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ANALYSIS AND DESIGN OF ROBUST DISTURBANCE OBSERVERS

SUMMARY

Robustness has been one of the most defining features of control systems since the
classical control period. In the early days, the robustness of the control system
was expressed using concepts like phase margin and gain margin, adapted from
telecommunications engineering, and this terminology was faithfully used during the
period when the significant achievements of modern control theory were demonstrated.
However, by the end of the 70s, two separate developments marked the beginning of
the golden age of robust control theory. The first of the developments that heralded
this new era is Kharitonov’s theorem, which established a new field of research for
examining the stability of systems with parametric uncertainty. The other is John
Doyle’s demonstration that even in a single-input, single-output system, the LQG
regulator does not have any guaranteed robustness margin, unlike the LQ regulator.
While the first formed the basis of the research field known as the parametric approach,
the other was one of the precursors of the H∞ theory.

Since then, robust control has been seen as an independent sub-branch of control
theory. Both approaches reached their peak with both theoretical and practical
applications throughout the 1980s and 1990s. On the other hand, it has been shown
that more robust closed-loop systems can be developed by changing the structure of
the controller. One of the prominent methods is the approach known in the literature
as the disturbance-observer (DOB). This approach, which enables the prediction and
cancellation of disturbances and uncertainties that impact the system at its input, has
been widely implemented, particularly in practical applications. On the other hand,
the theoretical limits of the method, its analysis under uncertainty, and its design with
newly developed robust control methods have lagged behind practical applications.
Although theoretical studies have been carried out especially with the H∞ approach
since the 2000s, DOB design and analysis under parametric uncertainties have not
attracted the attention of researchers sufficiently. The main purpose of this thesis is
to develop new approaches for both the analysis and design of disturbance observers
under parametric uncertainties.

In the analysis of systems with parametric uncertainty, how the uncertainties are
modeled is the factor that directly affects the analysis method. In Kharitonov’s
paradigm, the parametric uncertainty bounding set is usually expressed as a box, which
corresponds to the l∞ representation of the parameter box. However, the l2 analog of the
same representation is also possible. In fact, this representation is more suitable for the
situation where the mathematical model is obtained by linear or nonlinear regression
methods under system identification approach. Based on this, in the first part of the
thesis, the answer to the question of "How much uncertainty can be tolerated with the
DOB structure?", has been sought.
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Although approaches in the frequency domain produce effective results for DOB
analysis, new challenges arise when the problem is expressed in the state space. Two
approaches have come to the fore for examining parametric uncertainties in the state
space. The first of these is to move the problem to the frequency domain where
there are theorems and mathematical tools mature enough to examine parametric
uncertainties. However, when this method is utilized, even the simplest interval
system matrices show themselves as a affine-linear or more complex polynomial when
expressed as a polynomial. Therefore, design in state space was seen as a "hard
nut to crack" problem, in Yedevalli’s words, and pushed control theorists to different
research directions. The other method is to consider the problem directly in the state
space. Although similar difficulties exist in this approach, when designing directly
in the state space, the use of proven state space methods is also possible. Although
new solutions are proposed, especially under the concept of quadratic stability, the
nature of the problem condemns control theorists to use conservative approaches.
In addition, a suitable Lyapunov function has not yet been proposed in the case
where the design regions used to limit the parametric uncertainties are disjoint. The
second contribution put forward within the scope of the thesis is the guardian-map
approach, which offers less conservative disturbance observer design. Thanks to the
method, robustness criteria can be assigned for each nominal eigenvalue separately
and the disturbance observer is designed to meet this criterion. In this way, the
inherent trade-off between robustness of the disturbance observer and the disturbance
observer bandwidth is decided according to whether the closed-loop system satisfies
the previously determined eigenvalue spread criterion.

Advantages of considering the problem in state space include the possibility to use
LMI tools and the incorporation of useful methods such as eigenstructure assignment
into the solution of the problem. Many control problems can be expressed in LMI
form, and these LMIs can be formulated as appropriate convex optimization problems.
The LMI framework is particularly useful for expressing parametric uncertainties
and constraining eigenvalue spread. However, when the dominant methods in the
literature are examined, the design regions defined by the LMI approach are not
defined separately for each eigenvalue, but a combined LMI design region is defined
for all eigenvalues. This situation complicates the eigenvalue assignment problem and
does not allow defining different robustness criteria between the eigenvalues in the
non-dominant region, which is less important for the design, and the dominant region
eigenvalues, which determine the behavior of the system.

