
0
= f(U,K,Pa)

similar to that of Duran [21] using the inverse of real function valued triangular matrix

where

U = [x1 x2 x3 x4]
T , U

0
= dU/dt,

and

f = [f1 f2 f3 f4]
T .

x
0
1 =

dx1(1�2x2 + x3 + x4)

(1� x3 � x4)x2
(2.2)

x
0
2 =

(1�2x2 + x3 + x4)(1+d (1� x2)� x3 � x4)

1� x3 � x4
(2.3)

x
0
3 = c1

q1d (1�2x2 + x3 + x4)� (1� x3 � x4)x2x3

(1� x3 � x4)x2
(2.4)

x
0
4 = c2

q2Pa �q2x1 �Pax4

Pa
(2.5)

U
0
= f(U,K,Pa) and U(t1) = [S̄(t1) 0.5 0 0]T (2.6)

We solve the IVP (2.6) above for U by using Runge�Kutta (RK4) method and an

assumed value K̃ from the initial parameter pool K.

12

2.1.2 The nonlinear least squares technique for the optimization problem

We use nonlinear least squares (NLS) technique with initial value problem having

AFDEs as in [4]. We define F [K̃] such that

F [K̃] :=
i+n�1

Â
s=i

W (s� i+1){S̄(ts)� x1(K̃, ts)}2, (2.7)

where F [K̃] represents the sum of exponentially weighted squared differences between

the simulated MP values S̄(ts) and the computed MP values x1(K̃, ts) obtained from the

first row vector of the numerical solution U of IVP (2.6) by picking the values at time

ts where ts 2 [i, i+n�1] for ith parameter vector. For example,

W = (0.114051,0.146444,0.188038,0.241445,0.310022)T

for n = 5.

We try to minimize F [K̃] over R4
+ by using line search algorithm.

2.2 Convergence of The Nonlinear Least Squares Technique for The Differential

Equations

Theorem 2.2.1. Assume that F is convex, twice differentiable function with domain

having R4
+. Additionally

i) —F is Lipschitz with parameter L,

ii) F is strongly convex with parameter m,

iii) —2F is Lipschitz with parameter M.

If F is strongly convex, then quasi-Newton method using BFGS formula with

backtracking line search converges globally from any initial parameter vector K̃0

and initial positive definite matrix H0. Moreover, if F is strongly convex and —2F

is Lipschitz continuous, then local convergence is superlinear, that is, for all k � k0,

kK̃k � K̄?k2 ckkK̃k�1 � K̄?k2 (2.8)

for sufficiently large k where ck ! 0, k0 and ck depend on L, m, and M.

Proof. See [33].

See [34], [33], [35] and [36] for a comprehensive details of quasi-Newton methods.

13

We do not have convexity assumption for the objective function F . We perform Monte

Carlo simulation and obtain convergence diagrams for the challenging unconstrained

optimization problem. In general, the reason why Monte Carlo simulation works is the

Law of Large Numbers (see [37] and [38]).

Theorem 2.2.2. (Strong Law of Large Numbers) Let X1, X2, . . . , Xj, . . . be

a sequence of independent and identically distributed random variables, with a finite

expected value E[Xj] = µ . Then, with probability 1,

1
N

N

Â
j=1

Xj ! µ a.s. as N ! •. (2.9)

Proof. The general form of the strong law was proved by the mathematician A. N.

Kolmogorov. See [39].

Corollary 2.2.1 shows the case of the Theorem 2.2.2 for the nonlinear least squares

(NLS) error. Also, Corollary 2.2.2 and Corollary 2.2.3 show the implementation of the

law of large numbers for the maximum improvement factor (MIF) and quasi-Newton

(QN) iterations, respectively.

Corollary 2.2.1. Let Fj be the average NLS error over L�15 events for the time series

of length L at j0th iteration and F1, F2, . . . , Fj, . . . be a sequence of independent and

identically distributed random variables with finite expected value E[Fj] = n . Then

1
N

N

Â
j=1

Fj ! n a.s. as N ! • (2.10)

where N is the length of the initial parameter vector pool.

Corollary 2.2.2. Let G j be the average maximum improvement factor (MIF) over L�15

events for the time series of length L at j0th iteration and G1, G2, . . . , G j, . . . be

a sequence of independent and identically distributed random variables with finite

expected value E[G j] = l . Then

1
N

N

Â
j=1

G j ! l a.s. as N ! • (2.11)

where N is the length of the initial parameter vector pool.

Corollary 2.2.3. Let Hj be the average quasi-Newton (QN) iteration number over

L�15 events for the time series of length L at j0th iteration and H1, H2, . . . , Hj, . . .

14

Table 2.3 : Tuning parameters for optimization algorithms.

Event period 5
Runge-Kutta (RK4) method step size 0.05

Threshold for the gradient 10�5

Threshold for the nonlinear least squares error 0.16

be a sequence of independent and identically distributed random variables with finite

expected value E[Hj] = q . Then

1
N

N

Â
j=1

Hj ! q a.s. as N ! • (2.12)

where N is the length of the initial parameter vector pool.

2.3 The Experimental Design

In the parameter optimization algorithm, we use the BFGS update formula (see

[33,40,41]) to solve the optimization problem. Table 2.3 displays the experimental

design and threshold values for the optimization in Algorithms 1, 2 and 3. We try to

find the parameter giving the minimum error with using the initial parameter pool K for

each event. We start to run quasi-Newton with any given initial parameter vector. This

process continues until we process all parameter vectors from the initial parameter

vector pool for any given event. We permit only the positive candidate parameter

vectors satisfying the threshold condition for the nonlinear least squares error.

We generate two different types of initial parameter vector pools which include starting

parameter vectors. They are Kg for grid approach and Kr for random approach. For

these two types, parameters are selected from a bounded hyperbox search space. Lower

and upper bounds are determined according to the previous studies (see [4,29]). Table

2.4 displays the values of these bounds. While we determine the values on the grid

points of the bounded real-number space of hyperbox for grid approach, we select

values randomly from that space for the random approach.

In this study, we use time series of market price and net asset value data obtained via

our simulation rather than real closed-end fund data, because we may consider more

possible cases via simulation than that of real data for a particular time interval. Using

random-walk, we generate 40 time series described in Table 2.5 and Table 2.6 whose

15

Table 2.4 : Upper and lower bounds of the initial parameters.

Lower Bound Upper Bound
c1 0.001 1.1
q1 1.1 100.1
c2 0.005 1.1
q2 0.01 50.1

lengths are 1500 business days, approximately six years having daily closing prices.

They mimic several long term real market scenarios. Since time series are handled

as moving overlapped 5 day event periods and the algorithm needs to calculate the

chronic discount over the past 10 days, we try to optimize 1485 time period for each

time series. Thus, we have (40⇤1485) = 59400 events having local market scenarios

such as chronic discount, chronic premium, getting bigger difference between MP and

NAV, getting smaller difference between MP and NAV or crossing-over behavior over

5-day time periods.

Moreover, we generate the initial parameter vector pools Kg and Kr whose lengths are

256, 512, 1024, 2048 and 4096 using the two approaches including grid approach and

random approach. So we test each time series with 10 parameter vector pools.

Furthermore, we use the first four central moments which are the important properties

for decision-making process while generating our test cases. The usage of these

properties can be seen on the article about the profitable trading and risk management

strategy by Duran and Bommarito [42]. The first four moment includes the values

of the mean, standard deviation, skewness and kurtosis of the time series. They are

considered to find the hot spot points of the algorithm and to improve it.

16

Ta
bl

e
2.

5
:S

ta
tis

tic
al

pr
op

er
tie

s
of

th
e

tim
e

se
rie

s
D

sc
.

Pr
ic

e
tim

e
se

rie
s

M
ea

n
Vo

la
til

ity
ra

tio
Sk

ew
ne

ss
K

ur
to

si
s

M
P

ra
ng

e
N

AV
ra

ng
e

St
at

us
(P

TS
)

(M
P

/N
AV

)
(M

P
/N

AV
)

(M
P

/N
AV

)
(M

P
/N

AV
)

[M
in

-M
ax

]
[M

in
-M

ax
]

(I
ni

tia
l/

Fi
na

l)
D

sc
_0

1
54

.3
8

/6
4.

74
3.

82
/5

.7
4

0.
54

/-
0.

17
2.

40
/1

.6
5

48
.5

4
-6

4.
98

54
.6

0
-7

5.
55

D
/D

D
sc

_0
2

70
.7

8
/5

8.
57

6.
72

/2
.4

2
-0

.0
2

/-
0.

29
2.

10
/2

.9
3

57
.6

8
-8

3.
34

51
.7

8
-6

3.
96

D
/P

D
sc

_0
3

51
.7

1
/6

2.
11

4.
07

/2
.7

3
0.

21
/0

.5
3

1.
63

/2
.3

4
44

.6
9

-5
9.

08
57

.6
5

-6
9.

31
D

/D
D

sc
_0

4
51

.9
5

/6
4.

52
3.

74
/3

.5
2

-0
.0

9
/-

0.
37

3.
01

/2
.0

6
43

.1
5

-6
2.

27
56

.9
4

-7
1.

00
D

/D
D

sc
_0

5
53

.2
1

/5
8.

97
6.

02
/2

.6
0

-0
.2

/-
0.

35
1.

75
/2

.0
5

41
.6

2
-6

4.
00

52
.3

5
-6

4.
38

D
/D

D
sc

_0
6

46
.7

3
/6

1.
04

7.
73

/5
.4

8
-0

.0
3

/0
.7

0
1.

51
/2

.3
2

33
.4

4
-5

9.
58

52
.2

2
-7

4.
66

D
/D

D
sc

_0
7

67
.4

1
/5

8.
64

6.
73

/2
.2

9
0.

30
/0

.6
1

2.
34

/2
.4

7
56

.0
7

-8
4.

62
54

.9
8

-6
5.

48
D

/P
D

sc
_0

8
74

.1
9

/5
8.

96
8.

57
/3

.0
4

0.
11

/0
.0

1
2.

38
/2

.1
2

58
.1

0
-9

3.
92

52
.5

4
-6

5.
85

D
/P

D
sc

_0
9

71
.9

5
/6

0.
33

10
.7

8
/5

.1
0

1.
13

/0
.3

7
3.

21
/1

.6
2

56
.7

7
-9

8.
79

53
.3

6
-7

0.
96

D
/P

D
sc

_1
0

62
.3

9
/6

4.
83

3.
71

/3
.4

1
0.

56
/-

0.
60

2.
50

/2
.5

9
54

.9
5

-7
1.

92
55

.9
8

-7
0.

79
D

/P
D

sc
_1

1
64

.0
6

/5
8.

73
4.

07
/2

.6
5

-0
.1

4
/-

0.
15

2.
34

/2
.6

6
55

.1
9

-7
2.

82
51

.5
9

-6
5.

21
D

/P
D

sc
_1

2
74

.6
5

/6
6.

60
7.

73
/5

.5
3

-1
.2

1
/0

.0
9

2.
97

/2
.3

7
56

.0
5

-8
3.

39
54

.5
3

-8
0.

69
D

/P
D

sc
_1

3
68

.4
/5

6.
29

9.
12

/3
.1

2
-0

.2
2

/-
0.

62
1.

44
/2

.4
2

54
.0

7
-8

1.
61

48
.9

7
-6

1.
02

D
/P

D
sc

_1
4

84
.8

7
/6

2.
28

18
.4

3
/3

.5
4

0.
25

/-
0.

42
1.

64
/1

.9
5

58
.8

7
-1

20
.4

7
54

.2
3

-6
8.

61
D

/P
D

sc
_1

5
79

.0
9

/5
4.

51
12

.9
7

/2
.9

8
0.

72
/0

.1
5

2.
21

/1
.5

9
59

.0
0

-1
08

.6
2

49
.4

5
-6

0.
19

D
/P

D
sc

_1
6

44
.8

8
/6

0.
57

8.
36

/3
.7

4
0.

85
/0

.1
3

2.
29

/1
.7

9
35

.0
8

-6
3.

09
54

.1
6

-6
8.

27
D

/D
D

sc
_1

7
50

.2
1

/5
5.

45
6.

05
/2

.1
5

0.
63

/0
.4

5
2.

36
/2

.7
0

41
.3

0
-6

5.
31

50
.9

9
-6

2.
00

D
/D

D
sc

_1
8

52
.5

5
/6

1.
10

8.
31

/2
.2

3
0.

17
/0

.1
1

1.
32

/1
.8

7
41

.2
2

-6
5.

63
56

.3
8

-6
5.

89
D

/D
D

sc
_1

9
57

.6
4

/5
9.

63
2.

06
/1

.8
3

0.
37

/0
.1

6
2.

83
/2

.2
6

52
.5

4
-6

3.
31

55
.1

9
-6

3.
84

D
/P

D
sc

_2
0

58
.5

9
/6

2.
64

2.
83

/2
.4

9
0.

79
/0

.4
1

2.
67

/2
.5

9
53

.8
4

-6
6.

41
56

.8
9

-6
8.

67
D

/D

17

Ta
bl

e
2.

6
:S

ta
tis

tic
al

pr
op

er
tie

s
of

th
e

tim
e

se
rie

s
Pr

m
.

Pr
ic

e
tim

e
se

rie
s

M
ea

n
Vo

la
til

ity
ra

tio
Sk

ew
ne

ss
K

ur
to

si
s

M
P

ra
ng

e
N

AV
ra

ng
e

St
at

us
(P

TS
)

(M
P

/N
AV

)
(M

P
/N

AV
)

(M
P

/N
AV

)
(M

P
/N

AV
)

[M
in

-M
ax

]
[M

in
-M

ax
]

(I
ni

tia
l/

Fi
na

l)

Pr
m

_0
1

56
.2

2
/6

4.
74

3.
95

/5
.7

4
0.

54
/-

0.
17

2.
40

/1
.6

5
50

.1
9

-6
7.

19
54

.6
0

-7
5.

55
P

/D
Pr

m
_0

2
55

.0
4

/5
9.

26
3.

80
/2

.5
4

0.
55

/-
0.

40
2.

23
/2

.4
6

48
.4

3
-6

3.
36

52
.3

5
-6

4.
67

P
/D

Pr
m

_0
3

53
.7

1
/6

4.
52

3.
86

/3
.5

2
-0

.0
9

/-
0.

37
3.

01
/2

.0
6

44
.6

1
-6

4.
38

56
.9

4
-7

1.
00

P
/D

Pr
m

_0
4

55
.0

1
/5

8.
97

6.
22

/2
.6

0
-0

.2
0

/-
0.

35
1.

75
/2

.0
5

43
.0

3
-6

6.
17

52
.3

5
-6

4.
38

P
/D

Pr
m

_0
5

76
.7

1
/5

8.
96

8.
86

/3
.0

4
0.

11
/0

.0
1

2.
38

/2
.1

2
60

.0
7

-9
7.

11
52

.5
4

-6
5.

85
P

/P
Pr

m
_0

6
55

.0
0

/6
2.

14
8.

00
/2

.4
1

-0
.2

8
/0

.1
7

1.
48

/2
.1

8
42

.1
2

-6
7.

36
57

.2
9

-6
7.

80
P

/D
Pr

m
_0

7
74

.3
9

/6
0.

33
11

.1
4

/5
.1

0
1.

