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A system of nonlinear asset flow differential equations (AFDE) gives rise to an inverse prob-
lem involving optimization of parameters that characterize an investor population. The op-
timization procedure is used in conjunction with daily market prices and net asset values
to determine the parameters for which the AFDE yield the best fit for the previous n days.
Using these optimal parameters the equations are computed and solved to render a forecast
for market prices for the following days. For a number of closed-end funds, the results are
statistically closer to the ensuing market prices than the default prediction of random walk.
In particular, we perform this optimization by a nonlinear computational algorithm that
combines a quasi-Newton weak line search with the BFGS formula. We develop a nonlinear
least-square technique with an initial value problem (IVP) approach for arbitrary stream data
by focusing on the market price variable P since any real data for the other three variables
B, ζ1 and ζ2 in the dynamical system is not available explicitly. We minimize the sum of
exponentially weighted squared differences F [K̃] between the true trading prices from day i
to day i + n − 1 and the corresponding computed market prices obtained from the first row
vector of the numerical solution U of the IVP with AFDE for ith optimal parameter vector
where K̃ is an initial parameter vector. Here, the gradient (∇F (x)) is approximated by using
the central difference formula and step length s is determined by the backtracking line search.
One of the novel components of the proposed asset flow optimization forecast algorithm is
a dynamic initial parameter pool which contains most recently used successful parameters,
besides the various fixed parameters from a set of grid points in a hyper-box.
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1. Introduction

Forecasting of asset market prices is of interest from a practical and theoretical
perspective. Methodology in forecasting can be divided broadly into two groups.
One of these consists of purely statistical methods, e.g., time series, that strive to
uncover a statistically significant pattern in the data. A second involves developing
some understanding of the underlying processes and deriving, for example, differ-
ential equations. In general, there are some parameters that need to be estimated
in order for a prediction to be made. For example, in weather forecasting one could
make forecasts of temperatures in a way that is strictly statistical based upon the
available data for a particular city and its neighbors. The alternative, however,
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is to utilize physical laws and estimate some parameters statistically whereupon
the differential equations can be used to make a forecast. An advantage of the
latter is that it greatly reduces the degrees of freedom, which, in a practical sense
means that there are many fewer coefficients to be estimated. In some cases, there
is a conservation law (e.g., the conservation of mass for weather forecasting) that
eliminates a wide spectrum of coefficients. The main disadvantages of the model-
ing approach versus the purely statistical approach is that the former may not be
easily possible until a deeper understanding is attained. A secondary problem is
that unfamiliarity with modeling leads some to question whether the conclusions
are built into the system that has been derived. On the other hand, in a purely
statistical model, it appears to be a clear and fair test of the importance of different
effects.

However, the issue of the origin of the model is less relevant when it is possible
to perform out-of-sample forecast (as is the case for weather forecasting and stock
price forecasting, for example) that can be tested statistically to determine the
accuracy of the predictions. Related to this issue is the Akaike [1] criterion which
is a measure of the balance between the number of parameters to be estimated and
the deviation between the model and the actual data. In other words, dramatically
increasing the number of parameters in order to provide a slight improvement in
the error does not yield a better model, in general. In the case of out-of-sample
forecasting of asset prices, however, the number of parameters to be estimated is
purely a practical issue. If one can determine a set of parameters within the com-
putational and time constraints to make an accurate forecast, then it is generally
not desirable to reduce the number of parameters considerably in order to obtain a
forecast that is almost as good. On the other hand the constraints on time may be
sufficiently strong that one may be restricted in the number of parameters and the
method of estimation. For example, if one is using the government data released
during the trading day in order to optimize parameters and make a forecast, one
may have a constraint of one minute. On the other hand, if one is using daily data
to make forecasts for the next day, one has the overnight time interval from the
close of trading to the open of the next day.

Our approach uses the asset flow differential equations (AFDE) that have been
developed by Caginalp and collaborators since 1989 (see Caginalp and Balenovich
[11] and references contained therein). This approach has several key ingredients
as discussed in the next section. It utilizes a basic supply and demand adjustment
equation, but also incorporates the finiteness of assets, rather than the assumption
of infinite arbitrage capital of classical finance theory. Furthermore, the supply
and demand are determined by a transition rate that is dependent on sentiment.
Classically, sentiment should depend only on a discount or premium to valuation.
However, recent decades of research work has documented a set of motivations
beyond valuation. One of the most significant of these is the price trend, also
called momentum. The equations can readily incorporate additional motivational
aspects of trading as they are established. In fact, one way of implementing this
is to modify the differential equations to difference equations, and then to use
statistical methods to evaluate the coefficients. Thus, if one hypothesizes a price
trend motivation, the confirmation is the determination of a coefficient that is
positive and statistically significant. If the coefficient corresponding to a particular
hypothesized behavioral motivation is not actually present, then the coefficient, by
definition, will be within the standard error of zero.

The implementation of these differential equations for practical forecasts poses
challenging mathematical tasks that are inverse problems. Once a set of parameters
characterizing an investor population is specified, the differential equations can be
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solved for future times. However, the values of the parameters are not known a
priori, so that parameters must be determined by optimization using the actual
price history up to the present time. We perform this optimization by a nonlinear
computational algorithm that combines a quasi-Newton weak line search with the
BFGS formula. We use nonlinear least-square technique with initial value problem
approach by focusing on the market price variable P since any real data for the
other three variables B, ζ1 and ζ2 in the dynamical system is not available explicitly.
Here, the gradient (∇F (x)) is approximated by using the central difference formula
and step length s is determined by the backtracking line search among several
choices in literature (see Nocedal and Wright [29]). We construct a pool of initial
parameters Ki chosen via a set of grid points in a hyper-box. We select an initial
parameter vector from the initial parameter pool because the optimization success
of quasi-Newton method in the algorithm depends on the initial parameter. Besides
the fixed part of various initial parameters, the dynamic part of the pool is updated
by adding successful parameters so that we keep a pool of various and most recently
used candidate parameters.

In this paper, we utilize a system of differential equations that incorporate the
valuation and trend motivations similar to Caginalp and Balenovich [11]. The ques-
tion of valuation of a particular asset is often difficult to assess unambiguously.
Nevertheless, the methodology for developing a valuation model is well established
in finance, and a model for valuation can be constructed for a particular asset
class. We utilize a particular group of stocks for which the valuation is very clear
namely the set of closed-end funds traded on the NYSE. Briefly, a closed-end fund
(see Bodie et al. [6]) is formed as investors pool a sum of money for a particular
investment, e.g., investing in common stocks in Japan. Shares are allocated to the
shareholders, who may then trade their shares on the open market, just like any
other stock on the NYSE, and with the same rules. For most closed-end funds,
the net asset value per share (NAV) is computed daily or weekly, and reported
to the shareholders. Unlike an open-end fund, however, the shares of a closed-end
fund cannot be redeemed by the fund except under special circumstances. This,
of course, introduces the possibility that the fund may trade (on the NYSE) lower
than the NAV (called a discount) or higher (called a premium) than the NAV.
The fact that these funds often trade at significant discounts (e.g. 5% to 25%)
and sometimes at large premiums (e.g. 50%) has been a puzzle to classical finance,
and many papers have addressed these issues (see Anderson and Born for a sum-
mary [2]). A number of these papers have focussed on reconciling these discounts
to the efficient market hypothesis (EMH) whose centerpiece is the concept that
the market trading price should reflect all available public information and should
therefore reflect the true value. For example, a fund may trade at a discount due
to an inherent tax liability ([2], Chapter 6) due to profits that are unrealized for
tax purposes.