In addition, when the eigenstructure assignment methods are considered, the
methods for minimizing the sensitivity of the system dominate the literature,
instead of expressing the parametric uncertainties directly. Although robust
eigenstructure assignment methods based on H∞-based approaches have been
proposed, eigenstructure assignment methods have not been sufficiently studied in
direct parametric uncertainty system design. In the eigenstructure assignment methods,
since the eigenvalues are assigned strictly at the beginning of the design, the vector
space to which the eigenvectors can be assigned in the rest of the design is also
limited. In order to overcome this, although methods such as regional assignment,
partial eigenvalue assignment and loose eigenstructure assignment are suggested in the
literature, suppressing the effect of parametric uncertainties has not been the primary
design criterion in these approaches.
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In order to fill these gaps in the literature, a new design method has been proposed,
and in this approach, the robustness of the system to parametric uncertainties has been
made the primary criterion of the design, and a novel disturbance observer design
method has been proposed by using eigenstructure assignment and LMI approaches
together for this purpose. The approach does not require any heuristic algorithms
or global optimization methods, as well as allowing the solution of the robust root
clustering problem for disjoint design regions. As a result, the method inevitably
suffers from conservatism. However, the design reduces the problem of finding robust
eigenvectors to finding the appropriate one among a finite number of eigenvectors.

As a conclusion, within the scope of this thesis, a method is proposed to examine
the robustness of the disturbance observer under parametric uncertainties, and two
new design methods are proposed to limit the eigenvalue spread in the state space
within the disjoint design regions determined for each nominal eigenvalue. By using
the obtained results, a disturbance observer in the state space is designed for systems
with parametric uncertainty and the results are shared.
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DAYANIKLI BOZUCU GÖZLEYİCİLERİNİN ANALİZ VE TASARIMI

ÖZET

Dayanıklılık klasik kontrol döneminden beri kontrol sistemlerinin en belir-
leyici özelliklerinden olmuştur. İlk dönemlerde kontrol sisteminin dayanıklılığı
telekomünikasyon mühendisliğinden uyarlanan faz marjini ve kazanç marjini gibi
terimler ile ifade edilmiştir ve bu terminoloji modern kontrol teorisinin en parlak
başarılarının ortaya konduğu dönemde sadakatle kullanılmıştır. Ancak 70lerin sonuna
gelindiğinde dayanıklı kontrol teorisinin altın çağının başlangıcı iki ayrı koldan
ilan edilmiştir. Bu yeni dönemi müjdeleyen gelişmelerden ilki, tamamen yeni bir
araştırma alanının yolunu açan ve parametrik belirsizlikli sistemlerin kararlılığının
incelenmesine olanak sağlayan Kharitonov teoremidir. Diğeri ise, John Doyle’un,
tek girişli, tek çıkışlı bir sistemde bile, LQ regülatörünün aksine, LQG regülatörünün
herhangi bir garantili sağlamlık marjına sahip olmadığını göstermesidir. İlki
parametrik yöntem olarak bilinen araştırma alanının temelini oluştururken diğeri H∞

teorisinin öncüllerinden biri olmuştur.

Bu tarihten itibaren dayanıklı kontrol, kontrol teorisinin müstakil bir alt dalı olarak
görülmüştür. Her iki yaklaşımda 80’li ve 90’lı yıllarda teorik ve pratik uygulamalarla
zirveye ulaşmıştır. Ancak bir taraftan da kontrolörün yapısını değiştirerek daha
dayanıklı kapalı çevrim sistemlerin geliştirilebileceği gösterilmiştir. Öne çıkan
yöntemlerden biri literatürde bozucu gözleyicisi olarak bilinen yaklaşımdır. Sisteme
etki eden bozucuların ve belirsizliklerin bir şekilde kestirilip sistem girişinde iptal
edilmesine imkân tanıyan bu yaklaşım özellikle pratik uygulamalarda kendisine çok
fazla yer bulmuştur. Buna mukabil yöntemin teorik sınırları, belirsizlik altında
analizi ve yeni gelişen dayanıklı kontrol yöntemleri ile tasarımı gibi konular pratik
uygulamaların gerisinde kalmıştır. Her ne kadar 2000’li yıllardan itibaren özellikle H∞

yaklaşımı ile teorik çalışmalar ortaya konsa da parametrik belirsizlikler altında DOB
tasarımı ve analizi konuları araştırmacıların ilgisini yeterince çekmemiştir. Bu tezin
temel amacı bozucu gözleyicilerinin parametrik belirsizlikler altında hem analizi hem
de tasarımı için yeni yaklaşımlar geliştirmektir.