13
/0

.3
7

3.
21

/1
.6

2
58

.7
0

-1
02

.1
4

53
.3

6
-7

0.
96

P
/P

Pr
m

_0
8

65
.8

9
/5

4.
89

8.
40

/2
.1

3
0.

31
/0

.2
8

1.
46

/2
.0

0
55

.1
3

-8
1.

37
50

.9
0

-6
0.

02
P

/P
Pr

m
_0

9
67

.9
1

/6
2.

86
4.

45
/1

.9
2

-0
.8

2
/0

.3
0

3.
13

/2
.5

9
56

.7
1

-7
7.

34
58

.0
0

-6
7.

87
P

/P
Pr

m
_1

0
57

.7
3

/6
9.

33
7.

50
/5

.6
4

0.
28

/0
.3

9
1.

79
/1

.9
6

46
.5

1
-7

3.
66

59
.9

0
-8

2.
69

P
/D

Pr
m

_1
1

50
.4

5
/6

8.
58

6.
49

/2
.6

0
0.

77
/-

0.
15

1.
92

/2
.4

2
43

.5
1

-6
4.

41
60

.0
0

-7
4.

87
P

/D
Pr

m
_1

2
65

.4
6

/6
4.

73
7.

75
/5

.2
7

0.
48

/0
.0

7
1.

86
/1

.5
6

52
.0

6
-8

0.
25

56
.1

5
-7

4.
62

P
/P

Pr
m

_1
3

70
.7

3
/5

9.
24

6.
41

/2
.8

5
0.

38
/0

.4
0

2.
80

/3
.1

7
58

.0
3

-8
7.

80
53

.4
2

-6
8.

06
P

/P
Pr

m
_1

4
48

.9
7

/6
0.

55
4.

06
/2

.1
5

0.
47

/-
0.

45
3.

86
/3

.1
2

40
.7

6
-6

1.
39

55
.0

1
-6

5.
74

P
/D

Pr
m

_1
5

87
.7

5
/6

2.
28

19
.0

6
/3

.5
4

0.
25

/-
0.

42
1.

64
/1

.9
5

60
.8

7
-1

24
.5

6
54

.2
3

-6
8.

61
P

/P
Pr

m
_1

6
46

.4
0

/6
0.

57
8.

64
/3

.7
4

0.
85

/0
.1

3
2.

29
/1

.7
9

36
.2

7
-6

5.
23

54
.1

6
-6

8.
27

P
/D

Pr
m

_1
7

88
.6

9
/6

2.
19

15
.1

1
/3

.6
1

-0
.4

9
/0

.4
9

1.
80

/2
.6

5
59

.5
8

-1
11

.0
8

54
.8

2
-7

0.
88

P
/P

Pr
m

_1
8

61
.4

0
/5

2.
04

3.
91

/3
.0

6
-0

.0
2

/0
.2

2
2.

06
/3

.1
0

53
.3

6
-6

9.
19

45
.2

5
-6

0.
22

P
/P

Pr
m

_1
9

67
.0

4
/5

9.
25

2.
88

/1
.6

1
0.

04
/0

.2
9

2.
55

/3
.0

4
60

.6
5

-7
4.

26
55

.1
6

-6
4.

18
P

/P
Pr

m
_2

0
58

.7
4

/6
1.

01
2.

85
/1

.8
3

0.
11

/0
.4

4
2.

61
/2

.3
7

52
.4

7
-6

6.
85

57
.1

2
-6

6.
05

P
/D

18

Table 2.5 and Table 2.6 describe the market price and net asset value time series and

their statistical properties like volatility behavior and ranges for the time series group

Dsc for discount and Prm for premium situation of market price with respect to the

corresponding net asset value based on the initial status, respectively. Considering

the different statistical properties of the parameter vector pools Kg and Kr we aim to

scan and represent the bounded space as much as possible with satisfied sample size.

To check the representation success of the parameter pool K we apply the principal

component analysis (PCA) which is preferred to detect the pattern of the dominant

features (see [43]). Four moments, minimum and maximum values for MP, and NAV

are used as an input feature. Also as a binary feature we use the discount and premium

status as 1 and 0, respectively. Thus we project the high dimensional feature space into

2D and 3D spaces using PCA. In Figure 2.2 and Figure 2.3, we show the dominant

features and it is seen that there is a general sample distribution to handle many points

of the space. Here, the 40 points in the figures generated by using the 40 time series

are represented via different colors so that each point can be visible at right position.

2.4 Initial Parameter Vector Pool Selection Results and Convergence Diagrams

We examine the effects of the grid and random approaches for the selection of the

initial parameter pool K with 59400 events for the numerical optimization problem of

the dynamical system. We compare the efficiency of two approaches with respect to

nonlinear least squares (NLS) error, maximum improvement factor (MIF) and number

of QN iterations. Smaller error for nonlinear least squares method, smaller MIF value

for the computing duration or smaller iteration number for quasi-Newton algorithm

may be considered as better performance. Algorithms 2 and 3 show the pseudo codes

of the Monte Carlo simulation with the generation of the initial parameter pools Kg

and Kr, respectively.

2.4.1 The Comparison of the two approaches according to NLS errors

Table A.1 and Table A.2 show the converged average nonlinear least squares (NLS)

error values in order to compare the grid and random approaches via simulation results

for Dsc and Prm time series groups respectively. Figure 2.4 obtained via Algorithm

19

1

1

1

1

3&

3&

Figure 2.2 : The projection of the high dimensional feature space into 2D space using
principal component analysis where PC-i corresponds to the i-th largest eigenvalue.

Figure 2.3 : The projection of the high dimensional feature space into 3D space using
principal component analysis where PC-i corresponds to the i-th largest eigenvalue.

20

Algorithm 2 Monte Carlo simulation via grid approach.
1: Inputs:
2: MP,NAV, i,n,m,hRK4,e1,e2
3: N: Size of the initial parameter vector pool
4: [l1, l2, l3, l4] : Lower bounds for each dimension
5: [u1,u2,u3,u4] : Upper bounds for each dimension
6: [n1,n2,n3,n4] : Number of grid points for each dimension
7:
8: Output:
9: cMK: Sequence of Monte Carlo iterations for NLS error

10: KMK: Sequence of Monte Carlo iterations for K parameter vector
11: MIFMK: Sequence of Monte Carlo iterations for MIF
12: QNiterMK: Sequence of Monte Carlo iterations for QN iteration
13: . Generates n1 grid points with equally gap size h1 = (u1 � l1)/(n1 �1)
14: c1 = linspace(l1,u1,n1)
15: q1 = linspace(l2,u2,n2)
16: c2 = linspace(l3,u3,n3)
17: q2 = linspace(l4,u4,n4)
18: N = n1 ⇤n2 ⇤n3 ⇤n4
19: Kg = [c1 q1 c2 q2]
20:
21: function SIMG(Kg,MP,NAV, i,n,m,hRK4,e1,e2)
22: Initialize ĉGlOpt = [], ĉMK = [], K̂GlOpt = [] and K̂MK = []
23: Initialize ˆMIFGlOpt = [], ˆMIFMK = [], ˆQNiterGlOpt = [] and ˆQNiterMK = []
24: . First event index
25: i f irst = m+1
26: . Last event index
27: ilast = length(MP)�n
28: csum = 0,Ksum = 0,MIFsum = 0,QNitersum = 0
29: . Iteration over parameter vectors
30: for j = 1 : length(Kg) do
31: for i = i f irst : ilast do
32: [ĉGlOpt [i], K̂GlOpt [i], ˆMIFGlOpt [i], ˆQNiterGlOpt [i]] = OPT(Kg[1 : j, :

],MP,NAV, i,n,m,hRK4,e1,e2)
33: end for
34: csum = csum +average(ĉGlOpt)
35: cMK[j] = csum/ j
36:
37: Ksum = Ksum +average(K̂GlOpt)
38: KMK[j] = Ksum/ j
39:
40: MIFsum = MIFsum +average(ˆMIFGlOpt)
41: MIFMK[j] = MIFsum/ j
42:
43: QNitersum = QNitersum +average(ˆQNiterGlOpt)
44: QNiterMK[j] = QNitersum/ j
45: end for
46: end function

21

Algorithm 3 Monte Carlo simulation via random approach.
1: Inputs:
2: MP,NAV, i,n,m,hRK4,e1,e2
3: N: Size of the initial parameter vector pool
4: [l1, l2, l3, l4] : Lower bounds for each dimension
5: [u1,u2,u3,u4] : Upper bounds for each dimension
6:
7: Output:
8: cMK: Sequence of Monte Carlo iterations for NLS error
9: KMK: Sequence of Monte Carlo iterations for K parameter vector

10: MIFMK: Sequence of Monte Carlo iterations for MIF
11: QNiterMK: Sequence of Monte Carlo iterations for QN iteration
12:
13: c1 = (u1 � l1).⇤ rand(N,1)+ l1
14: q1 = (u2 � l2).⇤ rand(N,1)+ l2
15: c2 = (u3 � l3).⇤ rand(N,1)+ l3
16: q2 = (u4 � l4).⇤ rand(N,1)+ l4
17: Kr = [c1 q1 c2 q2]
18:
19: function SIMR(Kr,MP,NAV, i,n,m,hRK4,e1,e2)
20: Initialize ĉGlOpt = [], ĉMK = [], K̂GlOpt = [] and K̂MK = []
21: Initialize ˆMIFGlOpt = [], ˆMIFMK = [], ˆQNiterGlOpt = [] and ˆQNiterMK = []
22: . First event index
23: i f irst = m+1
24: . Last event index
25: ilast = length(MP)�n
26: csum = 0,Ksum = 0,MIFsum = 0,QNitersum = 0
27: . Iteration over parameter vectors
28: for j = 1 : length(Kr) do
29: for i = i f irst : ilast do
30: [ĉGlOpt [i], K̂GlOpt [i], ˆMIFGlOpt [i], ˆQNiterGlOpt [i]] = OPT(Kr[1 : j, :

],MP,NAV, i,n,m,hRK4,e1,e2)
31: end for
32: csum = csum +average(ĉGlOpt)
33: cMK[j] = csum/ j
34:
35: Ksum = Ksum +average(K̂GlOpt)
36: KMK[j] = Ksum/ j
37:
38: MIFsum = MIFsum +average(ˆMIFGlOpt)
39: MIFMK[j] = MIFsum/ j
40:
41: QNitersum = QNitersum +average(ˆQNiterGlOpt)
42: QNiterMK[j] = QNitersum/ j
43: end for
44: end function

22

Figure 2.4 : Comparison of the grid and random approaches for all time series in the
dataset according to average NLS error.

1 from the initial parameter pools Kg and Kr, displays the dependence of the average

NLS errors of the two approaches on the size of initial parameter pool for 40 time series

based on Table A.1 and Table A.2. The averaged NLS errors via random approach are

higher than that of the grid approach mostly. Moreover, the averaged NLS error for the

random approach decreases as the size of initial parameter pool increases. They are

valuable results for the nonlinear optimization problem.

Based on the volatility behavior described in Table 2.5 and Table 2.6, we see that

generally the NLS error is bigger for the time series pair as proxy to MP and NAV

whose volatilities are sufficiently larger for both MP and NAV provided that the other

variables are unchanged. This is consistent with the results in [10].

23

0 1000 2000 3000 4000 5000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Iteration

A
ve

ra
g
e
 N

L
S

 e
rr

o
r

The convergence diagram for the nonlinear least squares (NLS) error

 par_grid256

 par_random256

 par_grid512

 par_random512

 par_grid1024

 par_random1024

 par_grid2048

 par_random2048

 par_grid4096

 par_random4096

Figure 2.5 : Monte Carlo simulation of the NLS error for curve fitting of Dsc_20 for
each approach.

0 1000 2000 3000 4000 5000
0

0.02

0.04

0.06

0.08

Iteration

A
ve

ra
g
e
 N

L
S

 e
rr

o
r

The convergence diagram for the nonlinear least squares (NLS) error

 par_grid256

 par_random256

 par_grid512

 par_random512

 par_grid1024

 par_random1024

 par_grid2048

 par_random2048

 par_grid4096

 par_random4096

Figure 2.6 : Monte Carlo simulation of the NLS error for curve fitting of Prm_08 for
each approach.

24

Table 2.7 : The number of successful approaches with respect to NLS error among
the Dsc and Prm time series for the pools with different sizes.

Sequence Parameter Different parameter vector lengths
type type 256 512 1024 2048 4096 Total

Dsc grid 0 10 2 0 3 15
random 0 0 1 0 4 5

Prm grid 0 12 1 0 4 17
random 0 0 1 0 2 3

Total grid 0 22 3 0 7 32
random 0 0 2 0 6 8

Figure 2.5 and Figure 2.6 show the convergence diagrams of the NLS errors via Monte

Carlo simulations for various pool sizes during the curve fitting of the time series

Dsc_20 and Prm_08 using Runge-Kutta (RK4) method in order to solve the dynamical

system numerically for grid and random approaches, according to Algorithms 2 and 3.

While the NLS errors for grid approach are plotted as solid curves, the NLS errors for

random approach are shown as dashed curves for various pool sizes from 256 to 4096.

The same color is used for each pool size, for the NLS errors of both approaches. After

an oscillation at the beginning of the algorithm, we see the trend about minimization

of the error in Figure 2.5 and Figure 2.6. This pattern is generally seen on the results

of the other time series as well. We observe the convergence of the NLS errors via the

Monte Carlo simulations. Table A.1 and Table A.2 give the details of the NLS error

results for all time series in our data set.

The NLS error values that grid approaches converge are smaller than that of random

approach for relatively small pool sizes in Figure 2.6 and Tables A.1-A.2. For large

pool sizes, they approach each other, consistent with the law of large numbers. This is

an important result suggesting that we may prefer the grid approach when we need to

use less number of initial parameter vectors for the optimization problem.

Bold numerical values in each row of Tables A.1-A.6 indicate the minimum of the

test results according to parameter pool sizes. Table 2.7 summarizes Table A.1 and

Table A.2 to show the winners for the grid and random approaches with respect to the

averaged NLS error values for Dsc and Prm time series. In comparison, we observe

that tests with grid approach with the parameter pool K whose size is 512 is generally

25

Table 2.8 : Number of the average NLS winners according to parameter types of the
each pool sizes.

Sequence Parameter Different parameter vector lengths
type type 256 512 1024 2048 4096 Total

Dsc grid 20 20 9 17 6 72
random 0 0 11 3 14 28

Prm grid 20 20 10 16 10 76
random 0 0 10 4 10 24

Total grid 40 40 19 33 16 148
random 0 0 21 7 24 52

enough to find a feasible solution for the dynamical system. When we compare the

other results there is no more significant gain to increase the size of the parameter pool

K. Moreover, grid approach is better than random approach for 32 time series out

of 40 time series with respect to this criteria. Table 2.7 shows the distribution of the

successful approach numbers among the time series for the pools of different sizes.

Alternatively, to examine the grid and the random approaches over the parameter pool

sizes, we count the winner of the sequences which is the minimum values of the

parameter type pairs for each pool size. In Table 2.8, we show the number of the

average NLS winners whose more detailed test results are shown in Table A.1 and

Table A.2.

2.4.2 The comparison of the two approaches according to MIF

Maximum improvement factor (MIF) is defined as the ratio of the final NLS error to

the initial NLS error. Generally, the smaller MIF corresponds to a better performance.