Relatively few studies have considered the issue of the changes in the discounts.
Even if there is a good reason for the fund to trade at a discount, why should the
discount fluctuate significantly? One study focussing on this aspect is Duran and
Caginalp [17] which demonstrated that (i) there are many significant changes in the
discount on a daily basis, ranging from 2.5% to over 10%, (ii) there is movement
in the opposite direction on the days following this significant change, and (iii)
there are significant precursors to the significant changes, also in the opposite
direction. They found a characteristic overreaction diamond pattern, revealing a
symmetry in deviations before and after the significant change. In addition, the
magnitude of the reversal increases as the degree of deviation increases. Much
of the statistical significance and the patterns disappear when the subtraction of
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NAV return is eliminated, suggesting that the frequent changes in fundamentals
mask behavioral effects. Furthermore, they (see [16] and [17]) subdivided the data
depending on whether the NAV or market price is responsible for the spike in the
relative difference. In a majority of spikes, it is the change in market price rather
than NAV that is dominant. In general this paper showed that there is a systematic
pattern that is consistent with the overall perspective of the asset flow dynamics.
In particular these equations suggest that when there is dip below the realistic
or fundamental value, it is generally concurrent with a move toward higher cash
positions on the part of investors. Coupled with the motivation to buy an asset at
a discount, this higher cash position leads quickly to higher prices. The situation
is similar in the other direction.

Our goal in this paper is to develop a methodology to optimize the parameters
for these differential equations that will make possible out-of-sample predictions.
In particular, we utilize the NYSE data for a large set of closed end funds over
a large time period comprising 8,415 data points. On any particular day for any
closed-end fund, we use the trading price for a recent time period as well as the
NAV in order to optimize the parameters of the differential equations. For each
set of four parameters, the corresponding differential equations are obtained and
solved numerically. We compute the sum of exponentially weighted squared differ-
ences between the true trading prices at times ti, ..., ti+n−1 and the corresponding
computed market price values which are obtained from the first row vector of the
numerical solution U of the IVP for ith parameter set. The optimization methods
are then used to minimize this difference, i.e., the error, along the candidate set of
parameters obtained via the quasi-Newton parameter search by selecting suitable
step length sk to move along search direction Pk. The parameter minimizing the
sum of difference is picked. Using this parameter set, the IVP is solved numerically
to render a forecast for the next day. The previously found optimal parameter
set is added to the initial parameter pool. The parameter pool is specific to the
fund’s price behavior. By repeating this procedure one obtains a large set of fore-
casted values that can be compared with the actual closing prices for the particular
closed end fund. A gauge of the accuracy of these estimates can be obtained by
comparing the absolute values of the error in each day’s forecast with the error
in assuming random walk. The latter is the default hypothesis asserted by EMH
that the best forecast of tomorrow’s price is today’s price plus the average return
per day (which is negligibly small). The two sets of positive numbers can then be
compared statistically to determine if one is smaller than the other with statistical
significance.

In literature, many parameter optimization techniques have been studied for
various differential equations in specific science and engineering problems or ap-
plications by testing with a limited data set rather than arbitrary conditions. For
example, unconstrained derivative-free optimization, unconstrained optimization
with derivatives, forward sensitivity analysis and adjoint (backward) sensitivity
analysis, (see Biegler and Tjoa [5], Bremermann [7], Dennis et al. [14], Dunker
[15], Guay and McLean [18], Kiehl [21], Kramer and Leis [22], Lee and Hovland
[23], Maly and Petzold [25], Milstein [27], Milstein [28], Serban and Hindmarsh [32]
and references contained therein). Derivative-free algorithms employ only function
values for the search direction and they may suffer from the stagnation around a
relative minimum. Moreover, random directional line search (a coordinate descent
method) is an indeterministic method because of the random directions (see [29]
for the inefficiency of coordinate descent methods in practice). There is no unique
perfect method which works best for all global unconstrained optimization prob-
lems. The quasi-Newton method with dynamic initial parameter pool is a feasible
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one for our semi-unconstrained optimization problem from financial application.
In different applications we may meet with specific challenging problems. For

example,

• Some initial parameters may lead to singularities at k = 0, B = 0, k = 1, or
B = 1 in the AFDE during parameter optimization process. Our implementation
handles this problem.
• We apply nonlinear optimization technique for arbitrary conditions (various

initial parameters and variable values, and a large real data set) in a challenging
financial application.
• For optimization methods using derivatives in a nonlinear model it is crucial

to start the iteration close enough to the potential global minimum to get rid of
being caught in a local minimum. It is harder to choose such initial parameters
for arbitrary stream data of stock market.
• We believe the space of function curves obtained via real market data is dif-

ferent and richer than that of, for example, chemical reaction data. Repeatability
of same experiment versus real time update forecast is another difference.
• There is a wide range of variability in obtaining optimal parameters for the

nonlinear problem. That is, the residual values may change between 10−1 and
10−14.
• We have methods which are efficient for certain stiff and non-stiff applica-

tions (see Ascher and Petzold [3]). For an arbitrary day price prediction via
the asset flow differential equations, we meet with both stiff problems (having
widely varying time scales where the standard numerical methods may require
extremely small step size h) and non-stiff problems.

There are more factors affecting the success of the prediction besides the difficul-
ties of the optimization process. Forecasting is often difficult in many disciplines.
For example, weather forecasting (see Mak [24]) has been studied extensively for
many decades with some success, and yet there are still many surprises. In the case
of markets, forecasting is especially difficult since one is trying essentially to make
a forecast that is better than the aggregate forecast of the market participants.
The efficient market hypothesis asserts that this is not possible.

The studies using raw data (for example, the standard Box-Jenkins procedure)
have shown that random walk is the best of the auto-regressive integrated moving
average (ARIMA) models. Moreover, the ARIMA model has no realistic chance of
showing a turning point. Furthermore, one of the recent studies (see Hutchinson
[20], pp 106) could obtain success rates between 44.90% and 51.02% for performance
of out of sample prediction by using financial time series analysis models such as
random walk and auto-regressive/moving average (ARMA(0,1)).

To the best of our knowledge, this is the first study to find the next day price
return direction for an arbitrary day with a significant right match probability
greater than 52% by using the power of differential equations.