Parametrik belirsizlikli sistemlerin analizinde belirsizliklerin nasıl modellendiği analiz
metodunu doğrudan etkileyen faktördür. Kharitonov’un önünü açtığı yaklaşımda
parametrik belirsizlik sınırlama kümesi genellikle kutu şeklinde ifade edilir bu da
parametre kutusunun l∞ temsiline denk gelir. Hâlbuki ki aynı temsilin l2 analoğu
da mümkündür. Hatta bu temsil, matematiksel modelin sistem tanıma altında lineer
veya nonlineer regresyon yöntemleri ile elde edildiği duruma daha uygundur. Buradan
yola çıkılarak tezin ilk bölümünde frekans tanım bölgesinde "DOB yapısı ile ne kadar
belirsizlik tolere edilebilir?" sorusuna cevap aranmıştır.

Her ne kadar frekans tanım bölgesindeki yaklaşımlar DOB analizi için etkili
sonuçlar üretse de problem durum uzayında ifade edildiğinde yeni zorluklar ortaya
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çıkmaktadır. Durum uzayında parametrik belirsizliklerin incelenmesi için iki yaklaşım
ön plana çıkmıştır. Bunlardan ilki problemi parametrik belirsizliklerin incelenmesi
için yeterince güçlü teoremlerin ve matematiksel araçların olduğu frekans tanım
bölgesine taşımaktır. Hâlbuki bu yöntem ile ilerlendiğinde en basit interval sistem
matrisleri bile polinom olarak ifade edildiğinde kaymış lineer veya daha karmaşık
yapıda bir polinom olarak kendini göstermektedir. Dolayısı ile durum uzayında
tasarım Yedevalli’nin deyimi ile "çetin ceviz" bir problem olarak görülmüş ve kontrol
teorisyenlerini farklı arayışlara itmiştir. Diğer yöntem ise problemi doğrudan durum
uzayında ele almaktır. Benzer zorluklar bu yaklaşımda da mevcut olmasına rağmen
doğrudan durum uzayında tasarım yapıldığında başarısı ispatlanmış durum uzayı
yöntemlerinin kullanılmasının da önü açılmaktadır. Özellikle quadratic kararlılık
konsepti altında yeni çözümler önerilse de problemin doğası kontrol teorisyenlerini
konservatif yaklaşımlara mahkum etmektedir. Ayrıca parametrik belirsizliklerin
sınırlandırılması için kullanılan tasarım bölgelerinin ayrık olduğu durumda uygun bir
Lyapunov fonksiyonu henüz önerilememiştir. Tez kapsamında öne sürülen ikinci
yenilik daha az tutuculuk öneren guardian-map yaklaşımı ile bozucu gözleyicisi
tasarımıdır. Yöntem sayesinde her bir nominal özdeğer için ayrı ayrı dayanıklılık
kriteri atanabilmekte ve bozucu gözleyicisi bu kriteri sağlamak için tasarlanmaktadır.
Bu sayede bozucu gözleyicisinin yapısı gereği var olan dayanıklılık ve DOB bant
genişliği arasındaki ödünleşmede, kapalı çevrim sistemin daha önce belirlenen özdeğer
saçınım kriterini sağlayıp sağlamamasına göre karar verilmektedir.

Problemi durum uzayında ele almanın avantajları arasında LMI araçlarının kul-
lanımının mümkün olması ve özdeğer-özvektör ataması gibi kullanışlı yöntemlerin
problemin çözümüne dahil edilebilmesi yer almaktadır. Pek çok kontrol problemi LMI
formunda ifade edilebilir ve bu LMI’lar uygun dışbükey optimizasyon problemleri
olarak formüle edilebilir. Özellikle parametrik belirsizlikleri ifade etmek ve özdeğer
saçınımını sınırlamak için LMI çerçevesi kullanışlıdır. Ancak literatürde baskın
olarak kullanılan yöntemler incelendiğinde LMI yaklaşımı ile tanımlanan tasarım
bölgeleri her bir özdeğer için ayrı ayrı tanımlanmamakta, tüm özdeğerler için birleşik
bir LMI tasarım bölgesi tanımlanmaktadır. Bu durum özdeğer atama problemini
zorlaştırmakta, tasarım için daha az öneme sahip baskın olmayan bölgedeki özdeğerler
ile sistemin davranışını belirleyen baskın bölge özdeğerleri arasında farklı dayanıklılık
kriterleri tanımlanmasına imkan vermemektedir.

