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Abstract 

In this project, we propose a new hybrid algorithm for parameter optimization and implement it using MPI. In 
particular, we study a scalable parallel nonlinear parameter optimization algorithm with parameter pools for a 
nonlinear dynamical system called the asset flow differential equations (AFDEs) in 4. We generate time series 
pairs as proxy to market price and net asset value by using random walk simulation where the volatilities of the 
time series are similar to that of real closed-end funds traded on New York Stock Exchange (NYSE). When we 
apply the algorithm by using simulations for a set of time series, we observe that the computed optimal 
parameter values, average number of quasi-Newton iterations, the average nonlinear least squares errors, and the 
average maximum improvement factors can converge certain values within corresponding small ranges, after 
oscillations. Moreover, we tested for 64, 128, 256 and 512 cores using the 512 initial parameter vectors. We 
achieved speed-up for the time series to run up to 512 cores. The algorithm is applicable for parameter 
optimization of the related nonlinear dynamical system of differential equations with thousands of parameters as 
well.  

1. Introduction 

In this work, we study a scalable parallel nonlinear parameter optimization algorithm with parameter pools for a 
nonlinear dynamical system called the asset flow differential equations (AFDEs) in 4. The algorithm in this 
work is important also for parameter optimization of the related dynamical system of differential equations.  

Parallel methods for parameter optimization based on the quasi-Newton method with the Broyden–Fletcher–
Goldfarb–Shanno formula (see [1-2]) have been given attention in academic and industrial literature. A parallel 
approach was described for single and multiple Gaussian data fitting problems where the reference functions for 
fitting are known explicitly (see Caprioli and Holmes [3] and references contained therein). We focus on a 
problem where the reference functions for fitting are not known explicitly and come from the numerical solution 
of a challenging nonlinear dynamical system.  

AFDEs have been developed by Caginalp and collaborators since 1989 (see [4,5] and references contained 
therein). This important mathematical model may explain different nonlinear behaviours such as overreaction, 
bubbles, momentum, and crashes in experimental asset markets and real financial markets (see [6] and [7]). It 
incorporates several motivations for buying or selling stock with the finiteness of assets and microeconomic 
principles. The dynamical microeconomic model provides valuable constraints analogous to conservation laws in 
physics, rather than the classical time series analysis with a single stage approach (see Duran and Caginalp [8]). 

Duran (see [9]) introduced a serial algorithm called the asset flow optimization forecast algorithm. An inverse 
problem involving parameter optimization for AFDEs has been used in order to forecast near term market 
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returns by following an out-of-sample procedure (see [8]). A quasi-Newton (QN) weak line search with the 
Broyden–Fletcher–Goldfarb–Shanno formula and their semi-dynamic initial parameter pool are utilized in 
conjunction with daily market prices (MPs) and net asset values (NAVs) to determine the parameters for which 
the AFDEs yield the best fit for the previous n days in the optimization procedure. They use nonlinear least-
square technique with initial value problem (IVP) approach by focusing on the market price variable x1 since any 
real data for the other three variables x2, x3 , and x4 in the dynamical system is not available explicitly. The 
gradient (∇ F (x)) is approximated by using the central difference formula, and step length s is determined by the 
backtracking line search (Nocedal and Wright [10]). They construct a pool of initial parameters Ki chosen via a 
set of grid points in a hyper-box ([8]). They select an initial parameter vector from the initial parameter pool 
because the optimization success of quasi-Newton method in the algorithm depends on the initial parameter. 
Besides the fixed part of various initial parameters, the dynamic part of the pool is updated by adding successful 
parameters so that they keep a pool of different and most recently used candidate parameters. It is a feasible 
dynamic multi-start approach without a convexity assumption for their semi-unconstrained optimization 
problem. These optimal parameters are useful for making a forecast for market prices for the following days. 

After the parametric sensitivity analysis (see [11]), Duran studied the stability analysis of the AFDEs, in three 
versions, analytically and numerically (see [12]). It is crucial to analyze the sources of ill-posedness in 
mathematical modeling. Duran showed that the existence of multiple roots and that of non-isolated roots are 
sources of the ill-posedness for the first two versions of AFDEs (see[12]). He illustrated how to reformulate the 
problem in order to eliminate any hypersensitivity in the mathematical model. 

There are several challenges while studying numerical parameter optimization of the nonlinear dynamical 
systems. For example, some initial parameters may lead to singularities in the AFDE during parameter 
optimization process. Our implementation handles this kind of problems. Moreover, for optimization methods 
using derivatives in a nonlinear model it is important to start the iteration close enough to the potential global 
minimum to get rid of being caught in a local minimum. There is no strategy that will guarantee the number of 
necessary iterations to discover the neighbourhood of the global optimum (see [13, Chapter 23]). There is also a 
wide range of variability in obtaining optimal parameters for the nonlinear problem. That is, the residual values 
may change between 10-1 and 10-14. Therefore, we need sufficiently large number of initial parameters 
systematically via high performance computing. 