The remainder of the paper is organized as follows. In Section 2, we present
our parameter optimization approach for the asset flow differential equations, the
corresponding algorithm, and optimization results with three examples. In Section
3, our method of market price return prediction, two success tests and prediction
results are discussed. The decision parameters for success performance are the
direction of market and the absolute difference of predicted return and actual
return. Section 4 concludes the paper. The Appendix includes the quasi-Newton
method with our implementation choices.
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2. Parameter optimization for differential equations

2.1. Optimization problem

We use a nonlinear computational optimization technique successively to evaluate
the vector K̄ of four parameters (c1, q1, c2, q2) in the asset flow differential equa-
tions (AFDE) (see [11]). That is, the inverse problem of parameter identification is
converted into an optimization problem to minimize a function in four variables by
using nonlinear least-square curve fitting via the AFDE. We try to employ most of
the data up to any given time in order to choose the parameters optimally. Then,
we make a forecast for the next few days, and compare the forecasts with the actual
values.

In practice, optimization problems may have several local solutions. However,
optimization methods which seek global minima can confuse whether a point K∗
that has been found is a local minimum or a global minimum. There is no strategy
that will guarantee the number of necessary iterations to discover the neighborhood
of the global optimum (see Bartholomew-Biggs [4], Chapter 23). Therefore, we use
an initial parameter pool which has only fixed vectors chosen via a set of grid
points in a hyper-box at the beginning of the optimization process for each fund.
The second part of the pool is updated via previously found optimal parameters and
specific to the fund’s price behavior. Then, we pick the minimum of the resulting
relative minimum function values and the corresponding optimal parameter to be
used for the next day return prediction.

After presenting the proposed optimization algorithm in this section, we discuss
the out-of-sample daily return prediction in Section 3.

2.2. The system of asset flow differential equations (AFDE)

2.2.1. Notation

We define the variables in the system as follows
P (t) : The market price (MP) of the single asset at time t.
1
P

dP
dt : The relative price change.

Pa(t) : The fundamental value.
V (t) : The net asset value (NAV) price at time t.
M : All the cash in the system.
N : The total number of shares.
L := M

N : The liquidity value. L is a fundamental scale for price.
B : The fraction of total funds in the asset.
ζ1(t) : The trend-based component of the investor preference.
ζ2(t) : The value-based component of the investor preference.

2.2.2. Assumptions

(A) We consider trading in a single stock and let B denote the fraction of total
assets that are invested in the stock, so that 1−B is the fraction in cash. Let
k ∈ (0, 1) denote the transition rate, or the probability that a unit of cash will
be used to purchase stock (see Figure 1). Then the demand, D, is given by this
transition rate times the fraction in cash, i.e., D = k(1−B), while the supply,
S, is S = (1− k)B so that

D

S
=

k

1− k

1−B

B
(1)
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(B) The transition rate, k, is derived from the investor sentiment,

ζ = ζ1 + ζ2, (2)

by mapping the ζ values in the range of (−∞,∞) into the interval (0, 1). This
is most easily done through a tanh function,

k(t) =
1
2

+
1
2

tanh(ζ), (3)

although the linearization of tanh(x) ∼= x yields very similar results under
the conditions that are relevant in practice. The sentiment, ζ, is a sum of
contributions due to motivations for buying and selling. We utilize two of these:
momentum and valuation, denoted ζ1 and ζ2, respectively. The momentum
term consists of an integral of the derivative of price, with a weighting factor
e−c1t so that recent price changes have the largest weight.

ζ1 ≡ q1c1

∫ t

−∞
e−c1(t−τ) 1

P (τ)
dP (τ)

dτ
dτ, (4)

Similarly, the valuation is an integral over the relative deviation of price
from the “fundamental value,” reflecting the fact that some time elapses for
investors to act on undervaluation.

ζ2 ≡ q2c2

∫ t

−∞
e−c2(t−τ) Pa(τ)− P (τ)

Pa(τ)
dτ (5)

The constants 1/c1 and 1/c2 are the time scales, respectively, for the mo-
mentum and valuation strategies. The parameters q1 and q2 are the coefficients
of the trend-based and value-based sentiment, respectively.

(C) The relative price change is proportional to the excess demand, (D−S)/S,
and yields,

τ0

P

dP

dt
=

D

S
− 1. (6)

2.2.3. The asset flow equations

The immediate implication of the assumptions above is a set of ordinary differ-
ential equations coupled with an algebraic equation.

1. Using the equations for demand and supply we write the price equation as

1
P

dP

dt
= f(

D

S
) = f(

k

1− k

1−B

B
) (7)

where f is an increasing function satisfying that f(1) = 0 and taken as f(x) =
δlog(x) for a constant amplitude δ, for example 1, that scales time in equation
(7).
2. The fraction of assets invested in the stock can change as assets flow between
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Figure 1. Transition.

cash and stock, and also through changes in the stock’s price (See Figure 1):

dB

dt
= k(1−B)− (1− k)B + B(1−B)

1
P

dP

dt
(8)

3. The transition rate, k, satisfies the algebraic equation

k =
1
2

+
1
2

tanh(ζ1 + ζ2). (9)

4. Upon differentiating the integrals in the sentiment functions we obtain or-
dinary differential equations for these variables. The trend based component
of the sentiment, ζ1, satisfies the differential equation

dζ1

dt
= c1(

q1

P

dP

dt
− ζ1) (10)

5. Similarly, the value based component satisfies

dζ2

dt
= c2(q2A(t)− ζ2). (11)

The fundamental value, as perceived by the investors, needs to be specified. In
principle one could choose this factor to be (Vt − Pt)/Vt. This would imply that
investors are inclined to buy whenever the value of the closed-end fund is below
the price, and likewise for selling. However, this is usually not the case, as many
such funds trade at a chronic discount, and some at a premium. For example,
the discount for some funds is often near 10%. The fact that the discount is 10%
today does not mean people are eager to buy it due to undervaluation. However,
if it goes to a 20% discount then some people look at that as a bargain. Similarly,
there are funds that are usually at a 25% premium, so that a 10% premium is
perceived to be an undervaluation. Hence, we assume that the investors will buy
when the discount/premium is below a weighted average of the past ten days with
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the most recent weighted highest. Using a discrete exponential weighting we let∑10
k=1 e−0.25k = 3.2318 (see Caginalp and Ilieva [12]) related to the normalization

and the relative valuation change

At =
Vt − Pt

Vt
− (

10∑

k=1

(3.2318)−1 Vt−k − Pt−k

Vt−k
e−0.25k) (12)

for our discrete implementation of equation (11). q2 is multiplied by A(t) which is
the difference between the discount at t and the exponentially weighted average
value of a discount that persists.

The model used above (see Caginalp and Balenovich [11] and references therein)
generalizes the classical price adjustment equations in two important aspects. First,
there is the assumption of a finite asset base, rather than the classical assumption
of infinite arbitrage of classical finance. Second, the motivation for buying or selling
an asset can have various origins beyond valuation.