Bunun yanında özdeğer-özvektör atama yöntemleri ele alındığında yaklaşım olarak
parametrik belirsizliklerin doğrudan ifade edilmesi yerine sistemin duyarlılığını
minimize etmeye yönelik yöntemler literatürü domine etmektedir. H∞ tabanlı
yaklaşımların temel alındığı dayanıklı özdeğer-özvektör atama yöntemleri önerilmiş
olsa da doğrudan parametrik belirsizlikli sistem tasarımı konusunda özdeğer-özvektör
atama yöntemleri yeteri kadar incelenmemiştir. Özdeğer-özvektör atama yöntem-
lerinde, yaklaşım olarak özdeğerler tasarımın başında kesin olarak atandığı için
tasarımın geri kalanında özvektörlerin atanabileceği vektör uzayı da sınırlanmakta,
dolayısı ile D-karalılık söz konusu olduğunda durum uzayı yaklaşımın tasarım
serbestliği özdeğer-özvektör atama yöntemlerinde dayanıklılık lehine yeterince
kullanılamamaktadır. Bunu aşmak adına literatürde bölgesel atama, kısmı özdeğer
atama ve gevşek özdeğer-özvektör atama gibi yöntemler önerilse de bu yaklaşımlarda
da parametrik belirsizliklerin etkisini bastırmak öncelikli tasarım kriteri olmamıştır.
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Literatürde yer alan bu boşlukları doldurmak adına yeni bir tasarım yöntemi önerilmiş,
bu yaklaşımda hem sistemin parametrik belirsizliklere karşı dayanıklılığı doğrudan
tasarımın öncelikli kriteri haline getirilmiş hem de özdeğer-özvektör atama ve LMI
yaklaşımları bu amaç için birlikte kullanılarak özgün bir bozucu gözleyicisi tasarım
yöntemi ortaya konmuştur. Yaklaşım ayrık tasarım bölgeleri için dayanıklı kutup
kümeleme (robust root clustering) probleminin çözümüne olanak sağlamanın yanı
sıra herhangi bir sezgisel algoritma veya gobal optimizasyon yöntemine ihtiyaç
duymamaktadır. Bunun bir sonucu olarak yöntem tutuculuktan kaçınılmaz olarak
mustariptir. Ancak tasarım dayanıklı özvektörlerin bulunması problemini sonlu sayıda
özvektör arasından uygun olanının bulunmasına indirgemiştir.

Özetle, bu tez kapsamında bozucu gözleyicisini parametrik belirsizlikler altında
dayanıklılığının incelenmesi için bir yöntem önerilmiş, durum uzayında özdeğer
saçınımını her bir nominal özdeğere özgü belirlenen ayrık tasarım bölgeleri içerisinde
sınırlamak için iki yeni tasarım yöntemi önerilmiştir. Elde edilen sonuçlar kullanılarak
parametrik belirsizlikli sistemler için durum uzayında bozucu gözleyicisi tasarlanmış
ve sonuçlar paylaşılmıştır.
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1. INTRODUCTION

1.1 Motivation

Robustness is one of the fundamental concepts that has occupied the minds of

feedback control theorists since the classical control period. Since uncertainties and

disturbances affect the system performance dramatically, the concept of robustness

should be considered as one of the primary control system design criteria especially in

applications that require aggressive tracking performance such as inertially stabilized

platforms and motion control systems operating in harsh environments. In order to

tackle these constraints, disturbance observer-based control systems are taking more

attention. However, as it is indicated in [1], robustness analysis on DOB based control

system still lacks detailed results, especially in parametric theory. Here, an answer to

the question of ” how much uncertainty can be dealt with the DOB structure?”, in a

systematic manner using a parametric approach is sought.

A suitable analysis framework is essential for putting forward the weaknesses and

potentials of the disturbance observer based control systems. Although mainstream

H∞-based robust control methods were dominant in the literature, their complexity

and conservative nature brought forward an alternative line of research called the

parametric approach. The majority of the robustness analyses in DOB based control

systems have stayed in the non-parametric area. Therefore, the first part of the study

deals with the robustness analysis of DOB based control system using a spherical

polynomial method. This approach enables the analysis of different cases where DOB

based control systems lose their superiorities. By utilizing the value set concept, a

graphical examination of the robustness analysis is validated. The theoretical results

have been discussed on a motion control system model.