Besides the NLS error, MIF is an important performance metric on the evaluation of

the overall optimization process. Using MIF, we track the success of the algorithm

while trying to find a better solution under optimization constraints. While Table A.3

displays the resulting average MIF values for Dsc time series group to compare the grid

and random approaches via simulation results, Table A.4 illustrates the corresponding

resulting average MIF values for Prm time series group. We obtain Figure 2.7 by

using Algorithm 1, and it shows better improvement results for the initial parameters

generated by the grid approach than that of the random approach. Also, the oscillations

26

Figure 2.7 : Comparison of the grid and random approaches for all time series in the
dataset according to average MIF.

with initial parameters generated by the grid approach are more stable than that of the

random approach. They show that the grid approach is more reliable than the random

approach for any size of the initial parameter vector pools.

Figure 2.8 and Figure 2.9 display the convergence diagrams of the MIF via Monte

Carlo simulations for different pool sizes during the curve fitting of the time series

Dsc_20 and Prm_08, via Algorithms 2 and 3. They show that the converged MIF

values via the grid approach are better than that of the random approach.

Table 2.9 shows the MIF winners from Table A.3 and Table A.4 with respect to

pairwise comparison of the two approaches for each pool size.

27

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Iteration

A
ve

ra
g
e
 M

IF

The convergence diagram for the maximum improvement factor (MIF)

 par_grid256

 par_random256

 par_grid512

 par_random512

 par_grid1024

 par_random1024

 par_grid2048

 par_random2048

 par_grid4096

 par_random4096

Figure 2.8 : Monte Carlo simulation of the maximum improvement factor (MIF) for
curve fitting of Dsc_20 for each approach.

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Iteration

A
ve

ra
g
e
 M

IF

The convergence diagram for the maximum improvement factor (MIF)

 par_grid256

 par_random256

 par_grid512

 par_random512

 par_grid1024

 par_random1024

 par_grid2048

 par_random2048

 par_grid4096

 par_random4096

Figure 2.9 : Monte Carlo simulation of the maximum improvement factor (MIF) for
curve fitting of Prm_08 for each approach.

28

Table 2.9 : Number of the average MIF winners according to parameter types of the
each pool sizes.

Sequence Parameter Different parameter vector lengths
type type 256 512 1024 2048 4096 Total

Dsc grid 20 20 14 20 20 94
random 0 0 6 0 0 6

Prm grid 20 20 14 20 20 94
random 0 0 6 0 0 6

Total grid 40 40 28 40 40 188
random 0 0 12 0 0 12

2.4.3 The comparison of the two approaches according to QN iteration number

While the average number of QN iterations for Dsc time series group is displayed in

Table A.5 via Monte Carlo simulation results, Table A.6 shows the average number of

QN iterations for Prm time series group, for the pair of grid and random approaches.

Figure 2.10 shows the dependence of the average QN iteration of the two approaches

on the size of initial parameter pool for both Dsc and Prm time series according to

Table A.5 and Table A.6 where results are obtained by the Algorithm 1. We observe the

general rise trend of the number of QN iteration as the size of the initial parameter pool

increases for both approaches. This is an expected situation. Moreover, the number

of QN iteration for the grid approach is larger than that of random approach mostly.

In Table A.5 and Table A.6, we can also see the result that algorithm ends with lower

number of iterations for random approach in much more cases.

The winner counts of the QN iterations in Table 2.10 are calculated from Table A.5

and Table A.6 with respect to pairwise comparison.

We apply Monte Carlo simulation to the number of quasi-Newton iterations for both

approaches and obtain convergence diagrams. For example, Figure 2.11 and Figure

2.12 show the convergence diagrams of the number of quasi-Newton iterations over

time series Dsc_20 and Prm_08 for grid and random approaches, using Algorithms 2

and 3.

29

Figure 2.10 : The Comparison of the two approaches according to QN iteration
number.

Table 2.10 : Number of the average QN iteration winners according to parameter
types of the each pool sizes.

Sequence Parameter Different parameter vector lengths
type type 256 512 1024 2048 4096 Total

Dsc grid 4 4 5 5 2 20
random 16 16 15 15 18 80

Prm grid 1 4 5 5 1 16
random 19 16 15 15 19 84

Total grid 5 8 10 10 3 36
random 35 32 30 30 37 164

30

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

Iteration

A
ve

ra
g
e
 n

u
m

b
e
r

o
f
Q

N
 it

e
ra

tio
n

The convergence diagram for the number of the quasi-Newton (QN) iteration

 par_grid256

 par_random256

 par_grid512

 par_random512

 par_grid1024

 par_random1024

 par_grid2048

 par_random2048

 par_grid4096

 par_random4096

Figure 2.11 : Monte Carlo simulation of the number of quasi-Newton iteration for
curve fitting of Dsc_20 for each approach.

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

Iteration

A
ve

ra
g
e
 n

u
m

b
e
r

o
f
Q

N
 it

e
ra

tio
n

The convergence diagram for the number of the quasi-Newton (QN) iteration

 par_grid256

 par_random256

 par_grid512

 par_random512

 par_grid1024

 par_random1024

 par_grid2048

 par_random2048

 par_grid4096

 par_random4096

Figure 2.12 : Monte Carlo simulation of the number of quasi-Newton iteration for
curve fitting of Prm_08 for each approach.

31

32

3. EVALUATION OF A NEW PARALLEL NUMERICAL PARAMETER
OPTIMIZATION ALGORITHM FOR A DYNAMICAL SYSTEM

In this chapter, we study parallel optimization with initial parameter vector (IPV) pools

related to nonlinear dynamical systems and present a numerical parameter optimization

algorithm. A serial algorithm called the asset flow optimization forecast algorithm

was prepared and an inverse problem having parameter optimization for the asset flow

differential equations (AFDEs) has been used for a set of stocks in the set of closed-end

funds (CEFs) traded on the NYSE (see [4]). The optimization algorithm contains a

quasi-Newton (QN) weak line search [40,41] and a semi-dynamic initial parameter

pool [4]. Daily market prices (MPs) and net asset values (NAVs) are used to find

the parameter vectors in the AFDEs via curve fitting for the previous n days without

knowing the reference functions explicitly. Runge–Kutta (RK4) method is employed to

solve the dynamical system numerically and a nonlinear least squares (NLS) technique

with initial value problem approach is applied based on the MP variable. The study in

this chapter was published in "AIP Conference Proceedings" with title "Effectiveness

of grid and random approaches for a model parameter vector optimization" after

presentation at the "2nd International Conference ”Numerical Computations: Theory

and Algorithms (NUMTA)" [10].

There is no algorithm that will warranty the number of required iterations to obtain

the region of the global optimum (see [25], Chapter 23). In order to deal with this

challenging problem in different financial market situations, we need adequately large

number of IPVs generated by suitable methods and incorporated in the optimization

process via high performance computing using Message Passing Interface (MPI)

parallel programming [44]. It may take several days to run the sequential code in

order to obtain optimal parameters with large number of IPVs to be used for stock

price forecasting. When the parallel programming is used, the total time to obtain a

high quality parameter vector will be reduced and this may be useful for a trader using

33

daily closing prices. Moreover, it is important to measure the role of large number of

IPVs on the success of the optimization.

We use MPI parallel programming and analyze the success of the optimization process

depending on the number of IPVs for a new parallel hybrid algorithm to estimate the

model parameter vectors. Duran and Tuncel [11] tested for 64, 128, 256 and 512 cores

on the Ege Server (see [45], HP ProLiant BL2x220c G5 Blade) using the 512 IPVs.

They obtained speed-up for the simulated MP and NAV time series of length 1000

to run up to 512 cores. Unlike the project report [11], we deal with more extensive

financial market situations and analyze the convergence of the model parameter vector,

the NLS error and maximum improvement factor (MIF) to measure the success of the

optimization process depending on the number of IPVs and the number of CPU cores.

Moreover, we examined the behavior of the time series of length 500 and 2000. We

achieved speed-up to run up to 512 cores.

The remainder of this chapter is organized as follows: First, we use the parallel

nonlinear parameter optimization algorithm with classified IPV pools described in

the project report [11], with new design of experiments. We use the 3rd version of

AFDEs and the related problem constraints (see [7] and [8]) in this chapter. Then the

convergence results of the numerical parameter optimization depending on the number

of IPVs and the role of volatility are discussed.

3.1 Convergence Results of The Parameter Optimization Depending on The

Number of IPVs and The Role of Volatility

We produce time series pairs as proxy to MP and NAV by using random walk

simulation where the volatilities of the time series are similar to that of real CEFs

traded on NYSE (see [21] and [32]). Table 3.1 displays the design and threshold values

for the numerical optimization process. Table 3.2 explains the simulated MP and NAV

time series of length 500, 1000, and 2000 with their volatility behavior in terms of

standard deviation, price ranges and status of stock MP at a discount/premium to its

NAV where P and D stand for premium and discount, respectively. The parameters in

Tables 3.1-3.2 are chosen by considering the problem constraints, time constraints,

available computing resources, and financial feasibility to reflect various financial

34

Figure 3.1 : The convergence diagram of the model parameters for the curve fitting
via Monte Carlo simulation using 1k_v8 as the number of IPVs increases up to 512.

market situations generating different curves having behaviors such as almost steady,

uptrend, downtrend, strong uptrend and strong downtrend in the design of experiment.

The problem constraints are discussed in [4,7,21] and [8].

Table 3.2 illustrates the Monte Carlo simulation results for the parameter vector, the

average NLS error and the average MIF defined as the ratio of the final NLS error to

the initial NLS error. Generally, the smaller MIF corresponds to a better performance,

which depends on the proximity of the IPV to the optimal one as well. Figure 3.1,

Figure 3.2 and Table 3.2 show that the computed optimal parameter values, the average

NLS errors, and the average MIF can converge to certain values within corresponding

small ranges smoothly, after fluctuations.

We compare the serial algorithm with fixed initial parameter pool having 64 IPVs and

the parallel algorithm having 512 IPVs in the classified pool and we obtain smaller

NLS errors in Figure 3.3 and better MIF in Figure 3.4 via the parallel algorithm for the

price time series 1k_v6, 1k_v7 and 1k_v8. The better performance in terms of errors

35

Figure 3.2 : The convergence diagram of the NLS error for the curve fitting using
1k_v8 by Monte Carlo simulation as the number of IPVs increases up to 512.

of the parallel algorithm compared to the serial one can be explained by the usefulness

of larger number of IPVs.

Table 3.1 : The computational optimization by finding parameter vector in the AFDE
for a large sample data set. QN method with weak line search is applied.

Event RK4 method # of parameter Threshold for Threshold for
period step size vectors in pool the gradient the NLS error

Dataset 1 5 0.05 56 10-5 0.16
Dataset 2 5 0.05 64 10-5 0.16
Dataset 3 5 0.05 512 10-5 0.16

Moreover, the average NLS error of the time series having relatively high volatility is

higher than that of the time series having low volatility in Figure 3.5. For example,

0.5k_v1 - 0.5k_v4 versus 0.5k_v5 - 0.5k_v8. In general, the NLS error is larger for the

time series of length 1000 as well when the volatility is sufficiently larger for both MP

and NAV.

36

Figure 3.3 : The performance comparison of the serial algorithm with fixed initial
parameter pool having 64 IPVs versus the parallel algorithm having 512 IPVs in the

classified pool, in terms of NLS errors, in Table 3.2.

Figure 3.4 : The comparison of the serial algorithm with fixed initial parameter pool
having 64 IPVs versus the parallel algorithm having 512 IPVs in the classified pool,

in terms of MIF, in Table 3.2.

Figure 3.5 : The average NLS error comparison for the time series having various
volatility levels.

37

Ta
bl

e
3.

2
:D

es
cr

ip
tio

n
of

th
e

tim
e

se
rie

s
an

d
M

on
te

C
ar

lo
si

m
ul

at
io

n
re

su
lts

fo
rv

ar
io

us
nu

m
be

ro
fI

PV
s.

Pr
ic

e
tim

e
Si

ze
of

#
of

Vo
la

til
ity

ra
tio

M
P

ra
ng

e
N

AV
ra

ng
e

St
at

us
Pa

ra
m

et
er

ve
ct

or
A

ve
ra

ge
A

ve
ra

ge
se

rie
s

(P
TS

)
PT

S
IV

P
(M

P
/N

AV
)

[M
in

-M
ax

]
[M

in
-M

ax
]

(I
ni

tia
l/

Fi
na

l)
c 1

q 1
c 2

q 2
N

LS
Er

ro
r

M
IF

0.
5k

_v
1

50
0

56
11

.7
7

/5
.1

8
53

.6
0

-9
9.

00
45

.5
7

-6
7.

23
P

/P
0.

97
25

.8
9

42
55

2
41

.3
8

0.
03

8
0.

11
0.

5k
_v

2
50

0
56

7.
53

/4
.2

3
52

.8
8

-8
1.

22
54

.4
5

-7
8.

47
P

/P
0.

87
44

.6
5

23
46

8
13

8.
29

0.
04

0
0.

18
0.

5k
_v

3
50

0
56

4.
67

/1
2.

40
50

.0
9

-6
9.

70
43

.1
0

-8
0.

76
P

/D
0.

99
33

.0
5

46
63

1
90

.1
4

0.
03

6
0.

16
0.

5k
_v

4
50

0
56

16
.2

5
/1

1.
05

39
.2

9
-8

7.
65

38
.9

0
-8

3.
11

P
/P

35
79

6
13

.8
2

16
.3

0
44

.0
1

0.
02

5
0.

12
0.

5k
_v

5
50

0
56

1.
36

/1
.6

2
48

.5
8

-5
4.

24
50

.5
1

-5
7.

25
D

/D
18

62
9

18
.7

0
45

21
0

47
.6

5
0.

00
9

0.
23

0.
5k

_v
6

50
0

56
2.

84
/2

.8
7

46
.9

8
-5

8.
10

45
.5

2
-5

5.
89

D
/P

25
56

9
14

.9
3

45
24

5
30

.5
7

0.
01

1
0.

25
0.

5k
_v

7
50

0
56

1.
56

/2
.1

1
49

.1
1

-5
6.

89
47

.5
8

-5
5.

79
D

/P
20

82
1

21
.5

1
16

.9
3

44
.5

0
0.

01
2

0.
28

0.
5k

_v
8

50
0

56
1.

72
/1

.3
2

48
.7

5
-5

6.
11

47
.7

1
-5

5.
24

D
/D

36
16

1
23

65
1

16
.5

5
45

28
7

0.
01

0
0.

26
1k

_v
1

10
00

51
2

3.
94

/2
.2

5
48

.1
9

-6
5.

68
48

.3
2

-5
8.

03
P

/P
34

70
0

18
.8

0
18

.7
9

45
.4

4
0.

01
2

0.
20

1k
_v

2
10

00
51

2
5.

01
/2

.3
8

48
.7

7
-6

7.
50

53
.6

8
-6

3.
94

P
/D

45
17

1
21

.5
9

16
.9

4
57

.7
4

0.
01

6
0.

21
1k

_v
3

10
00

51
2

2.
66

/1
.8

1
49

.3
8

-6
1.

68
49

.9
9

-5
8.

78
P

/P
45

07
9

16
.4

3
17

.8
4

40
.5

1
0.