An implication of the finiteness of assets is the concept of “liquidity price” that
was introduced in (Caginalp and Balenovich [11]) and defined as the total available
cash divided by the number of shares in the system. A mathematical analysis of
these equations leads to the conclusion [11] that in the absence of significant atten-
tion to value, the price tends to gravitate toward this liquidity price, a conclusion
that was borne out in several experimental settings.

The system of equations (7-11) is a mathematically complete system that can
be solved numerically with an ODE solver for suitable parameters satisfying that
0 < k < 1 and 0 < B < 1. Previous studies have shown that oscillations tend to
increase as the momentum coefficient, q1, increases and the associated time scale
1/c1 decreases. As q2 increases, prices tend to move closer to the fundamental value.

2.3. Non-linear least-square techniques with initial value problem (IVP)
approach

Suppose we have a sequence of true daily market prices Z̄(ts) and net asset values
V̄ (ts), s = 1, ..,m at times t1, .., tm. Using the differential equations, our goal is to
choose the parameters K̄ = (c1, q1, c2, q2) ∈ <4

+ in an optimal manner.

dU

dt
=




dP
dt

dB
dt

dζ1

dt

dζ2

dt




= g(U, K̄, t), U(t1) =




Z̄(t1)

0.5

0

0




(13)

where g is a function obtained from the AFDE (7-11). We solve the IVP (13)
above for U by using Runge-Kutta (RK4) method and an assumed value K̃ of the
parameter K̄ from the fund’s dynamic initial parameter pool K. We define F [K̃]
such that

F [K̃] :=
i+n−1∑

s=i

W (s− i + 1){Z̄(ts)− P (K̃, ts)}2 (14)
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where F [K̃] represents the sum of exponentially weighted squared differences be-
tween the actual market price values Z̄(ts) and the computed market price values
P (K̃, ts) obtained from the first row vector of the numerical solution U of IVP
(13) by picking the values at time tss where ts ∈ [i, i + n − 1] for ith parameter
vector. We try to minimize F [K̃] over <4 by using line search algorithms. Here, W
is a special positive weighting vector of normalized exponentially increasing entries
that we obtain by

W (s) =
e−0.25(n−s+1)

2.51208223355669

for s = 1..n and

n∑

s=1

W (s) = 1.

For example,

W = (0.114051, 0.146444, 0.188038, 0.241445, 0.310022)T

for n = 5.
The dynamical system (7-11) has four first order ordinary differential equations

and one algebraic equation. It is non-linear in terms of the dependent variables.
Moreover, there are products of optimization parameters in the system (7-11) e.g.
c1q1 in equation (10) and c2q2 in equation (11). The optimization problem is a
non-linear least-squares problem since the subfunctions in the equation (14) are
not linear in the components of K̄. Furthermore, for a financially meaningful model
we require K̄ > 0.

In the calculations we use the initial conditions for P (of Z̄(t1)), B (of 0.5), ζ1 (of
0) and ζ2 (of 0) (see equation (13)). Subsequently, these evolve from the dynamical
system. We are not using M directly.

2.4. Main optimization algorithm

Given an n-day period of market prices (MP) and net asset values (NAV) from day
i to day i + n − 1 as ith event where n = τ1 + 1 and i > τ2, we compute optimal
parameter vector K̄i for the period i. Then, we obtain m−i+1 optimal parameters
for the overlapping periods such as [i, i + n− 1], [i + 1, i + n], ..., [m,m + n− 1] for
the MP sequence of size m + n− 1.

There is a tradeoff for selection of n. We choose n sufficiently small in order
to use the daily market price and net asset value. Moreover, local price patterns
which are related to 3 to 15 trading days on average (see Duran and Caginalp
[17] and Caginalp and Balenovich[10]) can be exploited by small values of n during
optimization and prediction processes. On the other hand, n should be large enough
so that the parameter optimization process can capture the price trend reasonably.
For example, we tested for n = 5 and n = 10.

We implement a line search algorithm to obtain optimal parameters during the
optimization process (see Duran [16]). Our algorithm uses a quasi-Newton method
with weak line search for minimizing the sum of squares defined in (14) by using the
AFDE. It has a fast rate of convergence and it is efficient. We mainly focus on the
quasi-Newton method due to its advantages within our study. The Newton method
was not preferred because it requires computation of a second derivative. Although
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it is possible to use finite difference expressions, the calculation of derivatives is
one of the most time consuming parts (see [4] and [29]). Even if in <4, we should
do it so many times for a large data set in a real time update forecast. Moreover,
the approximation can be inaccurate.

The Appendix includes definition of a line search method, quasi-Newton method
and backtracking line search algorithms, our implementation choices, the central
difference formula, the BFGS formula, and the cost and convergence of the algo-
rithms.

We present the optimization process via Algorithm 1 and the flowchart in Figure
2 with definition of the constants, variables, and functions in the algorithm.

cNLS : The computed error F [K̃] defined in the equation (14). It is the
objective function to be minimized.

Z̄ : A sequence of closed-end fund market prices. For example, daily closing
prices during 1998-2006.

V̄ : A sequence of closed-end fund net asset value prices. For example, daily
data during 1998-2006.

τ1 : Period of event minus 1 over which optimal parameter vector is found.
τ2 : Long period of most recent days before the beginning of an event day.

It is used to estimate the relative valuation changes defined in the equation
(12).

zfixed : Number of parameter vectors in the initial fixed parameter pool.
zmax : Maximum parameter pool size.
hRK : RK4 step size.
i : Day index from the price list of a fund. It corresponds to the beginning

of the current event period.
ifirst : i of the first event.
Kfixed : The pool of initial parameters and Kfixed(i, :) ∈ [a1, b1]× [a2, b2]×

[a3, b3]× [a4, b4] for i = 1..zfixed.
K : The pool of running initial parameter vectors. While the initial K is a

zfixed × 4 matrix Kfixed, it can be at most a zmax × 4 matrix.
Kq : A candidate optimal parameter vector which is obtained by quasi-

Newton method given the jth initial parameter from K for the ith event.
K̂ : A matrix whose row vectors consist of positive Kq vectors which provide

small errors F [Kq] < ε2 for the ith event.
KiGlOpt : A positive optimal vector in the row vectors of K̂ which provides

the minimum error F [Kq] for the ith event.
KCEF : A sequence of global optimal parameters for a certain closed-end

fund (CEF).
ε1 : Threshold for the gradient, for example 10−6.
ε2 : Threshold for the cNLS defined in (14) according to the exponential

weights. For example, ε2 = 0.16 means that the average error allowed per day
for fitting (during optimization phase) is

√
0.16 corresponding to $0.40.

QN: A function call to obtain candidate optimal parameter vectors by us-
ing quasi-Newton weak line search with BFGS formula and a dynamic initial
parameter pool.