On the other hand, designing a robust disturbance observer-based control system

has gained the attention of researchers since the early 2000s. However, the main

driving force of those research directions is not to tackle the effect of parametric
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uncertainties. Although several attempts have been carried out based on the Kharitonov

methods, theoretical studies still lag behind practical developments. One of the main

reasons for these difficulties is to find a suitable framework for designing disturbance

observer-based control systems under parametric uncertainties. Therefore, the second

part of the thesis focuses on different design approaches that prioritize reducing the

effects of parametric uncertainties as the main design objective.

1.2 Literature Review

1.2.1 Robust control

In the 1970s, it was discussed aloud that LQG control has robustness problems against

changes in system parameters and unmodeled dynamics [2]. Without a doubt, the paper

written by Doyle [3] , which is one of the most influential publications on the subject,

has opened an important gateway for robust control system research. In parallel with

the discussion of how to modify LQG, new optimization problems based on the H∞

norm, have been proposed [4]. It is known that the H∞ norm is closely related with the

largest singular value of the frequency response of the system and hence the worst-case

amplification of the error [5], [6].

Almost at the same period as Doyle’s paper, [3], an important discovery was made by

Kharitonov, who showed a way of determining the stability of an interval polynomial

family by examining only four vertex polynomials [7]. This progress led to another

branch of robust control theory called the parametric approach. Following years,

many researchers contributed to this elegant theory. In 1989, Mansour showed

that fewer than four polynomials are enough to determine the stability if the order

of the polynomial is less than 6 [8], Barlett, Hollot and Huang showed that edge

polynomials must be checked to determine the stability of affine linear polynomials

[9]. A generalization of Kharitonov’s findings is examined in [10], [11]. Although

Kharitonov-based methods [7] open up new horizons in designing systems with

parametric uncertainty in the frequency domain, the available tools do not show the

same success when it comes to matrix families. As Yedevalli stated in [12], checking

robust stability in matrix families is a tougher problem than checking in polynomial

families. The study in [13] may give a profound insight into the topic.
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Since DOB based control methods are seldomly examined from the parametric point

of view one of the aims of this study is to contribute to the DOB analysis literature

by utilizing the parametric approach. Another aim of the study is to propose a new

eigenstructure assignment method for restricting closed-loop eigenvalue spread in

disjoint regions for matrices with parametric uncertainty, as well as to bring a different

approach to the design of the disturbance observer in the state space.

1.2.2 Disturbance observer

It is not surprising to those who are interested in the history of control that the

intellectual foundations of many of the control methods and ideas we use today have

been introduced in the years of modern control theory. The basis of the disturbance

observer idea dates back to the 1960s, justifying this determination [14]. Johnson’s

proposed structure [15] for estimating fixed disturbances acting on the system within

the framework of optimal control can be considered the basis of the disturbance

observer idea used today. His other publication [16], which proposes to predict the

external disturbances that affect the system besides the states of the system, includes

the idea known as the extended state observer today.

The disturbance observer structure, as used today, was first proposed to reduce the

sensitivity to a parameter change, nonlinear effects, and other disturbances in servo

motor control [17] and was used in the motion control framework in [18].

In conventional control applications, the disturbance is used to express the

uncontrollable quantities that affect the system from the outside. With this definition,

disturbance rejection performance is considered one of the basic design criteria for

many methods, from loop shaping to H∞ [19]. However, some approaches that treat

parametric uncertainties and unmodeled dynamics of the system as disturbance [20].

The reader may found an extensive discussion on this topic in [19]. To the best of

the authors’ knowledge, the most general and inclusive approach to the nature of the

disturbance is given by the concept of active disturbance rejection proposed by Han.

According to this approach, there is no need for a detailed mathematical model of the

system [19]. If the term disturbance is used in the most general sense, the control

problem becomes a disturbance suppression problem [21], [22].
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Many researchers have described similar ideas at different times with different names,

and there has been an overwhelming accumulation of DOB-based methods in the

literature. The reader should refer to [23] to evaluate the observer-based approaches

such as “unknown input observer”, “equivalent input disturbance”, “extended state

observer”, “generalized PI observer” [24], “disturbance and uncertainty estimation”,

“active disturbance rejection”. In [25], the advantages and disadvantages of many

observer based methods used in practical applications are discussed.