The remainder of this work is organised as follows: Section 2 includes the 3rd version of AFDEs and the 
problem constraints. In Section 3, the parallel nonlinear optimization algorithm is presented. In Section 4,  the 
scalability test results and the convergence results of the numerical parameter optimizations are discussed. 
Section 4 concludes this work. 

2. AFDEs version 3 

We rewrite the dynamical system of asset flow differential equations in [5] in the following equivalent form: 

'

1 1 2 2
log(( (1 )) / ((1 ) ))x x k x k x    

'

2 2 2 2 2 2 2
(1 ) log(( (1 )) / ((1 ) )) (1 ) ( 1)x x x k x k x k x k x          

'

3 1 1 2 2 3
( log(( (1 )) / ((1 ) )) )x c q k x k x x      

'
4 2 2 1 1 1 1 4( (( ) / ( ( 1), ( 1), ( 2), ( 2), ..., ( ), ( ))) )a a a a ax c q P x P D x t P t x t P t x t n P t n x            

where 

1 1 1
( ( 1), ( 1), ( 2), ( 2), ..., ( ), ( ))

a a a
D x t P t x t P t x t n P t n       

 is the chronic discount over the past few finite n ≥ 1 days. The constraints are 

1
0x   (positivity of prices) 

2
0 1x   

3 4
1 1x x     

0
a

P   (positivity of prices) 
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1 1 2 2
( , , , , )K c q c q


   (positivity of parameter vectors)  

where 

1
( ) :x t  The market price (MP) of the single asset at time t, 

'

1 1
( ) / ( ) :x t x t  The relative price change, 

( ) :
a

P t  The fundamental value, 

( ) :V t  The net asset value (NAV) price at time t, 

2
( ) :x t  The fraction of total funds in the risky asset, 

3
( ) :x t  The trend-based component of the investor preference,  

4
( ) :x t  The value-based component of the investor preference, 

( ) :k t  The transition rate and 
3 4

0.5 0.5 tanh( )k x x   . 

k should take values within (0,1) and tanh(x) can be approximated by x around (-1,1) as in [5]. The constants , 
1/ c1 and 1/ c2 are the time scales, respectively, for the price equation, the momentum and valuation strategies. 
We take  as 1. The parameters q1 and q2 are the coefficients of the trend-based and value-based sentiment, 
respectively. 

3. Parallel nonlinear parameter optimization algorithm with parameter pools 

Duran (see [9]) introduced a serial algorithm called the asset flow optimization forecast algorithm. Given an n-
day period of market prices (MP) and net asset values (NAV) from day i to day i+n-1 as ith event where n = 1+ 
1 and i >2, we compute optimal parameter vector Ki for the period i. Then, we obtain m-i+1 optimal parameters 
for the overlapping periods such as [i, i+n-1], [i+1, i+n], ..., [m, m+n-1] for the MP sequence of size m+n-1. 
There is a tradeoff for selection of n. We choose n sufficiently small in order to use the daily market price and 
net asset value. Moreover, local price patterns which are related to 3 to 15 trading days on average (see [7] and 
[14] ) can be used by small values of n during optimization and prediction processes. On the other hand, n should 
be large enough so that the parameter optimization process can capture the price trend reasonably. For example, 
we tested for n=5 trading days which may reflect weekly economic and financial indicators. See [8] for details 
and the cases for n=5 and n=10. 

ALGORITHM 3.1 The parallel nonlinear parameter optimization algorithm 

Stage 1. Obtain classified initial parameter pool having partitions that can generate different curves having 
various behaviors.  
Stage 2. Apply pool partitioning for parallelism. Each core should find the local optimal parameter(s) by using 
its local initial parameters.  
Stage 3. Find the global parameter that can minimize the nonlinear least squares error. 

In this study, we propose a parallel nonlinear parameter optimization algorithm. One of the novel components of 
the former algorithm was the presence of the dynamic initial parameter pool that contains most recently used 
successful parameters, besides the various fixed parameters from a set of grid points in a hyper-box. Therefore, it 
has dependencies on the most recently used successful parameters.  