Qcheck : Qcheck takes -1 which indicates a failure during quasi-Newton func-
tion call related to gradient approximation or singularity at k = 0, B = 0,
k = 1, or B = 1. Otherwise, it is 1 referring a success.

NLS: A function call to obtain the cNLS corresponding to a candidate
optimal parameter vector.
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Algorithm 1: The optimization process in the asset flow optimization
forecast algorithm
Inputs: Z̄, V̄ , Kfixed, τ1, τ2, ifirst, hRK , zmax, ε1, and ε2
Output: KCEF

1. Set n = τ1 + 1, B = 0.5, ζ1 = 0, and ζ2 = 0
2. Set ilast = length(Z̄)− n, K = Kfixed and KCEF = []
3. l = length(K)
4. zfixed = l
5. for i = ifirst : ilast (event loop)

• Z = Z̄i−τ2:i+τ1

• V = V̄i−τ2:i+τ1

• Ẑ = Zτ2+1:τ2+n

• Ă = zeros(n, 1)
• for s = 1 : n (relative valuation change loop)

for k = 1 : τ2 (chronic discount loop)
u = s + τ2 − k
Ăs = Ăs + Vu−Zu

Vu
e0.25k

As = Vs+τ2−Zs+τ2
Vs+τ2

− Ăs

3.23180584357794

• Reset local variables K̂ = [] and clocOpt = []
• j = 0
• while (j < l) (multi-start initial parameter loop)

j = j + 1
K0 = KT

j,:

[Kq, Qcheck] = QN(K0, t1, t2, hRK , Ẑ, A, B, ζ1, ζ2, ε1)
if ((length(Kq) 6= 0)&(Qcheck == 1))

cNLS = NLS(Kq, t1, t2, hRK , Ẑ, A, B, ζ1, ζ2)
if ((cNLS < ε2)&(Kq > 0))

K̂ = [K̂;KT
q ]

clocOpt = [clocOpt; cNLS ]
• slocOpt = size(clocOpt)
• llocOpt = slocOpt(1)
• if (llocOpt > 0)

ciGlOpt = min(clocOpt)
jiGlOpt = find(clocOpt == ciGlOpt)
KiGlOpt = K̂jiGlOpt,:

if (l == zmax)
K = [K1:zfixed,:;KiGlOpt; Kzfixed+1:zmax−1,:]

elseif (l == zfixed)
K = [K1:zfixed,:;KiGlOpt]
l = l + 1

else
K = [K1:zfixed,:;KiGlOpt; Kzfixed+1:end,:]
l = l + 1

KCEF = [KCEF ; KiGlOpt]
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Figure 2. Flowchart for the evolution of optimal parameters during the optimization process in the asset
flow optimization forecast algorithm.

2.5. Optimization results

We present our findings with the main optimization algorithm by the following
three examples. The average maximum improvement factor (MIF) is used to mea-
sure the performance of the optimization process where

MIF = cNLSmin/cNLSinit. (15)

Generally, the smaller MIF corresponds to a better performance which depends on
the closeness of the initial parameter to the optimal one as well.

Example 1. Given the following actual market price, net asset value over the five
trading days vector beginning on Friday for Alliance All-Market Advantage Fund
(AMO) (a general equity fund (GEF)), and an initial pool having 56 parameter
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Table 1. The computational optimization by finding parameters in the asset flow differential equa-

tions for a small example. Quasi-Newton method with weak line search is applied for the AMO fund data

during 8.13.1999-8.24.1999.

Number of Events 8
Event Period 5-day
hRK 0.05
zfixed 56
zmax 80
ε1 10−6

Prediction Attempt 100%
Average Number of QN Iteration 132
ε2 0.16
Average cNLS 0.0572
Average MIF 57.26 %

15 15.5 16 16.5 17 17.5 18 18.5 19
35

35.5

36

36.5

37

37.5
Curve Fitting 5: Comparison of AMO Fund Actual MP and Computed MP via DEs

Day

M
P

Actual MP
Computed MP via DEs

Figure 3. Curve fitting and getting optimal parameters for AMO MP’s over the fifth 5-day period.

vectors, we find the first optimal parameter vector with event index 11 as follows.
The first 10-day MP and NAV are used to compute the relative valuation change.

Here are the following 5-day MP and NAV prices.

Z̄11:15 = (35.40, 35.62, 35.62, 35.68, 35.46),
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V̄11:15 = (43.95, 44.08, 44.75, 44.45, 43.93),

and

Day = (8.13.1999, 8.16.1999, 8.17.1999, 8.18.1999, 8.19.1999).

After applying the main optimization algorithm in subsection 2.4, we obtain 56
candidate optimal parameter vectors via QN function calls. We allow only the
positive candidate vectors satisfying the threshold condition with ε2. Thus, we ob-
tain a set of candidate vectors K̂ and the corresponding set of minimized functional
values clocOpt. Later, we find the minimum of clocOpt and the related optimal pa-
rameter vector KiGlOpt. After the curve fitting over the first 5-day period, the first
optimal parameter vector will be used to predict next day (i.e. 8.20.1999) return.
The optimal parameter vector is appended to the initial parameter pool so that
the experience can be exploited for future optimizations.

Similarly, we obtain the second optimal parameter vector KiGlOpt with event
index 12 by using

Z̄12:16 = (35.62, 35.62, 35.68, 35.46, 35.79)

and

V̄12:16 = (44.08, 44.75, 44.45, 43.93, 44.34)

for AMO over

Day = (8.16.1999, 8.17.1999, 8.18.1999, 8.19.1999, 8.20.1999),

and the initial pool having 57 parameter vectors. The second optimal parameter
vector can be used to predict next trading day (8.23.1999) return.

Table 2. Initial parameters.

Initial Parameters
Event # c1 q1 c2 q2

11 0.501000 5.010000 0.005000 0.010000
12 0.501520 5.010123 0.033413 0.038930
13 0.001000 0.010000 1.005000 5.010000
14 0.001000 5.010000 2.000000 10.010000
15 0.501000 5.010000 1.005000 5.010000
16 0.001000 5.010000 1.005000 0.010000
17 0.001000 10.010000 1.005000 5.010000
18 0.001000 10.010000 0.505000 5.010000

Figure 3 shows one of the eight consecutive optimization processes in this small
example. Table 1 summarizes the cost of the optimization process and MIF.

While Table 2 illustrates the initial parameter vectors which could lead to optimal
parameters for the events from 11 to 18, Table 3 shows the resulting optimal
parameter vectors for these events.

Example 2. We obtain the optimal parameters for six sample closed-end funds
with event 5-day periods described by Table 4. If we cannot determine an optimal
parameter satisfying the desired conditions, we skip the 5-day event and the next
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Table 3. Optimal parameters.