01
2

0.
20

1k
_v

4
10

00
51

2
2.

04
/1

.5
1

46
.6

9
-5

7.
45

50
.5

8
-5

7.
89

P
/D

15
70

7
17

.9
7

13
.6

0
34

.9
7

0.
01

5
0.

24
1k

_v
5

10
00

51
2

7.
16

/4
.7

5
53

.7
6

-7
8.

61
51

.4
2

-7
1.

40
P

/P
35

79
6

20
.7

9
16

.4
6

55
.8

3
0.

01
7

0.
22

1k
_v

6
10

00
64

3.
63

/3
.1

5
42

.0
0

-5
6.

92
47

.9
2

-6
0.

18
P

/D
12

78
5

15
.2

7
14

.5
7

38
.4

2
0.

01
6

0.
30

1k
_v

6
10

00
51

2
45

23
2

18
.1

3
18

.0
0

45
.9

6
0.

01
3

0.
23

1k
_v

7
10

00
64

3.
63

/2
.9

1
51

.8
2

-6
7.

31
48

.4
5

-6
1.

55
P

/P
17

53
3

25
.9

7
44

99
7

51
.8

9
0.

02
0

0.
28

1k
_v

7
10

00
51

2
21

18
6

22
.8

7
16

.6
8

52
.3

3
0.

01
6

0.
24

1k
_v

8
10

00
64

7.
87

/2
.3

7
54

.4
9

-8
5.

44
47

.9
7

-5
7.

84
P

/P
15

70
7

26
.7

6
13

.2
6

56
.6

8
0.

02
3

0.
28

1k
_v

8
10

00
51

2
45

01
8

21
.4

1
45

24
6

67
.7

2
0.

01
9

0.
21

2k
_v

1
20

00
51

2
5.

64
/4

.0
2

50
.0

5
-7

1.
68

52
.8

0
-7

1.
20

P
/D

27
03

0
16

.6
1

19
.4

4
36

.8
7

0.
01

3
0.

23

38

4. EVALUATING THE MATURITY OF OPENFOAM SIMULATIONS ON
GPGPU FOR BIO-FLUID APPLICATIONS

We investigated the challenges facing CFD solvers as applied to bio-medical fluid

flow simulations and in particular the OpenFOAM 2.1.1 solver, icoFoam, for the

large penta-diagonal matrices coming from the simulation of blood flow in arteries

with a structured mesh domain in PRACE-3IP project at TGCC Curie (a modern

Tier-0 system) (see [46] and references therein). We generated a structured mesh by

using blockMesh as a mesh generator tool. To decompose the generated mesh, we

employed the decomposePar tool. After the decomposition, we used icoFoam as a

flow simulator/solver tool. We achieved scaled speed-up for large matrices up to 64

million x 64 million matrices and speed-up up to 16384 cores on Curie thin nodes.

The study in this chapter was published in "Proceedings of the Emerging Technology

(EMiT) Conference" with title "Evaluating the maturity of OpenFOAM simulations on

GPGPU for bio-fluid applications" [12].

In this chapter, we examined OpenFOAM 2.2.2 "icoFoam" simulator with an iterative

solver such as diagonal incomplete LU preconditioned bi-conjugate gradient in

addition to direct solvers such as distributed SuperLU 4.0 (see [13]). The flow problem

produced various matrices as the time advances in simulation. The solution of the

matrices obtained after each time step can be more challenging due to the changing

structure of the matrices. This change may be caused by mess change or flow variable

change. Generally the solution time of the matrices increases as the time advances in

simulation.

It is challenging to discuss on the benefits or drawbacks of hybrid nodes. There are

tradeoffs using GPU accelerators especially for the software packages or applications

where it is not possible to fit the whole part into GPU. While it is expected to

obtain a reduced time due to the accelerator, there would be communication over-head

between the various processors and the GPU accelerators, as well. Therefore, it

39

is important to obtain a feasible/optimal proportion of the tasks to MPI, OpenMP,

and CUDA/OpenCL usages in emerging CPU+GPU systems. For example, it is not

possible to do everything only in GPU for a complex algorithm like SuperLU_DIST.

Therefore hybrid nodes like Curie hybrid nodes at CEA in France provide opportunity.

It would be interesting to discuss about the relative energy requirements for thin nodes

versus hybrid nodes. A diversification of hardware solutions based on the application

capability may be needed in order to attain a good efficiency (see [47] and [48]).

While the compute partition of Curie thin nodes having total of 80,640 cores consumes

2132 kW, the partition of Curie hybrid nodes having total of 288 Intel + 288 Nvidia

processors uses 108.80 kW as the total power (see TOP500 Supercomputing sites [49]

and the Green500 List [50]). The partition of Curie hybrid nodes outperforms the

Curie thin nodes when the energy efficiency is compared in terms of performance per

watt and the rates of computation are 1,010.11 MFLOPS/W and 637.43 MFLOPS/W,

respectively.

The remainder of this chapter is organised as follows: In Section 4.1, the test

environment and the flow of approach are described. In Section 4.2, thin nodes

results of the CPU performance for the iterative solver icoFoam and the hybrid

parallel codes (MPI+OpenMP) of a direct solver SuperLU_DIST 4.0 are compared.

Moreover, simulation test results of hybrid node using MPI+OpenMP+CUDA versus

MPI+OpenMP with SuperLU_DIST 4.0 solvers are presented.

4.1 Test Environment and Flow of Approach

OpenFOAM (see [51]) is an open source Computational Fluid Dynamics (CFD)

toolbox. It is a software package with many tools for several main tasks of the

simulation such as pre-processing for meshing, decomposition and solution. Here,

the solver refers to not only linear system solver but also Navier Stokes solver and

simulator.

The first four matrices in Table 4.1 are obtained at time 0.00005 (s) of the simulation

where the time step size is 0.00005 (s), as in [46]. Unlike [46], the last six matrices

in Table 4.1 are encountered at the third time step, at time 0.012 (s) of the simulation

40

Table 4.1 : Description of matrices.

N NNZ NNZ/N Origin
mC_8M 8,000,000 39,988,000 4.999 ITU Mathematics

mC_16M 16,000,000 79,984,000 4.999 ITU Mathematics
mC_6M_D 6,000,000 41,800,000 6.967 ITU Mathematics
mC_8M_D 8,000,000 55,760,000 6.970 ITU Mathematics
mC_8M_n 8,000,000 39,988,000 4.999 ITU Mathematics

mC_16M_n 16,000,000 79,984,000 4.999 ITU Mathematics
mC_20M_n 20,000,000 99,982,000 4.999 ITU Mathematics

mC_6M_n_D 6,000,000 41,780,000 6.963 ITU Mathematics
mC_8M_n_D 8,000,000 55,760,000 6.970 ITU Mathematics

mC_10M_n_D 10,000,000 69,660,000 6.966 ITU Mathematics

where the time step size is 0.004 (s). This is a relatively large time step size for such a

very small mesh size. Thus, we obtained challenging ill-conditioned matrices. Almost

5 or 7 banded sparse matrix occurs at each time step and the matrices are described in

Table 4.1. The flowchart in Figure 4.1 shows the flow of approach in the paper.

4.2 Test Results

The tests were done for only a few time steps due to time limitations, while the

real case runs are conducted for more than thousands of time steps. No single CPU

solution was possible because of long waiting times, so, information regarding the

pre-processing (meshing), partitioning etc. are given for parallel processing. The most

time consuming part of the simulation was the decomposing of the mesh. For 8192

partitions, it took over 3 hours. The “Simple” decomposition method was preferred

since the running cases were for a structured mesh. This technique simply splits the

geometry into pieces by direction, such as 32 pieces in x direction and 32 pieces in y

direction. Since the mesh is structured, mC_20M_n matrix means 20M of cells in the

fluid domain.

4.2.1 Thin node results

We compared the CPU performance of the iterative solver icoFoam and the hybrid

parallel codes (MPI+OpenMP) of a direct solver SuperLU_DIST 4.0 (see [13]) at

TGCC Curie (a Tier-0 system) thin nodes at CEA, France (see [14]). Figure 4.2

and Figure 4.3 show the wall-clock time comparisons of the solvers, excluding the

41

Figure 4.1 : Flowchart for the flow of the approach including the main tasks.

42

Figure 4.2 : Wall-clock time comparison of the solvers for mC_16M_n on Curie thin
nodes.

refinement time, for mC_16M_n and mC_20M_n on Curie thin nodes, respectively.

The iterative solver with a diagonal incomplete LU preconditioned bi-conjugate

gradient outperforms the direct solver SuperLU_DIST 4.0 for the simulation matrices.

4.2.2 Hybrid node results using MPI+OpenMP+CUDA

We compared the performance of the hybrid parallel codes of MPI+OpenMP+CUDA

(see [52]) versus MPI+OpenMP implementation of SuperLU_DIST 4.0 at TGCC Curie

(a Tier-0 system) hybrid nodes of CPU + GPU at CEA, France (see [14]). Table 4.2

describes the corresponding configurations while we run the direct solver.

Table 4.2 : The Configuration of MPI+OpenMP and MPI+OpenMP+CUDA for the
direct solver.

Testbed:CURIE/ hybrid hybrid hybrid hybrid
SuperLU_DIST version 4 4 4 4

of cores 64 256 512 1024
of processes 16 64 128 256

of threads per process 4 4 4 4
of GPUs per process 1 1 1 1

Table 4.3 shows the performance results for the ten simulation matrices described in

Table 4.1. For example, Figure 4.4 shows the comparison for the performances of

MPI+OpenMP+CUDA and MPI+OpenMP implementations for mC_20M_n on Curie

43

Figure 4.3 : Wall-clock time comparison of the solvers for mC_20M_n on Curie thin
nodes.

hybrid nodes. In Figure 4.5, we observe a linear speed-up of the direct solver up to 512

cores for both implementations for mC_20M_n on Curie hybrid nodes.

Generally, we see that MPI+OpenMP implementation outperforms the hybrid of

MPI+OpenMP+CUDA for this set of simulation matrices when we consider the wall

clock times for the optimal number of cores because of several overheads coming

from CUDA implementation for the direct solver algorithm. It is not possible to

put everything only in GPU for SuperLU_DIST. Therefore, the tasks should be

proportioned to MPI, OpenMP, and CUDA/OpenCL. In SuperLU_DIST 4.0 (see [52]),

cuBLAS library execution is one of the most time consuming tasks performed in GPU

in order to gain from explicit parallelization. On the other hand, there are overheads

such as data transfer on PCIe between host and device memory (CPU and GPU) and

new data structure changes related to data packing and scattering. Moreover, SuperLU

is a complex algorithm and it is challenging to select the right combination for

better intra-node communications and inter-node communications within CPU+GPU

heterogeneous systems, under current technology limitations (see [53]).

The last eight matrices in Table 4.3 are challenging large matrices because they are

relatively denser or ill-conditioned. The error labelled Error 1 occurs for small number

44

Figure 4.4 : Wall-clock time of direct solver for mC_20M_n on Curie hybrid nodes.

Figure 4.5 : Speed-up of direct solver for mC_20M_n on Curie hybrid nodes.

45

Table 4.3 : Wall Clock Times (s) of SuperLU_DIST 4.0 for the large penta-diagonal
matrices for 2D problems and hepta-diagonal matrices for 3D problems, described in

Table 4.1, on MPI+OpenMP versus MPI+OpenMP+CUDA implementations.

Matrices / Number of cores 64 256 512 1024

mC_8M MPI + OpenMP 99.96 34.70 28.78 37.89
MPI + OpenMP + CUDA 94.70 39.10 43.70 60.72

mC_16M MPI + OpenMP 230.30 83.19 47.73 59.02
MPI + OpenMP + CUDA 236.83 87.23 60.00 81.41

mC_6M_D MPI + OpenMP Error 1 260.38 296.74 239.52
MPI + OpenMP + CUDA Error 1 Error 2 254.44 257.15

mC_8M_D MPI + OpenMP Error 1 1005.96 516.86 387.20
MPI + OpenMP + CUDA Error 1 680.25 Error 2 353.40

mC_8M_n MPI + OpenMP 94.70 31.00 32.79 35.83
MPI + OpenMP + CUDA 70.94 38.27 Error 3 61.34

mC_16M_n MPI + OpenMP 181.53 75.93 49.53 58.61
MPI + OpenMP + CUDA 233.22 75.58 61.42 83.61

mC_20M_n MPI + OpenMP 266.82 122.59 60.30 69.49
MPI + OpenMP + CUDA 393.49 108.90 69.60 94.99

mC_6M_n_D MPI + OpenMP 1178.51 409.15 248.84 211.70
MPI + OpenMP + CUDA 782.22 294.14 Error 2 222.04

mC_8M_n_D MPI + OpenMP Error 1 948.03 533.78 386.72
MPI + OpenMP + CUDA Error 1 682.02 Error 2 349.16

mC_10M_n_D MPI + OpenMP Error 1 877.92 465.60 373.09
MPI + OpenMP + CUDA Error 1 752.78 Error 2 Error 3

of cores. We meet with an error message labelled Error 2 related to buffer size during

the factorization subroutine pdgstrf, for the hepta-diagonal matrices. Error 3 is a

CUDA stream error related to setting cuBLAS library execution stream.

46

5. SPECTRAL EFFECTS OF LARGE MATRICES FROM OIL RESERVOIR
SIMULATORS ON PERFORMANCE OF SCALABLE DIRECT SOLVERS

We design a novel hybrid algorithm and solver for large sparse linear systems. First,

we consider scalable direct solvers because of their robustness and examine the

SuperLU_DIST 3.3 (see Li et al. [13]) for distributed memory parallel machines among

several sparse direct solvers (see Li et al. [13], Li and Demmel [54], Amestoy et

al. [55], Schenk and Gartner [56,57], Duran and Saunders [58], Duran et al. [59]

and references contained therein). Duran et al. [60] discussed the advantages and

limitations of the SuperLU solvers and tested the code of SuperLU_DIST 3.0 (see [13])

in order to measure the performance scalability for various sparse matrices (see [61]

for the theoretical foundation regarding the distribution of eigenvalues for some sets

of random matrices). SuperLU_DIST needs to be improved for certain types of

challenging sparse matrices. The study in this chapter was published, and presented

at the "SPE Large Scale Computing and Big Data Challenges in Reservoir Simulation

Conference" with title "Spectral effects of large matrices from oil reservoir simulators

on performance of scalable direct solvers" [15].

We believe that the approach for exception handling of challenging matrices via

Gerschgorin circles is beneficial and practical to stabilize the performance of the

solvers. Nearly defective matrices are among the challenging matrices. Clustered

eigenvalues observed via Gerschgorin circles may be used to detect nearly defective

matrix.

The presence of repeated eigenvalues can be one of the sources of challenges. The

repeated eigenvalue may have fewer eigenvectors than the multiplicity of eigenvalue.

While such eigenvalue is called defective eigenvalue, the corresponding matrix is

referred as a defective matrix (see [62]). If the matrix of eigenvectors is singular,

then the matrix cannot be diagonalizable and the matrix is defective. We observe that

it takes longer time to solve sparse linear system having defective or nearly defective

47

matrix than regular matrix. Moreover, defective matrix may lead to memory restriction

due to the appearance of more fill-ins than that of diagonalizable matrix.