We use fixed initial parameter pool with a larger number of parameter vectors in Algorithm 3.1 so that we can 
get rid of the dependencies. Unlike the serial algorithm, the new algorithm has a classified initial parameter pool 
with partitions that can generate different curves having behaviors such as almost steady, uptrend, downtrend, 
strong uptrend and strong downtrend. In Stage 2, as a part of the computational parallelization strategy, a fixed 
number of initial parameters is assigned to each core. For example, when there are s available cores, each core is 
responsible for the parameter optimization with 512/s initial parameters for the corresponding curve segment. 
Each core performs curve fitting by using its own initial parameters and the steps in the serial algorithm (see [8] 
for details) are followed to find the local optimal parameters.  In Stage 3, the nonlinear least squares errors 
coming from the different cores are compared and the parameter vector that can minimize the error is picked as 
the global parameter for the corresponding curve segment. These three stages are repeated for each consecutive 
curve segment. 
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4. Test results 

We generate time series pairs as proxy to market price and net asset value by using random walk simulation 
where the volatilities of the time series are similar to that of real closed-end funds traded on NYSE (see [11]). 
See Anderson and Born [15] and Bodie, Kane, and Marcus [16] for more information about the closed-end 
funds. 

Table 1 displays the design and threshold values for the computational optimization process. Table 2 describes 
the simulated market price and net asset value time series of length 1000, their volatility behavior and ranges.  

 
Table 1. The computational optimization by finding parameters in the AFDE for a large sample data set. Quasi-Newton method with weak 
line search is applied. 
 

Event period 5 

Runge–Kutta (RK4) method step size 0.05 

Number of parameter vectors in the pool 512 

Threshold for the gradient 10-5 

Threshold for the nonlinear least squares error 0.16 

 

 
Table 2. Description of the time series . 

Time series 
Standard 
deviation Max Min 

Price_1k_v1 3.94 65.68 48.19 

Nav_1k_v1 2.25 58.03 48.32 

Price_1k_v2 5.01 67.50 48.77 

Nav_1k_v2 2.38 63.94 53.68 

Price_1k_v3 2.66 61.68 49.38 

Nav_1k_v3 1.81 58.78 49.99 

Price_1k_v4 2.04 57.45 46.69 

Nav_1k_v4 1.51 57.89 50.58 

Price_1k_v5 7.16 78.61 53.76 

Nav_1k_v5 4.75 71.40 51.42 

Price_1k_v6 3.63 56.92 42.00 

Nav_1k_v6 3.15 60.18 47.92 

Price_1k_v7 3.63 67.31 51.82 

Nav_1k_v7 2.91 61.55 48.45 

 
 

4.1 Scalability results 
 

We tested for 64, 128, 256 and 512 cores using the 512 initial parameter vectors. Since we applied the 
partitioning of the initial parameter vectors to available cores as the computational parallelization strategy, each 
core performed computational parameter optimization with 16, 8, 4, 2 and 1 initial parameter vectors 
respectively. This approach can be followed by different initial parameter pools having larger number of initial 
parameters and larger number of cores. 

We obtained speed-up for the time series 1k_v1, 1k_v2 and 1k_v3 to run up to 512 cores in Table 3. We 
obtained almost similar results for the time series. Figures 1 and 2 illustrate the speed-up behaviour for the time 
series 1k_v1 and 1k_v3, respectively.  
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Table 3. Wall clock time and normalized speed-up for 1k_v1, 1k_v2 and 1k_v3 on the Ege Server (HP ProLiant BL2x220c G5 Blade) (see 
[17]). 

# of cores 

1k_v1 1k_v2 1k_v3 

Wall clock time (s) Speed-up Wall clock time (s) Speed-up Wall clock time (s) Speed-up 

64 40556.60 1 40791.01 1 37012.84 1 

128 28071.28 1.45 27677.68 1.47 24972.18 1.48 

256 16257.88 2.50 16242.60 2.51 14508.45 2.55 

512 11310.66 3.59 11217.48 3.64 9984.60 3.71 

 

 
Fig. 1. Speed-up for Price_1k_v1 
 

 
Fig. 2. Speed-up for Price_1k_v3 
 
 

4.2 Convergence results of the parameter optimization 
 

Table 4 shows the wall time for testing the parallel nonlinear parameter optimization algorithm for 128 cores on 
the Ege Server (HP ProLiant BL2x220c G5 Blade) (see [17]). Table 5 illustrates the Monte Carlo simulation 
results for the parameters, the average number of QN iteration, the average nonlinear least squares error and the 
average maximum improvement factor (MIF) where MIF is used to measure the performance of the optimization 
process and it is defined as the ratio of the final nonlinear least squares error to the initial nonlinear least squares 
error. Generally, the smaller MIF corresponds to a better performance, which depends on the closeness of the 
initial parameter to the optimal one as well. 
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Fig. 3. Monte Carlo simulation of the parameters for curve fitting via Price_1k_v2  
 
Table 4. Wall clock time for 128 cores on the Ege Server (see [17]) available at UHeM. 
 