Optimal Parameters
Event # c1 q1 c2 q2

11 0.501520 5.010123 0.033413 0.038930
12 0.502606 5.010537 0.046891 0.055083
13 0.000248 0.009944 0.567693 4.935129
14 0.001555 379.573677 52.749315 8.049116
15 0.002802 419.708991 52.957131 8.322994
16 0.703218 5.117946 1.111443 1.458326
17 0.003087 133.925347 0.005573 649.593726
18 0.002073 565.436200 0.004883 320.677185

Table 4. The computational optimization by finding parameters in the asset flow differential equa-

tions for a large sample data set. Quasi-Newton method with weak line search is applied for a six sample

closed-end funds data during 1998-2006.

Number of Events 8411
Event Period 5-day
hRK 0.05
zfixed 56
zmax 80
ε1 10−4

Prediction Attempt 66.46 %
Average Number of QN Iteration 80
ε2 0.16
Average cNLS 0.0124
Average MIF 32.16 %

day prediction. In this manner, we are able to render a prediction attempt 66.46%
of the time.

Table 5. The computational optimization by finding parameters in the AFDE for 10-day event

period. Quasi-Newton method with weak line search is applied for the APB data during the trading days

1.17.2002-6.20.2003.

Number of Events 339
Event Period 10-day
hRK 0.05
zfixed 56
zmax 80
ε1 10−5

Prediction Attempt 100 %
Average Number of QN Iteration 38
ε2 1.00
Average cNLS 0.0491
Average MIF 66.64 %

Example 3. We find the optimal parameters for Asia Pacific Fund (APB) (a
world equity fund (WEF)) with event period of 10-day by following the instruc-
tions in Table 5. If we cannot obtain an optimal parameter satisfying the desired
conditions, we use the most recent computed optimal parameter so that we have
100 % prediction attempt. Otherwise, the prediction attempt would be 73.75%.
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3. Market price return prediction

During the past several decades, the dominant theory of finance has been the
efficient market hypothesis (EMH). In its weak form the EMH asserts that any
information relating to price cannot be used for excess profit since such information
is readily available to anyone. In its stronger form EMH asserts similarly that all
publicly available information cannot be used to increase profits beyond the risk
premium inherent in that class of investments. Consequently, the best possible
prediction that can be made for the price of a stock is given by

Pt+1 − Pt

Pt
= βrM + εt. (16)

In other words, the best predictor of tomorrow’s price is today’s price augmented
by the tiny factor βrM which represents the expected daily return for the overall
market (i.e., a few percent divided by the 250 trading days per year) times the
beta factor that scales the volatility of the stock relative to the overall market.
The term εt is the excess return specific to the stock for day t. The mean of this
term according to EMH must be zero for reasons stated above. Thus, we can state
that neglecting a term of order (10%)(1/250) = 1/2500, EMH asserts that the best
forecast of tomorrow’s price assuming knowledge of today’s price is

Pt+1 = Pt + ε̃t, (17)

i.e., random walk (plus a tiny upward drift term).
Practitioners in financial markets generally do not subscribe to EMH, and often

believe that the price trend of the asset, for example, has an important bearing
on future prices. However, these ideas are often difficult to test due to the pres-
ence of “noise” or fluctuations in the asset’s value due to the randomness of world
events. Consequently, academic studies tend to show either no measurable advan-
tage to trading strategies or one that is smaller than trading costs, e.g. Poterba
and Summers [30].

Caginalp and Laurent [13] performed the first scientific test providing strong
evidence in favor of any trading rule or pattern on a large scale. They applied a
non-parametric statistical test for the predictive capabilities of candlestick patterns
using daily data for each stock in the S&P 500 during the time period 1992-1996.
The out-of-sample tests indicate statistically significant profit of almost 1% during
a two-day holding period. Moreover, Caginalp and Balenovich [10] develop a foun-
dation for the technical analysis of securities by using a dynamical microeconomic
model. They deal with a broad spectrum of patterns that are generated by the
presence of two or more trader groups with asymmetric information, in addition
to the patterns generated by the activities of a single group.

Rapach et al. [31] employ in-sample and out-of-sample procedures related to data
mining for international stock return predictability with macro variables.

In this section, we study price forecast by solving the initial value problem (13)
with the asset flow differential equations (AFDE) (7-11) for an arbitrary day inde-
pendent from a pattern. In other words, we employ the dynamical microeconomic
model (7-11) which provides valuable constraints analogous to conservation laws in
physics, rather than the classical time series analysis with a single stage approach.
Despite the difficulties, we provide out-of-sample predictions which are more suc-
cessful than EMH.
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3.1. Method description

The proposed out of sample prediction is performed in the following way. Given
MPs and NAVs for an n-day period from day i to day i+n−1 and the corresponding
optimal parameter vector K̄i for the i’th period computed via an optimization
method in Section 2, we solve the initial value problem (13) with the asset flow
differential equations (7 - 11) to predict MP value and return on day i + n.

3.2. Success tests

The out-of-sample predictions generated by this method can be tested against the
actual returns in terms of both the absolute magnitude of the difference between the
actual and predicted ones and in terms of the sign, i.e., the direction of the market.
Knowing the direction of the market is often very useful in financial markets.

3.2.1. Absolute difference of predicted return and actual return

Once we have a set of returns rPredDe based on the optimized parameters for
each day, the results can be compared with the actual daily returns rActual on the
stock exchange. There are a number of methods for performing this comparison.
These tests can be used to determine if |rPredDe − rActual| has a median that is
less than that of the default prediction, namely, |rPredRw − rActual| where the first
column |rPredDe−rActual| consists of the absolute values of differences between the
actual daily returns and the predicted daily returns via the differential equations
and the second column |rPredRw − rActual| has the absolute values of differences
between the actual daily returns and the predicted returns via random walk. Non-
parametric tests are preferable since they do not make any assumptions concerning
the underlying probability distribution. In particular, we apply the Mann-Whitney
U test (see Mendenhall et al. [26]) and the Wilcoxon rank sum test [26] to column
1 and column 2.

Null Hypothesis, H0 : The median absolute value of difference
|rPredDe − rActual| and the median absolute value of difference |rPredRw − rActual|
are equal.

Alternative Hypothesis, H1 : The median absolute value of difference
|rPredDe − rActual| is less than the median absolute value of difference
|rPredRw − rActual|.
3.2.2. Prediction of relative price change direction

At this point, we obtain relative price changes for the actual MP and the pre-
dicted prices via the proposed method. Then, we count the number of matches,
meaning that the direction of the prediction and actual MP agree. We obtain a
new sequence such that the sequence element is 1 if there is a match. Otherwise,
the sequence element is −1. We apply z-test to the sequence. According to EMH,
the mean value of the sequence would be 0 as null hypothesis. The alternative
hypothesis states that the mean value of the sequence is different from zero.