The remainder of this chapter is organized as follows. First, the test matrices are

described. Later, the computation for spectral properties is presented and several

illustrative examples are given.

5.1 Methods and Results

The selected eigenvalues of large matrices are computed using the Scalable Library for

Eigenvalue Problem Computations (SLEPc) software (see [63]), which is developed

based on the Portable, Extensible Toolkit for Scientific Computation (PETSc) (see

[64]). The code has been tested up for all sparse matrices in the list on HP Integrity

Superdome SD32B (see [65]), a computing server with shared memory architecture at

UHeM (see [66]). The software package includes implementations of a set of methods

for the solution of large sparse eigenproblems on parallel computers. It is applicable

to both symmetric and nonsymmetric matrices. In our computations, we used the

Krylov-Schur method available in the package.

We can compute all eigenvalues of the small randomly populated matrices and show

the distribution of eigenvalues for RAND_30K_75 in Figure 5.1. We observe that

nearly all eigenvalues can be found within the circle except for the largest eigenvalue

that is indicated by an isolated point in figure. The distribution of eigenvalues for a

randomly populated matrix is a good reference for other patterned matrices in order to

understand the deviations between them (see [67]). We describe the test matrices in

Table 5.1.

48

Ta
bl

e
5.

1
:D

es
cr

ip
tio

n
of

m
at

ric
es

.

M
at

ric
es

O
rd

er
N

N
Z

N
N

ZN
O

rig
in

K
in

d
of

pr
ob

le
m

R
A

N
D

_3
0K

_7
5

30
00

0
22

50
00

0
75

U
H

eM
R

an
do

m
ly

po
pu

la
te

d
M

at
rix

30
0k

90
00

00
13

36
20

67
14

,8
5

R
es

er
vo

ir
si

m
ul

at
io

n
B

la
ck

-o
il

m
od

el
sp

e5
R

ef
_d

pd
p_

a
20

58
00

0
66

80
87

00
32

,4
6

R
es

er
vo

ir
si

m
ul

at
io

n
7

co
m

po
ne

nt
EO

S
m

od
el

sp
e5

R
ef

_d
pd

p_
b

20
58

00
0

71
26

03
52

34
,6

2
R

es
er

vo
ir

si
m

ul
at

io
n

7
co

m
po

ne
nt

EO
S

m
od

el
sp

e5
R

ef
_d

pd
p_

c
20

58
00

0
68

93
02

22
33

,4
9

R
es

er
vo

ir
si

m
ul

at
io

n
7

co
m

po
ne

nt
EO

S
m

od
el

sp
e5

R
ef

_d
pd

p_
d

20
58

00
0

68
93

02
22

33
,4

9
R

es
er

vo
ir

si
m

ul
at

io
n

7
co

m
po

ne
nt

EO
S

m
od

el
sp

e5
R

ef
_d

pd
p_

e
20

58
00

0
67

18
92

20
32

,6
5

R
es

er
vo

ir
si

m
ul

at
io

n
7

co
m

po
ne

nt
EO

S
m

od
el

EM
IL

IA
_9

23
92

31
36

40
37

35
38

43
,7

4
U

FS
M

C
G

eo
m

ec
ha

ni
ca

ls
tru

ct
ur

al
H

EL
M

2D
03

LO
W

ER
_2

0K
39

22
57

19
39

35
3

4,
94

U
H

eM
Pa

tc
he

d
m

at
rix

ob
ta

in
ed

fr
om

H
EL

M
2D

03
M

_U
H

EM
3

14
25

82
5

17
03

76
38

11
,9

4
U

H
eM

Pa
tc

he
d

m
at

rix
ob

ta
in

ed
fr

om
pa

ra
bo

lic
_f

em
m

C
_8

M
80

00
00

0
39

98
80

00
4,

99
9

U
H

eM
C

FD

49

For the large sparse matrices we compute the extreme eigenvalues. We try to see a

rough picture of the distribution for the rest of the eigenvalues by using Gerschgorin’s

theorem. We show the Gerschgorin’s circles of the patched matrix M_UHEM3 (see

Duran et al. [68]), five matrices from 7 component EOS model, matrix Emilia_923,

and matrix HELM2D03LOWER_20K in Figures 5.2 - 5.9, respectively. As the matrix

becomes more patterned, the spectral space changes and the eigenvalues take place

within disjoint, overlapped or clustered of Gerschgorin circles.

For example, when we examine the spectral properties of HELM2D03LOWER_20K,

the real parts of the eigenvalues range between 2.294563 and 4.944602 with many

repeated eigenvalues. Those clustered eigenvalues can be observed via Gerschgorin

circles. Therefore, HELM2D03LOWER_20K is a nearly defective matrix. We used

the SuperLU_DIST 3.3 with tunings of super-nodal storage parameters. However,

it runs slowly for the matrix HELM2D03LOWER_20K compared to EMILIA_923,

because HELM2D03LOWER_20K is a challenging matrix. It takes approximately

7,5 times longer than EMILIA_923, although HELM2D03LOWER_20K’s order,

total number of non-zeros and the number non-zeros per row are less than that of

EMILIA_923.

SuperLU_MCDT is a distributed direct solver and the software will be uploaded to

website (see [17]) after academic permissions from Istanbul Technical University.

Here, we used symbolic factorization, ParMETIS (see [69]) for column permutation

and Intel MKL (see [70]) as the BLAS library, among several options. The tuning of

super-nodal storage parameters is important for the performance and we selected the

tuned parameters relax:100 and maxsuper:110 (see [64]).

We define an optimal minimum number of cores as the number of cores that provides

the minimum wall clock time for a given size of problem, where a right match occurs

between the problem size and the available resources such as memory, in presence of

communication overhead (see Duran et. al [71]). We find that the optimal minimum

number of cores required depends on the sparsity level and size of the matrix. As the

sparsity level of matrix decreases and the order of matrix increases, we expect that the

optimal minimum number of cores increases slightly.

50

Figure 5.1 : Distribution of eigenvalues for matrix RAND_30K_75.

Figure 5.2 : Gerschgorin’s circles of M_UHEM3.

51

Figure 5.3 : Gerschgorin’s circles of spe5Ref_dpdp_a.

Figure 5.4 : Gerschgorin’s circles of spe5Ref_dpdp_b.

52

Figure 5.5 : Gerschgorin’s circles of spe5Ref_dpdp_c.

Figure 5.6 : Gerschgorin’s circles of spe5Ref_dpdp_d.

53

Figure 5.7 : Gerschgorin’s circles of spe5Ref_dpdp_e.

Figure 5.8 : Gerschgorin’s circles of matrix Emilia_923.

54

Figure 5.9 : Gerschgorin’s circles of matrix HELM2D03LOWER_20K.

Table 5.2 : Optimal wall clock times (s) of SuperLU_MCDT for the Matrix300k
from the black-oil model and five matrices from 7 component EOS model described

in Table 5.1.

Matrices Optimal time (s) Optimal minimum number
of cores (meshes)

Matrix300k Factor Time 10,46 1024
Total Time 24,48 (256x4)

spe5Ref_dpdp_a Factor Time 52,79 16384
Total Time 208,27 (4096x4)

spe5Ref_dpdp_b Factor Time 49,29 16384
Total Time 220,91 (4096x4)

spe5Ref_dpdp_c Factor Time 193,6 1024
Total Time 242,34 (256x4)

spe5Ref_dpdp_d Factor Time 193,54 1024
Total Time 242,11 (256x4)

spe5Ref_dpdp_e Factor Time 51,43 16384
Total Time 216,49 (4096x4)

Table 5.2 illustrates the time for the factorization and the total time for each matrix

based on the optimal minimum number of cores. We observe that the optimal minimum

number of cores can be different depending on the matrix properties.

55

We imbedded direct solvers (kernel class) such as SuperLU_DIST 3.3 and

SuperLU_MCDT in addition to the solvers provided by OpenFOAM (see [23]).

Because future exascale systems are expected to have heterogeneous and many-core

distributed nodes, we believe that our SuperLU_MCDT software is a good candidate

for future systems. We tested the performance of the solver at TGCC Curie (a

Tier-0 system) at CEA, France (see [14] and [71]). SuperLU_MCDT worked up to

16384 cores for the large penta-diagonal matrices for 2D problems and hepta-diagonal

matrices for 3D problems, arising from the incompressible blood flow simulation,

without any problem. For example, Table 5.3 shows the distribution of wall clock

time (s) for mC_8M matrix and the impact of number of super-nodes and the

communication overhead coming from ParMETIS on the performance. We obtained

similar results for the other matrices in Table 5.1. SuperLU_MCDT uses dense block

structures, called super-nodes to get advantages of BLAS3 (see [72]) with the common

technique of array padding, like SuperLU_DIST 3.3. Super-node detection differs as

process mesh size and its square or rectangular shape. So we observe sometimes more

efficient case matched to the super-node detection strategies of the algorithm where the

optimal minimum number of cores for the matrix mC_8M is 512.

56

Ta
bl

e
5.

3
:D

is
tri

bu
tio

n
of

w
al

lc
lo

ck
tim

e
(s

)f
or

m
C

_8
M

m
at

rix
us

in
g

Pa
rM

ET
IS

fo
rc

ol
um

n
pe

rm
ut

at
io

n,
at

TG
C

C
C

ur
ie

(a
Ti

er
-0

sy
st

em
)

at
C

EA
,F

ra
nc

e

#
of

co
re

s
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

(m
es

h)
(1

6
X

16
)

(1
6

X
32

)
(3

2
X

32
)

(3
2

X
64

)
(6

4
X

64
)

(6
4

X
12

8)
(1

28
X

12
8)

N
on

ze
ro

s
in

L
73

68
67

16
1

80
85

87
37

75
98

89
25

6
76

53
76

71
9

69
22

60
21

6
70

04
75

15
6

69
02

87
57

1
N

on
ze

ro
s

in
U

73
68

67
16

1
80

85
87

37
75

98
89

25
6

76
53

76
71

9
69

22
60

21
6

70
04

75
15

6
69

02
87

57
1

no
nz

er
os

in
L+

U
14

65
73

43
22

16
07

17
47

4
15

11
77

85
12

15
22

75
34

38
13

76
52

04
32

13
92

95
03

12
13

72
57

51
42

no
nz

er
os

in
LS

U
B

10
23

86
04

7
11

55
89

66
10

62
62

84
4

10
80

45
66

0
94

66
26

08
97

33
83

83
96

49
13

85
#

of
su

pe
r-

no
de

s
20

42
38

26
84

7
20

70
25

20
86

20
21

54
65

21
45

35
21

72
16

Eq
ui

lt
im

e
0,

39
0,

27
0,

53
1,

41
2,

07
2,

23
6,

05
R

ow
Pe

rm
tim

e
2,

18
0,

27
2,

17
2,

18
2,

18
2,

2
2,

17
C

ol
Pe

rm
tim

e
5,

54
8,

63
31

,1
2

66
,2

9
10

2,
04

13
9,

54
30

1,
12

Sy
m

bF
ac

tt
im

e
3,

92
0,

41
4,

07
4,

1
3,

57
3,

66
3,

63
D

is
tri

bu
te

tim
e

1,
07

0,
24

0,
75

0,
76

0,
69

0,
92

1,
68

Fa
ct

or
tim

e
9,

34
1,

79
13

,6
4

13
,8

7
25

,3
3

43
,4

6
90

,9
8

So
lv

e
tim

e
3,

33
0,

01
1,

59
1,

88
1,

59
1,

85
2,

05
R

efi
ne

m
en

tt
im

e
19

,7
6

1,
06

7,
84

6,
59

7,
75

8,
1

10
,8

5
||X

-X
tru

e|
|/|

|X
||

1,
18

E-
12

4,
06

E-
11

1,
80

E-
12

2,
35

E-
12

1,
12

E-
12

1,
08

E-
12

1,
10

E-
12

To
ta

lt
im

e
(s

)
45

,5
3

12
,6

8
61

,7
1

97
,0

8
14

5,
22

20
1,

96
41

8,
53

57

58

6. CONCLUSIONS

In this thesis, we discuss many aspects of parameter optimization in mathematical

modeling. We present methods and suggestions for parameter optimization in the

differential equation system and for optimal selection of the computational resources

and their combinations as crucial part of mathematical modeling in real-world use

cases.

First of all, we propose a new mathematical method, a hybrid of hyperbox and

multi-start methods, for an inverse problem of parameter vector estimation in order

to understand the population dynamics of investors and obtain valuable results for

machine learning applications. We examine the effect of two different approaches

for obtaining initial parameter vector pools via Monte Carlo simulations during the

parameter vector optimization in the dynamical system of asset flow differential

equations. The Monte Carlo simulations for NLS errors, MIF values and the number

of QN iterations work due to the Law of Large Numbers.

The initial parameter vectors in the initial parameter vector pool Kg of the grid

approach are relatively more uniformly distributed than the initial parameter vectors in

the Kr of random approach, in the hyperbox search space. We find that the performance

of the grid approach is relatively better than that of random approach for selection

of initial parameter vectors in a hyperbox based on our Monte Carlo simulation

and convergence diagrams for NLS errors and MIF values in the unconstrained

optimization problem. While the NLS error values that grid approaches converge are

smaller than that of random approach for relatively small pool sizes, they approach

each other for large pool sizes. This result is consistent with the Law of Large

Numbers.

In sum, there is a tradeoff between the accuracy via less NLS error and the

computational cost via number of QN iterations. While the grid approach outperforms

the random approach in terms of NLS errors and MIF values, the random approach

59

requires less number of QN iterations than the grid approach during our comparisons

based on the experiments for our data set.

Asset flow differential equations reflect expert opinions coming from microeconomic

principals and experimental economics. Consequently, we obtain optimal / feasible

parameter vector that reflects investor preferences based on current market situations.

Our approach in Chapter 2 such as grid approach and random approach in hyperbox for

selection of initial parameter vectors may be applied to other appropriate optimization

problems in science and engineering as well.

In Chapter 3, we complement the project report [11] about the development and

assessment of the parallel nonlinear parameter optimization algorithm with classified

IPV pools. In this work, we evaluated the convergence of the model parameter vector,

the NLS error and MIF to quantify the success of the optimization process depending

on the number of IPVs and financial market situations such as the presence of low

volatility, high volatility and stock MP at a discount/premium to its NAV. We obtained

smaller NLS errors and better MIF via the parallel algorithm compared to the serial

algorithm with fixed initial parameter pool having less number of IPVs, based on the

dataset. Moreover, we observe that generally the NLS error is larger for the time series

pair as proxy to MP and NAV whose volatilities are sufficiently higher for both MP and

NAV when the other variables are fixed. Finally, we consider different work scheduling

and load balancing strategies. We try dynamic IPV assignments to cores. For example,

first, each core can launch with one parameter vector and seek to take new one when it

completes the task.