The success of DOB-based methods in practical applications has paved the way for

theoretical analysis. Arguably, it can be said that theoretical analysis follows practical

application in the development of the disturbance observer-based approach. DOB is

used in many industrial systems such as automatic steering of a vehicle [26], CNC

machines [27], mechanical positioning systems [28], piezoelectric actuators [29], and

attitude control of a missile [30]. Although DOB has found enough application

areas in practice, the literature on theoretical analysis is still not satisfactory [23],

[31]. Therefore, different approaches are still brought about for issues such as robust

stability, the effect of right half plane zeros and poles, and time-delayed systems.

The performance and stability of DOB are studied in [32] using singular perturbation

theory, with similar results proven in the frequency domain [33]. The robust stability

conditions for minimum phase systems under parametric uncertainties are given in

[34]. In [35], it has also been shown that the phase and gain margins for minimum

phase systems can be increased arbitrarily using a DOB based approach. DOB is

also recommended for non-minimum phase systems [36–38]. In [39], a reduced-order

DOB based method is proposed to obtain a low order observer. An approach on the

case when the difference between denominator and numerator of the uncertain system

is not known exactly is proposed in [40,41]. Existingly, the criteria for robust stability

and robust performance are reduced to the bandwidth of the Q filter [42,43]. H∞ based

and conservative methods predominate in the literature [43–45]. Especially analyzes

under parametric uncertainty are limited [34], [46] .

1.2.3 Eigenstructure assignment for robust control

Studies on the eigenstructure assignment problem usually considered to begin with the

work of Porter and Crossley [47]. Especially after the studies [48], [49] which showed

4



the connection of controllability with the eigenspectrum, the research direction shifted

to questions about the relationship between the number of input/output and degrees of

freedom of the system. [50], [51] and [52] have shown that (m+ l−1) eigenvalues can

be arbitrarily assigned for a system with l output and m input. [53] provides a more

extensive development of these results.

In the late 70s, with the works of [54], [55] assignment of the eigenstructure

(eigenvalues and eigenvectors) become one of the main canonical design methods

which is utilized in many time-domain problems today. On the other hand, studies

on the robustness performance of the method [56], [57] progressed in parallel. When

it comes to robustness, the most prominent method in the eigenstructure assignment

literature is the method known as the orthogonal eigenvector method [58]. At the end

of this line of research, it is pointed out that condition numbers which are obtained

by the right and left eigenvectors are closely related to the robustness of the system

[59]. Especially with the maturation of the H∞ theory, another robust eigenstructure

assignment approach has been proposed [60]. Considering the proposed methods, the

eigenstructure assignment problem requires a two-stage design. In the first stage,

the eigenvalue (or eigenvector) is assigned from the beginning. Then, the relevant

eigenvector (or eigenvalue) assignment is made.

However, in the case where the eigenvalues are strictly assigned beforehand, the

relevant eigenvectors must lie in the subspace spanned by the columns of (λiI−A)−1B,

so the eigenvalues that are assigned strictly at the beginning of the procedure restrict

the design.

Nevertheless, the exact eigenvalue assignment is not always necessary. Therefore,

methods that do not assign the eigenvalues exactly are also suggested [61]. This brings

the eigenstructure assignment literature to the concept of D-stability. At this point, to

obtain more design freedom, strict partial eigenvalue assignment has been proposed

by [62] and a regional assignment method is proposed by [63].

In particular, the D-stability problem, in which the eigenvalues are aimed to remain

within a certain region, has gained significant importance in the LMI framework [64].

This method, in which all eigenvalues are restricted within a single convex region, has

found a place for itself, especially in multi-purpose control applications [65]. However,
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these methods cluster all closed-loop eigenvalues in a connected region and do not

consider the eigenstructure assignment. When the assignment regions are not common

and disjoint, the assignment conditions cannot be reduced to a well-known Lyapunov

inequality. This is the main difficulty of working with the disjoint regions.

In [66], authors consider the eigenvalue location problem as a mere quadratic

optimization problem. Then, the quadratic problem is formulated as an LMI problem

with a non-convex rank constraint. This result paved the way for representing disjoint

design regions in the LMI framework. In [67], it is shown that rank condition

is not necessary if the design region is convex. In [68], an elegant method is

proposed for eigenstructure assignment for disjoint regions. However, the method

utilizes a non-convex optimization method to handle robustness concerns. Also, the

method mentioned for the nominal system is not suitable for systems with parametric

uncertainties.