Time series  Wall clock time (s) 

Price_1k_v1 28071.28 

Price_1k_v2 27677.68 

Price_1k_v3 24972.18 

Price_1k_v4 28195.40 

Price_1k_v5 27389.56 

Price_1k_v6 28273.22 

Price_1k_v7 25723.34 

 

Table 5. Monte Carlo simulations results. 

Time series 
Parameters Average number of QN 

iteration 
Average NLS error Average MIF 

c1 q1 c2 q2 

Price_1k_v1 1.9536 18.7947 18.7911 45.4401 169.99 0.0116 0.1979 

Price_1k_v2 2.0913 21.5848 16.9350 57.7354 166.88 0.0164 0.2083 

Price_1k_v3 2.0609 16.4288 17.8410 40.5121 160.19 0.0115 0.1973 

Price_1k_v4 1.4278 17.9718 13.5950 34.9702 144.25 0.0154 0.2434 

Price_1k_v5 1.9814 20.7925 16.4631 55.8295 163.55 0.0171 0.2180 

Price_1k_v6 2.1081 18.1281 17.9992 45.9608 147.66 0.0134 0.2321 

Price_1k_v7 1.5803 22.8690 16.6832 52.3300 144.70 0.0161 0.2427 

 

When we compare the serial algorithm with dynamic initial parameter pool having up to 80 initial parameter 
vectors and the new parallel algorithm having 512 initial parameter vectors in the classified pool, the average 
numbers of QN iteration are close to each other. On the other hand, we obtained smaller nonlinear least squares 
errors and better maximum improvement factors via the new parallel algorithm, in quality of the solution. For 
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example, the average numbers of QN iteration is 162.15,  the average nonlinear least squares error  is 0.0231 and 
the average maximum improvement factor is 0.3399 for Price_1k_v1 using the serial algorithm. For the new 
parallel algorithm those values are 169.99, 0.0116 and 0.1979, respectively, in Table 5. 

In Table 5, for the new algorithm by using simulations for a set of time series, we observe that the computed 
optimal parameter values, average number of quasi-Newton iterations, the average nonlinear least squares errors, 
and the average maximum improvement factors can converge certain values within corresponding small ranges, 
after fluctuations. For example, Figures 3-6 show the convergence diagrams for the curve fitting of the time 
series Price_1k_v2 using Runge–Kutta (RK4) method in order to solve the dynamical system numerically. 

 

 
Fig. 4. Monte Carlo simulation of the number of quasi-Newton iteration for curve fitting of Price_1k_v2 
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Fig. 5. Monte Carlo simulation of the NLS error for curve fitting of Price_1k_v2 
 
 

 
Fig. 6. Monte Carlo simulation of the MIF for curve fitting of Price_1k_v2 

5. Conclusions 

In this study, we propose a scalable parallel nonlinear parameter optimization algorithm with parameter pools for 
the asset flow differential equations (AFDEs) in 4. The algorithm in this work is applicable for parameter 
optimization of the related nonlinear dynamical system of differential equations with thousands of parameters. 

We find that the new parallel algorithm having a classified initial parameter pool with partitions that can 
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generate different curves outperforms the sequential parameter optimization algorithm using dynamic initial 
parameter pool in quality of the solution. We obtained smaller nonlinear least squares errors, better maximum 
improvement factor (MIF), and curve fitting for more curve segments, by the advantage of using sufficiently 
large number of initial parameters methodically. For example, the nonlinear least squares error was reduced to 
half and the MIF quality was enhanced approximately 14.2 % (from 0.3399 to 0.1979) via the new parallel 
algorithm, where generally the smaller maximum improvement factor corresponds to a better quality as 
described before, which may depend on the proximity of the initial parameter to the optimal one as well.   

As a part of the computational parallelization strategy, a fixed number of initial parameters is assigned to each 
core. When there are s available cores, each core is responsible for the parameter optimization with 512/s initial 
parameters for the corresponding curve segment. We tested for 64, 128, 256 and 512 cores using the 512 initial 
parameter vectors. We achieved almost similar speed-up behaviour for the time series to run up to 512 cores. 
This approach can be followed by different initial parameter pools having larger number of initial parameters 
and larger number of cores. 

Alternatively, we may try dynamic initial parameter vector assignments to cores. For example, first, each core 
can start with one parameter vector in Stage 2 in Algorithm 3.1 and attempt to take new one when it finishes the 
task. As a future work we will test different work scheduling and load balancing strategies and perform overhead 
analysis. However, the number of QN iteration for the parameter optimization varies depending on the 
corresponding initial parameter vector from the parameter pool and heterogeneously distributed. Therefore, it 
does not affect the wall clock time due to the bottleneck effect of the dominating number of QN iteration. 
Moreover, we will adapt the parallel QN approach (see [18]) in our parallel nonlinear parameter optimization 
algorithm with parameter pools for a better scalability and discuss the tradeoffs. 
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