In Chapter 4, we perform bio-medical fluid flow simulations for the large matrices

arising from the simulation of blood flow in arteries in emerging CPU+GPU

systems. The flow problem generated various challenging matrices during the

simulation. We compared the CPU performance of the iterative solver icoFoam

and the hybrid parallel codes (MPI+OpenMP) of a direct solver SuperLU_DIST

4.0 (see [13]) at TGCC Curie (a Tier-0 system) thin nodes at CEA, France

(see [14]). We observe that the iterative solver with a diagonal incomplete LU

preconditioned bi-conjugate gradient outperforms the direct solver SuperLU_DIST

60

4.0 for the simulation matrices. Moreover, we compared the performance of the

hybrid parallel codes of MPI+OpenMP+CUDA versus MPI+OpenMP implementation

of SuperLU_DIST 4.0 at TGCC Curie (a Tier-0 system) hybrid nodes of CPU + GPU

at CEA, France (see [14]). Generally, we notice that MPI+OpenMP implementation

outperforms the hybrid of MPI+OpenMP+CUDA for the set of simulation matrices

when we consider the wall clock times for the optimal number of cores because of

several overheads coming from CUDA implementation for the complex direct solver

algorithm. Furthermore, we met with several errors for the challenging simulation

matrices. We believe that the technology developments in emerging CPU+GPU

systems will increase the scalability of related complex algorithms by eliminating the

bottlenecks coming from communication and right matching of system components

required for special applications.

In Chapter 5, we observe that the existing versions of SuperLU are sensitive to

challenging matrices and need exception handling. Apart from the solver, spectral

analysis can be done and tuned parameters may be used accordingly. We released the

first SuperLU_MCDT (Many Core Distributed) version (1.0) with several novelties

based on the direct solver SuperLU_DIST 3.3. Our benchmark tests show that

SuperLU_ MCDT can run on up to 16348 cores.

There is no unique solver that fits all our needs for every matrix because of the

rich pattern spectrum of matrices and the NP-complete problem of best reordering

for minimum fill-in. We observe that the optimal minimum number of cores can

be different depending on the matrix properties. The existence of optimal minimum

number of cores requires a rule base to make a decision.

We believe that expert systems (see [73]), knowledge-based computer programs with

a set of inference rules (‘if then’ type statements) in a rule base, are among the most

promising subfields in artificial intelligence for big data discovery and decision making

applications such as oil and gas reservoir simulators in a timely and reliable fashion.

We plan that expert system tools for real time decision making based on the spectral

properties and the super-node detection strategies of various large patterned matrices

coming from reservoir modeling and the exception handling for the challenging

61

matrices will be among the new properties of SuperLU_MCDT version (2.0). We will

use an expert system with forward chaining as a reasoning method to reach conclusions

in our learning algorithm.

62

REFERENCES

[1] Bremermann, H. (1970). A method of unconstrained global optimization,
Mathematical Biosciences, 9, 1–15.

[2] Milstein, J., (1981). The inverse problem: Estimation of kinetic parameters,
Modelling of Chemical Reaction Systems, Proceedings of an Int.
Workshop Heidelberg Series, K. H. Ebert, P. Deuflhard, and W.
Jäger, (Eds.), Springer Series in Chemical Physics, volume18, Springer,
pp.92–101.

[3] Chapra, S. (2008). Applied Numerical Methods with MATLAB for Engineers and
Scientists, 2nd Edition, McGraw Hill, New York, NY.

[4] Duran, A. and Caginalp, G. (2008). Parameter optimization for differential
equations in asset price forecasting, Optimization Methods & Software,
23(4), 551–574, issue: Mathematical programming in data mining and
machine learning.

[5] Tunçel, M. and Duran, A. (2023). Effectiveness of grid and random approaches for
a model parameter vector optimization, Journal of Computational Science,
67, 101960.

[6] Caginalp, G. and Ermentrout, G. (1991). Numerical studies of differential
equations related to theoretical financial markets, Applied Mathematics
Letters, 4(1), 35–38.

[7] Caginalp, G. and Balenovich, D. (1999). Asset flow and momentum:
deterministic and stochastic equations, Philosophical Transactions of
the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 357(1758), 2119–2133.

[8] Duran, A. (2011). Stability analysis of asset flow differential equations, Applied
Mathematics Letters, 24(4), 471–477.

[9] Caginalp, C., Caginalp, G. and Swigon, D. (2021). Stochastic asset flow
equations: Interdependence of trend and volatility, Physica A: Statistical
Mechanics and its Applications, 574, 125985.

[10] Duran, A. and Tuncel, M. (2016). Evaluation of a new parallel numerical
parameter optimization algorithm for a dynamical system, Proceedings
of the 2nd International Conference Numerical Computations: Theory
and Algorithms (NUMTA2016) Italy, 19-25 June 2016, AIP Conference
Proceedings, volume1776, p.090052.

63

[11] Duran, A. and Tuncel, M. (2014). Scalable Parallel Nonlinear Parameter
Optimization Algorithm with Parameter Pools, https://doi.org/
10.5281/zenodo.825430, project final report.

[12] Duran, A., Piskin, S. and Tuncel, M. (2016). Evaluating the maturity
of OpenFOAM simulations on GPGPU for bio-fluid applications,
Proceedings of the Emerging Technology (EMiT) Conference, pp.11–14.

[13] Li, X., Demmel, J., Gilbert, J., Grigori, L., Shao, M. and Yamazaki, I.
(1999). ‘SuperLU users’ guide,”Lawrence Berkeley Nat. Lab., Berkeley,
CA, Technical Report, USA, Tech. Rep., Sep. 1999. Update: 2011.

[14] CEA TGCC Curie HPC cluster, https://www-hpc.cea.fr/index-en.
html, accessed Jan. 2016.

[15] Duran, A. and Tuncel, M. (2014). Spectral Effects of Large Matrices from Oil
Reservoir Simulators on Performance of Scalable Direct Solvers, SPE
Large Scale Computing and Big Data Challenges in Reservoir Simulation
Conference and Exhibition, SPE-172984-MS.

[16] Al-Shaalan, T.M., Fung, L.S. and Dogru, A.H. (2003). A scalable massively
parallel dual-porosity dual-permeability simulator for fractured reservoirs
with super-k permeability, SPE annual technical conference and
exhibition, OnePetro.

[17] University of Florida sparse matrix collection, http://www.cise.ufl.
edu/research/sparse/matrices/, accessed Jan. 2016.

[18] Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering, Springer,
New York, NY.

[19] Dixon, M., Halperin, I. and Bilokon, P. (2021). Machine Learning in Finance
From Theory to Practice, Springer, New York, NY.

[20] Ganeshapillai, G. (2014). Learning connections in financial time series,
Massachusetts Institute of Technology, USA.

[21] Duran, A. (2009). Sensitivity analysis of asset flow differential equations and
volatility comparison of two related variables, Numerical Functional
Analysis and Optimization, 30(1), 82–97.

[22] Rinnooy Kan, A. and Timmer, G. (1987). Stochastic global optimization methods
part I: Clustering methods, Mathematical Programming, 39(1), 27–56.

[23] Rinnooy Kan, A. and Timmer, G. (1987). Stochastic global optimization methods
part II: Multi level methods, Mathematical Programming, 39(1), 57–78.

[24] Jones, D.R., Perttunen, C.D. and Stuckman, B.E. (1993). Lipschitzian
optimization without the Lipschitz constant, Journal of Optimization
Theory and Applications, 79(1), 157–181.

64

[25] Bartholomew-Biggs, M. (2006). Nonlinear Optimization with Financial Applica-
tions, Springer Science & Business Media, New York, NY.

[26] Caginalp, G., Porter, D. and Smith, V.L. (2000). Overreaction, momentum,
liquidity, and price bubbles in laboratory and field asset markets, Journal
of Psychology and Financial Markets, 1(1), 24–48.

[27] Smith, V., Suchanek, G. and Williams, A. (1988). Bubbles, crashes, and en-
dogenous expectations in experimental spot asset markets, Econometrica,
56(1), 1119–1151.

[28] Duran, A. and Caginalp, G. (2007). Overreaction diamonds: Precursors and
aftershocks for significant price changes, Quantitative Finance, 7(3),
321–342.

[29] Duran, A. (2006). Overreaction behavior and optimization techniques in
mathematical finance, University of Pittsburgh, USA.

[30] Ritter, G.X. and Urcid, G. (2021). Introduction to Lattice Algebra: With
Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic
Neural Networks, Chapman and Hall/CRC, Boca Raton, FL.

[31] Higham, D.J. and Higham, N.J. (2016). MATLAB Guide, SIAM, Philadelphia,
PA.

[32] Anderson, S. and Born, J. (2002). Closed-end Fund Pricing: Theories and
Evidence, Kluwer Academic Publishers, Boston, MA.

[33] Nocedal, J. and Wright, S. (2006). Numerical Optimization, Springer Science &
Business Media, New York, NY.

[34] Dennis, Jr, J.E. and Moré, J.J. (1977). Quasi-Newton methods, motivation and
theory, SIAM review, 19(1), 46–89.

[35] Dennis, J.E. and Schnabel, R.B. (1996). Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, SIAM, Philadelphia, PA.

[36] Floudas, C.A. and Pardalos, P.M. (2008). Encyclopedia of Optimization,
Springer Science & Business Media, New York, NY.

[37] Jonsson, M. (2006). An Introduction to Monte Carlo Simulations, Textbook
for Numerical Methods with Financial Applications, Department of
Mathematics, University of Michigan, Ann Arbor, MI.

[38] Sauer, T. (2012). Numerical Analysis, Pearson: 2nd Edition, New York, NY.

[39] Ross, S. (2006). A First Course in Probability, Pearson Prentice Hall 7th Edition,
Upper Saddle River, NJ.

[40] Broyden, C.G. (1970). The convergence of a class of double-rank minimization al-
gorithms 1. general considerations, IMA Journal of Applied Mathematics,
6(1), 76–90.

65

[41] Broyden, C.G. (1970). The convergence of a class of double-rank minimization
algorithms: 2. The new algorithm, IMA Journal of Applied Mathematics,
6(3), 222–231.

[42] Duran, A. and Bommarito, M.J. (2011). A profitable trading and risk
management strategy despite transaction costs, Quantitative Finance,
11(6), 829–848.

[43] Raschka, S. (2015). Python Machine Learning, Packt Publishing Ltd, Birming-
ham, UK.

[44] Gropp, W., Gropp, W.D., Lusk, E., Skjellum, A. and Lusk, A.D.F.E.E. (1999).
Using MPI: portable parallel programming with the message-passing
interface, volume1, MIT press.

[45] National Center for High Performance Computing (UHeM), Technical Spesifica-
tions of Ege Server, http://en.uhem.itu.edu.tr/index.php/
donanim-2, accessed Feb. 2016.

[46] Duran, A., Celebi, M.S., Piskin, S. and Tuncel, M. (2015). Scalability
of OpenFOAM for bio-medical flow simulations, The Journal of
Supercomputing, 71, 938–951.

[47] Meyer, N. and Lawenda, M. (2013). D5.2: Best Practices for HPC Procure-
ment and Infrastructure, https://doi.org/10.5281/zenodo.
6572412.

[48] David, J., Richet, J.N., Boyer, E., Anastopoulos, N., Collet, G., Colin de
Verdière, G., van Olmen, T., Ouvrard, H., Cocquebert, C., Frogé,
B., Haritatos, A., Nikas, K., Gkountouvas, T., Papadopoulou, N. and
Athanasaki, E. (2013). Best Practice Guide – Curie, https://doi.
org/10.5281/zenodo.6534658.

[49] TOP500 Supercomputer sites, http://top500.org/, accessed Jan. 2016.

[50] The Green500 List, https://www.top500.org/lists/green500/, ac-
cessed Jan. 2016.

[51] OpenFOAM main website, http://www.openfoam.com, accessed Jan. 2016.

[52] Sao, P., Vuduc, R. and Li, X.S. (2014). A distributed CPU-GPU sparse
direct solver, Euro-Par 2014 Parallel Processing: 20th International
Conference, Porto, Portugal, August 25-29, 2014. Proceedings 20,
Springer, pp.487–498.

[53] Celebi, M.S., Duran, A., Tuncel, M. and Akaydin, B. (2012). PRACE-2IP
white paper: Scalable and improved SuperLU on GPU for heterogeneous
systems, Technical Report: 283493, Department of Mathematical
Engineering, Istanbul Technical University, https://prace-ri.eu/
wp-content/uploads/scalablesuperluongpu.pdf.

66

[54] Li, X.S. and Demmel, J.W. (2003). SuperLU_DIST: A scalable
distributed-memory sparse direct solver for unsymmetric linear systems,
ACM Transactions on Mathematical Software (TOMS), 29(2), 110–140.

[55] Amestoy, P.R., Duff, I.S., L’Excellent, J.Y. and Koster, J. (2001). A fully
asynchronous multifrontal solver using distributed dynamic scheduling,
SIAM Journal on Matrix Analysis and Applications, 23(1), 15–41.

[56] Schenk, O. and Gärtner, K. (2002). Solving unsymmetric sparse systems of
linear equations with PARDISO, Computational Science—ICCS 2002:
International Conference Amsterdam, The Netherlands, April 21–24, 2002
Proceedings, Part II, Springer, pp.355–363.

[57] Schenk, O. and Gärtner, K. (2006). On fast factorization pivoting methods
for sparse symmetric indefinite systems, Electronic Transactions on
Numerical Analysis, 23(1), 158–179.

[58] Duran, A. and Saunders, B. Gen_SuperLU package (version 1.0, August 2002),
referenced as GSLU also, a part of LinBox package, GSLU contains a set
of subroutines to solve a sparse linear system A* X= B over any field.

[59] Duran, A., Saunders, B.D. and Wan, Z. (2003). Hybrid algorithms for rank of
sparse matrices, Proceedings of the SIAM International Conference on
Applied Linear Algebra (SIAM-LA), pp.15–19.

[60] Duran, A., Celebi, M.S., Tuncel, M. and Akaydin, B. (2012). Design
and Implementation of New Hybrid Algorithm and Solver on CPU
For Large Sparse Linear Systems, https://doi.org/10.5281/
zenodo.810699, project final report.

[61] Marchenko, V.A. and Pastur, L.A. (1967). Distribution of eigenvalues for some
sets of random matrices, Matematicheskii Sbornik, 114(4), 507–536.

[62] Strang, G. (2006). Linear algebra and its applications., Belmont, CA: Thomson,
Brooks/Cole.

[63] Hernandez, V., Roman, J.E. and Vidal, V. (2005). SLEPc: A scalable and flexible
toolkit for the solution of eigenvalue problems, ACM Transactions on
Mathematical Software (TOMS), 31(3), 351–362.

[64] Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G.,
McInnes, L.C., Smith, B.F. and Zhang, H. (2001). PETSc, See
http://www.mcs.anl.gov/petsc.

[65] nPartition Administrator’s Guide, H. part number: 5991-1247B, February 2007,
Hewlett-Packard Development Company.

[66] National Center for High Performance Computing (UHeM), Technical Spesi-
fications of Karadeniz Server, http://www.uybhm.itu.edu.tr,
accessed June 2014.

67

[67] Duran, A., Celebi, M.S., Tuncel, M. and Oztoprak, F. (2013). Structural
Analysis of Large Sparse Matrices for Scalable Direct Solvers, https:
//doi.org/10.5281/zenodo.831525, project final report.

[68] Duran, A., Celebi, M.S., Tuncel, M. and Akaydin, B. Scalability of SuperLU
solvers for large scale complex reservoir simulations, SPE and SIAM
Conference on Mathematical Methods in Fluid Dynamics and Simulation
of Giant Oil and Gas Reservoirs, Istanbul, Turkey, September 3-5, 2012.
SPE Conference, 2012.