3.3. Prediction results

Here are three examples for our predictions as continuation of Example 1, Example
2, and Example 3 respectively:

Example 4. By using the 8 optimal parameters obtained in Example 1, we solve
the initial value problem (13) with (7 - 11) to predict MP value and return for the
next days from day 16 to day 23. In Figure 4, the following actual market price
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Figure 4. Prediction of AMO MPs over 8-day

and predicted MP via the asset flow differential equations are compared

Z̄16:23 = (35.79, 36.29, 36.67, 37.01, 36.79, 36.62, 36.01, 35.84)

and

PPredDe
16:23 = (35.46, 35.79, 36.49, 37.08, 36.65, 36.50, 35.96, 35.70)

for the following trading days

Day =

(8.20.1999, 8.23.1999, 8.24.1999, 8.25.1999, 8.26.1999, 8.27.1999, 8.30.1999, 8.31.1999).

In Figure 5, for the same days as in Figure 4, the following actual return and
predicted return via the asset flow differential equations are shown

rActual
16:23 =

(0.009306, 0.013970, 0.010471, 0.009272,−0.005944,−0.004621,−0.016658,−0.004721)
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Figure 5. Prediction of AMO fund daily returns over 8-day

and

rPredDe
16:23 =

(0.000000, 0.000007, 0.005584, 0.011204,−0.009685,−0.007927,−0.018067,−0.008684).

In Figure 6, the absolute errors for the predicted returns via AFDE are

|rPredDe
16:23 − rActual

16:23 | =

(0.009306, 0.013964, 0.004887, 0.001933, 0.003741, 0.003306, 0.001410, 0.003963)

and the absolute errors for the predicted returns via RW are

|rPredRw
16:23 − rActual

16:23 | =

(0.0090682, 0.0137323, 0.0102331, 0.0090338, 0.0061824, 0.0048589, 0.0168957, 0.0049590).
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Figure 6. Absolute error of AMO fund predicted returns over 8-day.

After day 17, the absolute errors for the predicted returns via AFDE are less than
that of RW.

For example, the MP and return on day 20 is predicted (see Figure 4 and Figure
5 respectively) by using initial conditions on day 19 and the computed optimal
parameter vector

(0.002802, 419.708991, 52.957131, 8.322994)

for 5-day period from day 15 to day 19 as in Figure 3 and Table 3. It is remarkable
to predict such a reversal in MP and sign of return on day 20 after a 3-day rise
trend in MP. This successful prediction cannot be expected from a prediction via
pure curve fitting.

By using Mann-Whitney U test for 8 events, we obtain

median(|rPredDe
16:23 − rActual

16:23 |) = 0.00385

and

median(|rPredRw
16:23 − rActual

16:23 |) = 0.00905.

That is, the error via the asset flow differential equations is less than half of the
error via RW. Point estimate for ETA1 − ETA2 is -0.00422. But, computed
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ETA1 − ETA2 is -0.0052. 95.9 % CI for ETA1 − ETA2 is (−0.00883, 0.00003).
The rank sum W = 49.0. Test of ETA1 = ETA2 vs ETA1 < ETA2 is significant
at 0.0260. Since 0.0260 < 0.05, we can reject H0 at the 0.05 level for this small
example. Moreover, the prediction success of MP return direction by the asset flow
differential equations is 100 %.

Example 5. We predict the next day MP return by using the optimal parameters
obtained in Example 2. We apply Mann-Whitney U test and have

median(|rPredDe − rActual|) = 0.00554

and

median(|rPredRw − rActual|) = 0.00577

for the 5590 prediction attempts. Point estimate for ETA1 − ETA2 is −0.00018.
95.0% CI for ETA1 − ETA2 is (−0.00036,−0.00001). The rank sum W =
30898021.0. Test of ETA1 = ETA2 vs ETA1 < ETA2 is significant at 0.0193.
The test is significant at 0.0193 also when adjusted for ties. Therefore, we can
reject the null hypothesis H0 at the 0.05 level for this sample portfolio.

When we apply Wilcoxon rank sum test, the p-value is 0.0386, the z-val is
−2.0681, and the rank sum is 30898023.0. Thus, we can reject the null hypoth-
esis H0 at the 0.05 level by using Wilcoxon rank sum test, as well.

The prediction success of relative price change direction by the AFDE is 63.33%
(with 3540 direction matches out of 5590 prediction attempts). When we apply
the z-test to the direction match sequence of -1 and 1, we obtain a mean value of
0.2666, p-value of 0, with a 95.0% CI of (0.2403,0.2928), and z-value of 19.9288.
Therefore, we can reject the null hypothesis. Moreover, the success of prediction
that the price will be non-increasing or non-decreasing is 69.84% with 3904 matches
out of 5590 prediction attempts. According to the z-test, the mean value is 0.3968,
the p-value is 0, 95.0% CI is (0.3706, 0.4230), and z-val is 29.6658. Again, we can
reject the null hypothesis.

While the success of this method is encouraging, more large scale studies are
needed before concluding that this procedure in itself can be used profitably.

Example 6. We obtain MP and return prediction of APB for 10-day event period
by using optimal parameters obtained in Example 3 and Table 5. We compare the
predicted returns with the actual returns during 2.19.2002-6.23.2003. According to
Mann-Whitney U test for 339 events,

median(|rPredDe − rActual|) = 0.00846

while

median(|rPredRw − rActual|) = 0.00871.

Point estimate for ETA1 −ETA2 is 0.00020. 95.0% CI for ETA1 − ETA2 is
(−0.00089, 0.00129). The rank sum W is 116154.0. For the test of ETA1 = ETA2 vs
ETA1 < ETA2, we cannot reject the null hypothesis for this example by using the
method of full prediction attempt via 10-day event period since W is > 115090.5,
although

median(|rPredDe − rActual|) < median(|rPredRw − rActual|).

The prediction success of relative price change direction by AFDE is 54% which
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is smaller than that of Example 5 because of the rate of prediction attempt, larger
event period and larger ε2. But, it is still greater than 50%.

4. Conclusion

A nonlinear computational optimization algorithm combining quasi-Newton weak
line search with the BFGS formula can be used successfully to determine the opti-
mal four parameter set in the asset flow differential equations. Using these optimal
parameters and the price history in the differential equations we can forecast the
price for the next day. In this way we have a set of out-of-sample predictions that
can be tested against the actual prices. For a sample set of 6 funds the predictions
are compared with the default theory of random walk (EMH). The Mann-Whitney
U test and Wilcoxon rank sum test show that the out-of-sample prediction out-
performs EMH and we can reject the null hypothesis H0 at the 0.05 level for this
sample portfolio. The forecasts are even better in terms of predicting the direction
of prices (higher versus lower for the next day).

The threshold for the gradient should be sufficiently small. But, decreasing the
threshold from 10−4 to 10−6 just increases the average number of quasi-Newton
iterations from 89 to 156 without significant improvement in minimization for a
large sequence of data. So, we believe that the threshold values between 10−4 and
10−5 are reasonable for gradient without perfect line search, in practice.