This study aims to cluster uncertain eigenvalues into a disjoint region by using an

eigenstructure assignment. In the eigenstructure assignment, eigenvalues are assigned

strictly to desired points. However, instead of assigning eigenvalues to specific points,

designers may utilize design regions so that there is much more design freedom left

for further control objectives. Instead of using non-convex heuristic algorithms to

tackle the problem, we introduce a dual-stage design consisting of simple LMIs, with

a reasonable conservatism.

1.2.4 Disturbance observer design

Similar to the eigenstructure assignment literature, the roots of disturbance observer

techniques date back to the late 60s [69]. The idea of predicting external and internal

disturbances led researchers to the extended state observer [16]. In [17], Ohishi

introduces the structure of the DOB to tackle the problem of attenuating the effects

of parameter changes, disturbances, and nonlinear effects.

A similar philosophy is expressed by the researchers such as [19] in the context

of active disturbance rejection, in which uncertainties and unmodelled dynamics are

treated as a disturbance. If the most inclusive manner of the term disturbance is used,

the controller design problem becomes a disturbance attenuation problem, as indicated

in [21].
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Since the idea of disturbance rejection found extensive use for itself in different

contexts of the control theory, literature is overwhelmed by the observer-based

approaches such as, “unknown input observer”, “extended state observer”,

“disturbance and uncertainty estimation”, and “active disturbance rejection” despite

being different extensions of the same idea [25]. Although DOB-based methods

find an extensive application area in the industry, the design and analysis methods

in the theoretical domain still lack profoundness as it is stated in [70] and [31]. The

robustness properties of the DOB have been investigated by several researchers, mainly

since the 2000s. In [32], the robust stability of DOB in the state-space application is

investigated by singular perturbation theory, besides similar outcomes obtained in the

frequency domain [33]. Research in the direction of DOB design under parametric

uncertainty in the frequency domain is not yet at a sufficient level. Studies in [34,42,71]

are excellent exceptions.

The author of this study has also contributed to the analysis of DOB-based control

systems via spherical polynomials [72]. However, to the best of the author’s

knowledge, there is no detailed study in the context of eigenstructure assignment for

the DOB-based control system under parametric uncertainties. One of the aims of this

study is to show that, extended loose eigenstructure structure assignment put forward

a viable solution to the problem in the time domain.

1.3 Goal and Unique Aspect of the Thesis

The first part of the thesis proposes a new analysis method for disturbance

observer-based control systems under parametric uncertainties. The study makes

several key contributions including the derivation of the analytical relationship

between the bandwidth and robustness of the disturbance observer using a spherical

polynomial representation. Additionally, the study introduces the spherical value set

approach for uncertain polynomials, which is applied for the first time to disturbance

observer-based control systems. The study also presents the first systematic statement

of the robustness margin for a given DOB-based system in the context of spherical

polynomial families. Furthermore, the study examines the non-minimum phase case

and discusses bandwidth constraints, as well as the effects of low-order DOB filter
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design. Overall, the study provides valuable insights into the design and analysis of

disturbance observer-based control systems under parametric uncertainties.

The second part of the study concentrates on designing disturbance observer-based

control systems under parametric uncertainties in the state space. To this end, a

guardian-map-based disturbance observer design method is introduced first. The

proposed method enables the clustering of perturbed eigenvalues into predefined

disjoint regions.

The final part of the study proposes another method for designing disturbance

observer-based control systems under parametric uncertainties, using eigenstructure

assignment in the LMI framework. The proposed method has several novel aspects.

Firstly, it allows for the handling of robust root clustering problems for disjoint

D-regions in the context of eigenstructure assignment. Secondly, the method extends

the capability of loose eigenstructure assignment procedures to uncertain matrix

families. The method does not require any global optimization methods or heuristic

algorithms, with only simple LMIs being required to find robust controllers. Thirdly,

finding robust eigenvectors is reduced to selecting a finite number of alternatives.

Finally, the method proposes a DOB design method for parametric uncertain systems

in the context of eigenstructure assignment. Overall, these novel aspects of the

method aim to provide an effective and flexible approach to designing disturbance

observer-based control systems under parametric uncertainties.

1.4 Structure of the Thesis

Chapter 1 of the thesis provides an introduction to the research topic, including the

motivation and goals of the study. The unique aspects of the thesis are also discussed,

along with a detailed literature survey that provides a background for the research.