[69] (Par)METIS homesite, http://www.lrz.de/services/software/
mathematik/metis, accessed June 2014.

[70] Intel Optimized Math Library for Numerical Computing, http://software.
intel.com/en-us/intel-mkl, accessed June 2014.

[71] Duran, A., Celebi, M.S., Piskin, S. and Tuncel, M. (2014). Scalability of
OpenFOAM for Bio-medical Flow Simulations, https://doi.org/
10.5281/zenodo.822968, project final report.

[72] BLAS (Basic Linear Algebra Subprograms), http://www.netlib.org/
blas, accessed June 2014.

[73] Feigenbaum, E. (1992). Expert systems: principles and practice, KSL-91-79.

68

APPENDICES

APPENDIX A : Simulation Results
APPENDIX B : Fundamental Concepts

69

70

APPENDIX A : Simulation Results

The following six tables show our simulation results including NLS errors in Tables
A.1 - A.2, MIF values in Tables A.3 - A.4, and QN iterations in Tables A.5 - A.6,
according to Algorithm 1.

71

Table A.1 : Converged average NLS error values for Dsc time series group in order to
compare grid and random approaches via simulation results.

Sequence Parameter Different parameter vector lengths
name Type 256 512 1024 2048 4096

Dsc_01 grid 0.0209 0.0197 0.0227 0.0242 0.0240
random 0.0276 0.0227 0.0202 0.026 0.0218

Dsc_02 grid 0.0251 0.0238 0.0243 0.0248 0.0238
random 0.0305 0.0299 0.0240 0.0248 0.0235

Dsc_03 grid 0.0171 0.0166 0.0205 0.0201 0.0225
random 0.0249 0.0198 0.0163 0.0245 0.0215

Dsc_04 grid 0.0195 0.0190 0.0254 0.0260 0.0264
random 0.0246 0.0192 0.0205 0.0259 0.0223

Dsc_05 grid 0.0196 0.0189 0.0252 0.0260 0.0251
random 0.0266 0.0233 0.0217 0.0244 0.0216

Dsc_06 grid 0.0203 0.0196 0.0289 0.0283 0.0289
random 0.0272 0.0234 0.0209 0.0268 0.0257

Dsc_07 grid 0.0220 0.0208 0.0189 0.0212 0.0212
random 0.0329 0.0277 0.0224 0.0272 0.0221

Dsc_08 grid 0.0268 0.0263 0.0244 0.0252 0.0235
random 0.0341 0.0313 0.0252 0.0284 0.0258

Dsc_09 grid 0.0261 0.0252 0.0275 0.0259 0.0237
random 0.0315 0.0305 0.0245 0.0282 0.0234

Dsc_10 grid 0.0239 0.0238 0.0227 0.0248 0.0234
random 0.0305 0.0274 0.0231 0.0265 0.0239

Dsc_11 grid 0.0232 0.0212 0.0217 0.0241 0.0227
random 0.0314 0.0252 0.0245 0.0260 0.0218

Dsc_12 grid 0.0289 0.0272 0.0253 0.0266 0.0246
random 0.0340 0.0286 0.0259 0.0308 0.0256

Dsc_13 grid 0.0239 0.0221 0.0224 0.0245 0.0221
random 0.0333 0.0285 0.0227 0.0254 0.0219

Dsc_14 grid 0.0289 0.0279 0.0274 0.0280 0.0275
random 0.0427 0.0335 0.0307 0.0323 0.0273

Dsc_15 grid 0.0258 0.0251 0.0238 0.0251 0.0232
random 0.0362 0.032 0.0263 0.0270 0.0257

Dsc_16 grid 0.0179 0.0172 0.0279 0.0254 0.0268
random 0.0220 0.0181 0.0187 0.0254 0.0231

Dsc_17 grid 0.0174 0.0169 0.0203 0.0223 0.0223
random 0.0246 0.0211 0.0189 0.0237 0.0195

Dsc_18 grid 0.0209 0.0195 0.0242 0.0245 0.0255
random 0.0283 0.0242 0.0216 0.0251 0.0229

Dsc_19 grid 0.0214 0.0204 0.0222 0.0226 0.0219
random 0.0269 0.0228 0.0215 0.0257 0.0220

Dsc_20 grid 0.0227 0.0216 0.0235 0.0221 0.0226
random 0.0296 0.0239 0.0239 0.0246 0.0222

72

Table A.2 : Comparison of grid and random approaches via simulation results with
respect to average NLS error values for Prm time series group.

Sequence Parameter Different parameter vector lengths
name Type 256 512 1024 2048 4096

Prm_01 grid 0.0208 0.0197 0.0239 0.0241 0.0234
random 0.0254 0.0229 0.0186 0.0244 0.0226

Prm_02 grid 0.0204 0.0194 0.0213 0.0237 0.0240
random 0.0283 0.0249 0.0216 0.0257 0.0223

Prm_03 grid 0.0191 0.0184 0.023 0.0242 0.0255
random 0.0249 0.0215 0.0185 0.0249 0.0237

Prm_04 grid 0.0207 0.0181 0.0236 0.0248 0.0249
random 0.0267 0.0249 0.0227 0.0254 0.0214

Prm_05 grid 0.0284 0.0272 0.0262 0.0254 0.0244
random 0.0364 0.0331 0.0278 0.0293 0.0282

Prm_06 grid 0.0197 0.0194 0.0238 0.0229 0.0229
random 0.0240 0.0220 0.0204 0.0240 0.0240

Prm_07 grid 0.0264 0.0265 0.0250 0.0245 0.0239
random 0.0350 0.0280 0.0243 0.0294 0.0243

Prm_08 grid 0.0249 0.0229 0.0222 0.0246 0.0241
random 0.0333 0.0327 0.0261 0.0265 0.0244

Prm_09 grid 0.0258 0.0242 0.0249 0.0251 0.0249
random 0.0311 0.0294 0.0270 0.0285 0.0238

Prm_10 grid 0.0211 0.0202 0.0244 0.0243 0.0247
random 0.0313 0.0231 0.0224 0.0242 0.0225

Prm_11 grid 0.0228 0.0212 0.0284 0.0276 0.0284
random 0.0284 0.0244 0.0221 0.0269 0.0242

Prm_12 grid 0.0242 0.0233 0.0254 0.0252 0.0233
random 0.0349 0.0307 0.0267 0.0267 0.0257

Prm_13 grid 0.0234 0.0233 0.0222 0.0235 0.0219
random 0.0348 0.0292 0.0261 0.0291 0.0244

Prm_14 grid 0.0183 0.0176 0.0252 0.0251 0.0268
random 0.0253 0.0245 0.0189 0.0241 0.0223

Prm_15 grid 0.0313 0.0313 0.0296 0.0297 0.0279
random 0.0438 0.0339 0.0291 0.0311 0.0277

Prm_16 grid 0.0184 0.0173 0.0255 0.0248 0.0277
random 0.0231 0.0216 0.0195 0.0258 0.0233

Prm_17 grid 0.0322 0.0309 0.0299 0.0299 0.0281
random 0.0415 0.0319 0.0339 0.0318 0.0316

Prm_18 grid 0.022 0.0211 0.0211 0.0213 0.0218
random 0.0336 0.0225 0.0227 0.0251 0.0226

Prm_19 grid 0.0229 0.0220 0.0240 0.0234 0.0225
random 0.0309 0.0278 0.0246 0.0257 0.0227

Prm_20 grid 0.0192 0.0187 0.0215 0.0239 0.0209
random 0.0268 0.0246 0.0220 0.0221 0.0215

73

Table A.3 : Resulting average MIF values for Dsc time series group for comparison
of grid and random approaches via simulation results.

Sequence Parameter Different parameter vector lengths
name Type 256 512 1024 2048 4096

Dsc_01 grid 0.2760 0.2764 0.2458 0.2649 0.2339
random 0.3544 0.3605 0.2653 0.3664 0.2879

Dsc_02 grid 0.2765 0.2689 0.2425 0.2546 0.2295
random 0.3839 0.3695 0.2548 0.2854 0.2958

Dsc_03 grid 0.2840 0.2844 0.2453 0.2555 0.2211
random 0.3435 0.3746 0.2439 0.3594 0.2825

Dsc_04 grid 0.2898 0.2941 0.2526 0.2774 0.2467
random 0.3633 0.3425 0.2576 0.3711 0.3070

Dsc_05 grid 0.2730 0.2749 0.2422 0.2699 0.2358
random 0.3606 0.3464 0.2584 0.3470 0.2932

Dsc_06 grid 0.2829 0.2819 0.2538 0.2676 0.2439
random 0.3519 0.3442 0.2533 0.4058 0.3011

Dsc_07 grid 0.2773 0.2711 0.2251 0.2543 0.2315
random 0.4186 0.3983 0.2485 0.3238 0.2798

Dsc_08 grid 0.3005 0.2918 0.2580 0.2615 0.2445
random 0.4373 0.4204 0.2502 0.3097 0.2987

Dsc_09 grid 0.2836 0.2807 0.2541 0.2498 0.2172
random 0.4313 0.4024 0.2639 0.3133 0.2944

Dsc_10 grid 0.3011 0.2911 0.2543 0.2868 0.2515
random 0.4274 0.3964 0.2661 0.3441 0.2812

Dsc_11 grid 0.2847 0.2649 0.2379 0.2644 0.2444
random 0.3937 0.3501 0.2810 0.3054 0.2823

Dsc_12 grid 0.2750 0.2741 0.2413 0.2564 0.2322
random 0.3876 0.3540 0.2412 0.3164 0.2702

Dsc_13 grid 0.2752 0.2480 0.2177 0.2471 0.2261
random 0.4215 0.3569 0.2406 0.3086 0.2553

Dsc_14 grid 0.2632 0.2550 0.2361 0.2522 0.2170
random 0.4481 0.3803 0.2580 0.2883 0.2703

Dsc_15 grid 0.2856 0.2731 0.2450 0.2513 0.2123
random 0.4324 0.4094 0.254 0.2948 0.2752

Dsc_16 grid 0.2607 0.2699 0.2483 0.2527 0.2276
random 0.3465 0.3378 0.2620 0.4092 0.2987

Dsc_17 grid 0.2882 0.2913 0.2705 0.2785 0.2388
random 0.3725 0.3664 0.2487 0.3648 0.2965

Dsc_18 grid 0.2726 0.2712 0.2438 0.2658 0.2366
random 0.3603 0.3409 0.2698 0.3676 0.2918

Dsc_19 grid 0.2723 0.2757 0.2427 0.2545 0.2384
random 0.3662 0.3511 0.2364 0.3375 0.2849

Dsc_20 grid 0.2849 0.2808 0.2419 0.2675 0.2439
random 0.3757 0.3745 0.2858 0.3509 0.2858

74

Table A.4 : Resulting average MIF values for Prm time series group for comparison
of grid and random approaches via simulation results.

Sequence Parameter Different parameter vector lengths
name Type 256 512 1024 2048 4096

Prm_01 grid 0.2859 0.2896 0.2629 0.2729 0.2360
random 0.3462 0.3641 0.2571 0.3519 0.2976

Prm_02 grid 0.2944 0.2840 0.2510 0.2769 0.2459
random 0.4014 0.3872 0.2666 0.3453 0.3130

Prm_03 grid 0.2886 0.2891 0.2564 0.2728 0.2519
random 0.3500 0.3701 0.2426 0.3683 0.3017

Prm_04 grid 0.2829 0.2642 0.2305 0.2661 0.2323
random 0.3796 0.3620 0.2572 0.3559 0.2880

Prm_05 grid 0.2957 0.2844 0.2586 0.2653 0.2418
random 0.4520 0.4098 0.2702 0.3073 0.3104

Prm_06 grid 0.2904 0.2928 0.2552 0.2541 0.2179
random 0.3642 0.3495 0.2472 0.3488 0.2918

Prm_07 grid 0.2857 0.2839 0.2614 0.2393 0.2213
random 0.4267 0.3830 0.2533 0.3120 0.2805

Prm_08 grid 0.3006 0.2788 0.2447 0.2712 0.2465
random 0.4156 0.4051 0.263 0.3090 0.2894

Prm_09 grid 0.2819 0.2775 0.2517 0.2580 0.2301
random 0.3891 0.3795 0.2711 0.3087 0.2770

Prm_10 grid 0.2747 0.2739 0.2565 0.2650 0.2363
random 0.3717 0.3432 0.2525 0.3537 0.2974

Prm_11 grid 0.3076 0.3026 0.2747 0.2741 0.2425
random 0.3530 0.3445 0.2747 0.4123 0.3105

Prm_12 grid 0.3028 0.2944 0.2521 0.2755 0.2517
random 0.4479 0.4187 0.2839 0.3366 0.3164

Prm_13 grid 0.2590 0.2527 0.2287 0.2373 0.2214
random 0.4079 0.3802 0.2631 0.3193 0.2689

Prm_14 grid 0.2730 0.2683 0.2409 0.2672 0.2409
random 0.3498 0.3475 0.2493 0.3882 0.3005

Prm_15 grid 0.2778 0.2672 0.2401 0.2471 0.2241
random 0.4658 0.3739 0.2472 0.2782 0.2915

Prm_16 grid 0.2771 0.2759 0.2476 0.2559 0.2324
random 0.3393 0.3650 0.2588 0.3944 0.2951

Prm_17 grid 0.2708 0.2537 0.2371 0.2559 0.2274
random 0.4443 0.3731 0.2503 0.2866 0.2771

Prm_18 grid 0.2980 0.2889 0.2545 0.2625 0.2364
random 0.4267 0.3569 0.2653 0.3138 0.291

Prm_19 grid 0.2957 0.2913 0.2786 0.2738 0.2437
random 0.4339 0.4193 0.2732 0.3180 0.2823

Prm_20 grid 0.2777 0.2789 0.2529 0.2699 0.2453
random 0.3735 0.3713 0.2629 0.3066 0.2748

75

Table A.5 : Average QN iteration numbers for Dsc time series group via simulation,
while using grid and random approaches.