One of the novel and important components of the proposed algorithm is the
dynamic initial parameter pool. The fixed part of the pool consists of the expected
initial vectors. The dynamic part of the pool is updated via previously found op-
timal parameters and it is specific to the fund’s price behavior. The overall pool
provides a stable number of quasi-Newton iterations because experience is employed
and the impact of most recent events are dominated.

By reactive evaluation of the financially meaningful optimal parameters employ-
ing most of the data up to any given time, we get a stable 32% average maximum
improvement factor defined in equation (15) and a reasonable average daily de-
viation in market price return during the curve fitting for a sample large data
set.

We need a reasonable minimization during the preceding period for a successful
next day price return prediction. Sometimes it is possible to get a better curve
fitting locally if one were to ignore the intrinsic constraints. However, it does not
imply there would always be a better prediction. For example, some vectors with
negative parameters may provide smaller sum of squares. But, the negative pa-
rameters are not meaningful financially in the model. Moreover, while minimizing
the sum of squares, we place exponential weights on the most recent price changes
which is important in terms of investor strategy. Furthermore, there is a trade off
between trend curve fitting and de-trended curve fitting. As shown in (Caginalp
and Balenovich [10]) and (Duran [16], Chapter 2), there are various price return
patterns which are relevant for 3 to 10 trading days. They can be captured by
de-trended curve fitting. On the other hand, trend curve fitting should not be ne-
glected because the percentage of momentum traders is significant. There are other
constraints such as finiteness of traders’ assets [11] as well. Also, the time scalings
to reflect the current reaction speed of momentum traders and value based traders
should be handled automatically. Therefore, the dynamical microeconomic model
(7-11) which combines several factors is more successful than pure curve fitting.

The procedures we use are quite general and can be expanded in several direc-
tions. As noted earlier, there is a growing body of research in behavioral finance
that is uncovering motivations beyond valuation. Momentum, or the tendency to
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buy when prices are rising, is already incorporated into the system of equations.
Other motivations can easily be incorporated into the sentiment function (see equa-
tion (2)) in a similar way. The optimization problem then involves one additional
parameter for each motivation.

Closed-end funds provide a useful data set to test these optimization methods.
The extension to a broad set of assets such as ordinary stocks can be implemented
by using standard valuation methods in place of the net asset value.
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Appendix A. Quasi-Newton method for minimizing the sum of squares.

A line search method (see [29], Chapter 3) computes a search direction Pk and a
step length sk to move along that direction, at each iteration given by

K̄k+1 = K̄k + skPk. (A1)

The choices of Pk and sk affect the success of the line search method. In partic-
ular, Pk needs to be a descent direction satisfying that P T

k ∇Fk < 0, so that it is
guaranteed that F defined in (14) can be decreased along this direction. Also, Pk

is of the form

Pk = −B−1
k ∇Fk, (A2)

where Bk is a symmetric and nonsingular matrix. In Newton’s method Bk is the
exact Hessian ∇2F (K̄k). A perfect line search terminates at a point when the
direction of search is perpendicular to the gradient vector.

In a quasi-Newton method, the inverse of Hessian matrix ∇2F (K̄k)−1 is approx-
imated by using a positive definite matrix Hk, instead of computing exact second
derivatives. The second derivative information is developed by updating the ap-
proximate matrix on each iteration. Pk is a descent direction, since Hk is positive
definite and P T

k ∇Fk = −∇F T
k Hk∇Fk < 0 is obtained by using (A2) (see [29],

Chapter 3).
Algorithm 2: Quasi-Newton method
1. Choose an initial parameter vector K̄0 as an estimate of K̄ that would minimize
F (K̄).
2. Choose initial symmetric positive definite matrix H0 (Identity matrix I can be
taken as H0).
3. Set convergence tolerance ε1 = 10−4 or set a maximum number of iterations.
4. While ‖∇F (K̄k+1)‖ > ε1

• Set gk = ∇F (K̄k)
• Compute the search direction Pk = −Hkgk

• Find the candidate step length sk by using backtracking line search algorithm
where sufficient decrease condition is obtained for F (K̄k + skPk).
• Set K̄k+1 = K̄k + skPk, βk = gk+1 − gk, δk = K̄k+1 − K̄k

• Get a new positive definite matrix Hk+1, by using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) formula (A6), such that

Hk+1βk = δk (A3)
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5. End (while)
The gradient (∇F (x)) is approximated by using the central difference formula

(see [29], Chapter 7)

∂F

∂xi
(x) ≈

F (x + ε3ei)− F (x− ε3ei)
2ε3

(A4)

for the partial derivatives, where

∂F

∂xi
(x) =

F (x + ε3ei)− F (x− ε3ei)
2ε3

+ O(ε23), (A5)

ε3 = u1/3, unit roundoff u is about 1.110223e−016 for double-precision arithmetic,
and ei is the ith unit vector.

Backtracking line search
The backtracking method provides either that the selected step length s is at

least a fixed value (s = 1), or that it is sufficiently short to satisfy the sufficient
decrease condition but not too short (see [29]).
Algorithm 3:
1. Set s = 1 and choose σ, θ ∈ (0, 1)
2. Set s = s
3. Repeat until F (K̄k + sPk) ≤ F (K̄k) + θs(∇F (K̄k))T Pk

• Set s = σs

4. End (repeat)
5. Return with sk = s.

The BFGS formula (see Broyden [8] and [9])

Hk+1 = Hk −
Hkβkδ

T
k + δkβ

T
k Hk

δT
k βk

+ (1 +
βT

k Hkβk

δT
k βk

)
δkδ

T
k

δT
k βk

(A6)

By using the formula (A6), positive definite matrix Hk+1 is obtained when the
curvature condition δT

k βk > 0 is satisfied (see [4]). However, sometimes the cur-
vature condition which rules out unacceptably short steps may not hold, even for
the iterates close to the solution. In practice, to deal with the special cases where
δT
k βk is negative or too close to zero, the BFGS update (A6) is skipped by setting

Hk+1 = Hk. However, it should not be done often (see [29]). Within our study we
check the δT

k βk and update Hk+1 by identity matrix or set H(i, i) = i/2 to handle
the special cases described above. We allow such cases limited times (at most five
times) and try another initial parameter vector.

Each iteration of the quasi-Newton method can be done at a cost of O(n2)
arithmetic operations in addition to the function and gradient evaluations (see
[29]) where n is the number of parameters namely 4 in (14). The algorithm has
a super-linear rate of convergence (see [29] for the related convergence theorems
and proofs under ideal mathematical assumptions). Although Newton’s method
converges quadratically, it is more costly per iteration. Moreover, rounding errors
sometimes may mean that such theoretical convergence rates are not realized in
practice (see [4] and [19]). Although the errors in computed values of F , and the
entries of ∇F and ∇2F in double precision arithmetic are usually negligibly small,
they can be significant when ∇F is near zero (see [4]).