Sequence Parameter Different parameter vector lengths
name Type 256 512 1024 2048 4096

Dsc_01 grid 160.76 174.22 191.55 228.32 261.17
random 110.26 144.85 189.43 210.17 248.76

Dsc_02 grid 156.47 190.43 215.96 250.63 278.19
random 120.29 164.56 197.03 260.63 258.69

Dsc_03 grid 138.65 174.33 192.68 225.13 259.10
random 122.63 155.34 198.25 218.45 244.66

Dsc_04 grid 131.58 151.01 174.77 211.8 239.16
random 116.06 153.69 181.38 198.69 238.68

Dsc_05 grid 149.37 164.62 179.99 208.61 251.14
random 132.78 154.96 180.07 215.44 235.97

Dsc_06 grid 141.77 158.81 157.67 181.85 227.76
random 104.41 144.52 167.08 186.75 218.60

Dsc_07 grid 186.29 201.63 224.06 245.88 279.92
random 130.71 151.26 183.91 230.65 254.45

Dsc_08 grid 168.50 177.14 205.08 233.14 279.82
random 133.34 158.17 204.09 238.28 266.57

Dsc_09 grid 156.33 190.29 206.86 247.27 303.72
random 126.53 163.96 197.68 239.13 273.95

Dsc_10 grid 141.07 161.97 197.20 235.39 287.87
random 147.19 144.39 182.20 228.11 260.47

Dsc_11 grid 149.48 187.40 204.52 240.62 289.82
random 118.78 183.90 173.05 237.26 257.43

Dsc_12 grid 167.87 185.44 211.58 239.35 280.33
random 137.59 166.76 195.70 249.74 282.19

Dsc_13 grid 168.16 190.39 199.22 253.30 298.21
random 117.61 197.18 191.91 247.85 272.91

Dsc_14 grid 177.74 191.29 213.69 247.1 310.91
random 116.57 158.93 180.75 241.7 250.89

Dsc_15 grid 159.45 185.32 206.38 243.06 286.24
random 99.48 143.9 187.44 241.81 272.69

Dsc_16 grid 139.07 160.98 162.45 205.10 219.78
random 115.43 135.97 167.04 188.07 221.50

Dsc_17 grid 145.96 155.62 184.64 225.83 248.74
random 93.88 145.69 180.41 209.03 237.80

Dsc_18 grid 138.12 150.62 172.60 210.64 241.11
random 98.37 153.36 171.31 195.86 223.10

Dsc_19 grid 151.77 183.66 210.22 229.72 289.66
random 131.73 155.17 197.12 213.05 265.67

Dsc_20 grid 142.02 162.11 188.93 236.89 270.06
random 129.67 164.82 164.88 214.97 261.09

76

Table A.6 : Average QN iteration numbers for Prm time series group via simulation,
for the pair of grid and random approaches.

Sequence Parameter Different parameter vector lengths
name Type 256 512 1024 2048 4096

Prm_01 grid 150.71 159.29 178.3 223.68 250.75
random 105.25 164.97 186.13 216.81 251.34

Prm_02 grid 157.95 169.59 197.41 218.48 265.86
random 107.04 175.18 206.23 228.54 254.92

Prm_03 grid 140.29 167.90 184.44 214.33 236.91
random 116.28 162.20 180.64 195.69 236.15

Prm_04 grid 148.34 180.52 184.23 214.00 255.9
random 125.61 161.38 178.11 207.02 250.54

Prm_05 grid 156.88 184.54 208.87 240.46 292.68
random 139.90 156.81 182.39 246.15 253.08

Prm_06 grid 157.38 166.88 173.82 219.83 273.35
random 123.56 142.59 170.42 209.64 226.73

Prm_07 grid 160.92 185.33 207.51 246.64 293.85
random 134.73 171.13 198.98 247.66 273.80

Prm_08 grid 143.77 183.31 211.86 221.32 282.56
random 138.03 148.13 175.10 241.64 266.25

Prm_09 grid 151.18 157.33 185.25 228.89 273.08
random 138.13 161.83 168.12 210.72 262.54

Prm_10 grid 146.10 170.36 183.89 220.63 251.73
random 115.62 160.87 180.58 210.63 242.83

Prm_11 grid 130.40 149.41 152.58 198.97 229.83
random 100.32 134.06 164.79 183.12 217.74

Prm_12 grid 144.62 164.69 191.51 218.49 268.92
random 136.07 152.55 161.83 207.58 237.27

Prm_13 grid 177.78 192.27 218.33 242.44 325.66
random 131.51 165.06 204.76 236.78 289.99

Prm_14 grid 133.11 162.03 160.97 214.28 239.34
random 116.49 153.45 180.34 205.24 218.73

Prm_15 grid 162.74 199.50 224.89 257.67 295.65
random 100.64 191.74 185.79 234.11 253.98

Prm_16 grid 132.1 154.91 165.93 203.16 229.35
random 97.44 144.62 176.98 177.10 213.48

Prm_17 grid 182.13 206.61 220.81 251.37 304.48
random 144.46 193.56 196.58 255.97 283.44

Prm_18 grid 138.01 174.52 206.20 235.99 279.25
random 110.82 189.78 165.23 233.55 250.96

Prm_19 grid 155.87 174.79 186.11 222.02 282.93
random 104.87 132.55 179.0 221.69 259.16

Prm_20 grid 161.22 195.57 208.96 240.94 281.56
random 154.47 153.26 187.08 223.09 252.87

77

78

APPENDIX B : Fundamental Concepts

Here, We give brief definitions for the following fundamental concepts introduced in
chapters.

CPU (Central Processing Unit) is an electronic circuitry in which arithmetic, logic, and
controlling units execute given instructions. It is the main important part of computers.

GPU (Graphics Processing Unit) refers to an electronic circuitry that is able to render
graphics in performance. Nowadays, GPUs are used to handle intense numerical
calculations for high-performance algorithms and machine learning, as well.

CUDA (Compute Unified Device Architecture) is a computing platform for parallel
algorithms that makes general-purpose computing on GPUs possible as an application
programming interface.

OpenMP (Open Multi-Processing) is an application programming interface take
makes multiprocessing programming possible for shared-memory systems.

MPI (Message Passing Interface) is a library that enables advanced computational
devices to communicate with each other in high performance.

FLOPS (Floating Point Operations Per Second) is a metric for computers that shows
the performance of the scientific computations with the number of instructions per
second.

79

80

CURRICULUM VITAE

Name SURNAME: Mehmet TUNÇEL

EDUCATION:

• B.Sc.: 2008, Mimar Sinan Fine Arts University, Faculty of Science and Letters,
Mathematics.

• M.Sc.: 2013, Istanbul Technical University, Informatics Institute, Computational
Science and Engineering.

PROFESSIONAL EXPERIENCE AND REWARDS:

• 2012�2019, Research Assistant, Istanbul Technical University, Informatics
Institute.

• 2019�..., Lecturer, Istanbul Technical University, Artificial Intelligence and Data
Science Application and Research Center (ITU AI).

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• Tunçel, M. and Duran, A. (2023). Effectiveness of grid and random approaches
for a model parameter vector optimization. Journal of Computational Science
- Elsevier, 67, 101960. https://doi.org/10.1016/j.jocs.2023.101960. (Article
Instance)

• Duran, A. and Tunçel, M. (2016). Evaluation of a new parallel numerical
parameter optimization algorithm for a dynamical system, Proceedings of the
2nd International Conference Numerical Computations: Theory and Algorithms
(NUMTA2016), Italy, 19-25 June 2016, AIP Conference Proceedings, 1776,
090052. https://doi.org/10.1063/1.4965416. (Presentation Instance)
https://web.itu.edu.tr/aduran/B1_Duran_Tuncel_2016_NUMTA_187.pdf

• Duran, A., Piskin, S. and Tunçel, M. (2016). Evaluating the maturity of
OpenFOAM simulations on GPGPU for bio-fluid applications, Proceedings of the
Emerging Technology (EMiT) Conference, pp. 11-14, Barcelona Supercomputing
Center, Spain, 2-3 June 2016, editors: B.D.Rogers, D.Topping, F.Mantovani,
M.K.Bane. ISBN 978-0-9933426-3-9. (Presentation Instance)
https://web.itu.edu.tr/aduran/B2_Duran_Piskin_Tuncel_2016_EMiT.pdf

81

• Duran, A. and Tunçel, M. (2014). Spectral effects of large matrices from oil
reservoir simulators on performance of scalable direct solvers. In SPE Large
Scale Computing and Big Data Challenges in Reservoir Simulation Conference and
Exhibition. OnePetro. https://doi.org/10.2118/172984-MS. (Presentation Instance)

• Duran, A. and Tunçel M. (2014). Scalable parallel nonlinear param-
eter optimization algorithm with parameter pools, PRACE PN: 283493,
PRACE-2IP Extension, Scalable Algorithms, WP 185, August 11, 2014.
https://doi.org/10.5281/zenodo.825430. (White Paper - Project Closure Report)
https://prace-ri.eu/wp-content/uploads/WP185.pdf

• Duran A. and Tunçel M. (2014). A report on summary of novel programming
techniques results, D12.5, Section 3.3, Page 23, PRACE (Partnership for Advanced
Computing in Europe), PRACE PN:RI-283493, PRACE-2IP Extension, August 31,
2014. https://doi.org/10.5281/zenodo.6572440. (Project Closure Report Summary)
https://prace-ri.eu/wp-content/uploads/2IP-D12.5.pdf

82

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:

• Duran, A., Tunçel, M. and Özer, H. Ü. (2020). GPU programlama ile yüksek
boyutlu yoğun matrislerin kronecker çarpımlarının hesaplanması, 2019, Erciyes
Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 36(1), pp. 120-128, Nisan 2020.

• Duran, A., Celebi, M.S. and Tunçel, M. (2012-2017). Parallel algorithm
(kernel) development for large scale sparse linear systems in oil reservoir
simulation (PASSOR), Researcher, Computational Linear Algebra Project for
Saudi ARAMCO, July 1, 2012-2017.

• Duran, A., Celebi, M.S., Piskin, S. and Tunçel, M. (2015). Scalability of
OpenFOAM for bio-medical flow simulations, Journal of Supercomputing -
Springer, 71(3), 2015, pp. 938-951. https://doi.org/10.1007/s11227-014-1344-1.

• Celebi, M.S., Duran, A., Oztoprak, F., Tunçel, M. and Akaydin, B. (2016).
On theimprovement of a scalable sparse direct solver for unsymmetrical linear
equations, Journal of Supercomputing - Springer, 73(5), 2016, pp. 1852-1904.
https://doi.org/10.1007/s11227-016-1892-7.

• Duran, A., Celebi, M.S. and Tunçel, M. (2012). Scalability of SuperLU solvers
for large scale complex reservoir simulations, Abstract Book, Int. Conference for
Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil and Gas
Reservoirs, SPE and SIAM Conf., Istanbul, Turkey, Sept. 3-5, 2012.

• Duran, A., Celebi, M.S., Tunçel, M. and Oztoprak, F. (2014) Spectral analysis of
large sparse matrices for scalable direct solvers, Advances in Applied Mathematics,
Springer Proceedings in Mathematics & Statistics, 87, pp. 153-160, 2014.
https://doi.org/10.1007/978-3-319-06923-4_14.

• Tunçel, M., Duran, A., Celebi, M.S., Akaydin, B., and Topkaya, F.O.
(2016). A Comparison of SuperLU solvers on the Intel Mic architecture,
Proceedings of the 2nd International Conference Numerical Computations: Theory
and Algorithms (NUMTA2016), AIP Conference Proceedings, 1776, 090030.
https://doi.org/10.1063/1.4965394.

• Mazza, I., Duran, A., Hundur, Y., Persi, C., Santoro, A. and Tunçel, M. (2016).
Scalability of OpenFOAM for simulations of a novel electromagnetic stirrer for
steel casting, Proceedings of the 2016 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’16), World Congress
in Computer Science, Computer Engineering & Applied Computing,pp. 111-116,
ISBN: 1-60132-444-8, CSREA Press, July 25-28, 2016, Las Vegas, USA.

• Mazza, I., Duran, A., Hundur, Y., Persi, C., Santoro, A. and Tunçel,
M. (2016). HPC-based design of a novel electromagnetic stirrer for steel
segment casting, in EU Horizon 2020 - PRACE 4IP, WP214, April 2016.
https://doi.org/10.5281/zenodo.825968. (White Paper - Project Closure Report)
https://prace-ri.eu/wp-content/uploads/WP214.pdf

83

• Duran, A., Celebi, M.S., Piskin, S. and Tunçel, M. (2014). Scalability
of OpenFOAM for bio-medical flow simulations, PRACE PN: RI-312763,
PRACE-3IP, Application scalability: Computational Fluid Dynamics (CFD)
applications, WP 162, June 9, 2014. https://doi.org/10.5281/zenodo.822968.
(White Paper - Project Closure Report)
https://prace-ri.eu/wp-content/uploads/WP162.pdf

• Duran, A. and Tunçel, M. (2014). Exploitation of HPC tools and
techniques, D7.2.2, Section 3.5, PRACE (Partnership for Advanced Com-
puting in Europe), PRACE PN: RI-312763, PRACE-3IP, May 24, 2014.
https://doi.org/10.5281/zenodo.6575526. (Project Closure Report Summary)
https://prace-ri.eu/wp-content/uploads/3IP-D7.2.2.pdf

• Duran, A., Celebi, M.S., Akaydin, B., Tunçel, M. and Oztoprak, F. (2013).
Analysis of SuperLU solvers on the Intel MIC architecture, PRACE PN: 261557,
PRACE-1IP Extension, Evaluations on Intel MIC, WP 135, December 25, 2013.
https://doi.org/10.5281/zenodo.822644. (White Paper - Project Closure Report)
https://prace-ri.eu/wp-content/uploads/wp135.pdf

• Duran, A. and Tunçel, M. (2013). A report on application enabiling for capability
science in the MIC architecture, D7.1.3, Section 3.11, PRACE (Partnership for
Advanced Computing in Europe), PRACE PN: RI-261557, PRACE-1IP, December
13, 2013. https://doi.org/10.5281/zenodo.6553059. (Project Closure Report
Summary)
https://prace-ri.eu/wp-content/uploads/1IP-D7.1.3.pdf

• Duran, A., Celebi, M.S., Tunçel, M. and Oztoprak F. (2013). Struc-
tural analysis of large sparse matrices for scalable direct solvers, PRACE
PN: 283493, PRACE-2IP, Scalable Algorithms, WP 82, August 20, 2013.
https://doi.org/10.5281/zenodo.831525. (White Paper - Project Closure Report)
https://prace-ri.eu/wp-content/uploads/wp82.pdf

• Celebi, M.S., Duran, A., Tunçel, M., Akaydin B. and Oztoprak F. (2013).
Performance analysis of BLAS libraries in SuperLU_DIST for SuperLU_MCDT
(Multi Core Distributed) development, PRACE PN: 283493, PRACE-2IP, Libraries,
WP 83, July 11, 2013. https://doi.org/10.5281/zenodo.831527. (White Paper -
Project Closure Report)
https://prace-ri.eu/wp-content/uploads/wp83.pdf

• Duran, A. and Tunçel, M. (2013). A report on the survey of HPC
tools and techniques, D7.2.1, Section 4.1, PRACE (Partnership for Advanced
Computing in Europe), PRACE PN: RI-312763, PRACE-3IP, April 29, 2013.
https://doi.org/10.5281/zenodo.6575492. (Project Closure Report Summary)
https://prace-ri.eu/wp-content/uploads/3IP-D7.2.1.pdf

• Duran, A., Celebi, M.S., Tunçel, M. and Akaydın B. (2012). Design
and implementation of new hybrid algorithm and solver on CPU for large
sparse linear systems, PRACE (Partnership for Advanced Computing in
Europe), PRACE PN: 283493, PRACE-2IP, Libraries, WP 43, July 13, 2012.

84

https://doi.org/10.5281/zenodo.810699. (White Paper - Project Closure Report)
https://prace-ri.eu/wp-content/uploads/wp43-newhybridalgorithmfo_lsls.pdf

• Celebi, M.S., Duran, A., Tunçel, M. and Akaydın, B. (2012). Scalable and
improved SuperLU on GPU for heterogeneous systems, PRACE (Partnership for
Advanced Computing in Europe), PRACE PN: 283493, PRACE-2IP, Libraries, WP
44, July 13, 2012. https://doi.org/10.5281/zenodo.815126. (White Paper - Project
Closure Report)
https://prace-ri.eu/wp-content/uploads/scalablesuperluongpu.pdf

85