This chapter serves as an overview of the thesis and sets the stage for the subsequent

chapters. It provides a context for the research and lays out the research questions and

objectives. Additionally, the chapter highlights the significance of the research and the

potential contributions to the field. The chapter concludes by providing a brief outline

of the structure of the thesis and the organization of the subsequent chapters.
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Chapter 2, titled "Analysis of DOB-based Systems with Parameter Uncertainty", starts

with introducing the DOB structure in frequency domain. The chapter provides

preliminary analysis and required mathematical tools in Section 2.1. The results on the

interval polynomial case are given in Section 2.2 and on the affine-linear polynomial

case are given in Section 2.3.

Chapter 3, titled "Guardian-Map for Robust D-Stability", gives the state space

representation of the DOB-based control system and introduces a new guardian map

for the robust D-stabilization. The state feedback design method based on the proposed

method is given in Section 3.4 and DOB design in this context is examined in Section

3.5.

Finally, Chapter 4, titled "Disturbance Observer Design by Extended Loose

Eigenstructure Assignment for the Disjoint D-Region Stability", gives the novel design

method for the DOB-based control systems under parametric uncertainty by utilizing

eigenstructure assignment in LMI framework. Theoretical background is given in

Section 4.2 and problem formulation is given in Section 4.3. Main results are shared

in Section 4.4.

Thesis study is summarized in Chapter 5.
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2. ANALYSIS OF DOB BASED SYSTEM WITH PARAMETER
UNCERTAINTY 1

2.1 Preliminaries

The basic DOB structure is given in Figure 2.1. In the figure, the uncertain plant is

P, nominal plant model is Pn and the feedback controller is C. Finally, Q is a transfer

function related with the disturbance observer, which is usually designed as a low pass

filter. The relation between the inputs and the output of the system is given in (2.1).

DOB

𝐶 𝑃

𝑄

𝑄 𝑃𝑛
−1

𝑟 𝑒 𝑢𝑟

𝑑
𝑢 𝑦

𝑛−

−−

ത𝑦

Figure 2.1 : Disturbance observer structure.

y =
PPn

Pn +(P−Pn)Q
ur +

PPn(1−Q)

Pn +(P−Pn)Q
d − PQ

Pn +(P−Pn)Q)
n (2.1)

In (2.1), it is obvious that the transfer function from ur to y is Pn if P = Pn. Therefore,

when there is no uncertainty, the inner loop behaves like a nominal model for the input

ur. Also note that when Q ≈ 1, the output of the system is almost decoupled from the

input d. In the presence of the feedback controller C, the closed loop transfer functions

are given below;

Tyr =
PnPC

Pn(1+PC)+Q(P−Pn)
(2.2)

1This chapter is based on the paper "İsa Eray Akyol & Mehmet Turan Söylemez (2023) Analysis of
disturbance observer-based control systems via spherical polynomials, International Journal of Control,
96:2, 435-448, DOI: 10.1080/00207179.2021.2000030"
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Tyn =
P(Q+PnC)

Pn(1+PC)+Q(P−Pn)
(2.3)

Tyd =
PnP(1−Q)

Pn(1+PC)+Q(P−Pn)
(2.4)

Assuming that the amplitude of the transfer function Q is approximately 1 in a wide

frequency band, the following relations are valid;

Q ≈ 1 =⇒ Tyr ≈
PnC

1+PnC
and Tyd = 0 (2.5)

Considering the scheme in Figure 2.1, transfer functions between inputs [r,d,n]T and

outputs [e,u,y]T are given below;

1
σ(s)

 Q(P−Pn)+Pn (Q−1)PPn (Q−1)Pn

CPn (1−Q)Pn −Q−CPn

CPPn (1−Q)PPn (1−Q)Pn

 (2.6)

where;

σ(s) = (1+PC)Pn+Q(P−Pn) (2.7)

The matrix in (2.6) shows that, depending on the selection of Q, the nominal

performance can be recovered and the effects of the disturbance d on the output can be

cancelled provided that all nine transfer functions are stable.

2.1.1 Machinary

In the context of the parametric approaches, polynomial families are categorized by

how uncertain parameters are affecting the coefficients of the polynomials. The reader

may refer to [8] and [73] for further details.

Even if the plant polynomial has a simple structure such as interval type, the inner

loop of the disturbance observer-based system may lead to a more complex polynomial

family. This situation gets more complicated when the plant polynomial has already

a complex structure. At this point, a certain conservatism may be accepted during

the plant modeling in order to obtain a more refined solution. Therefore, interval

polynomials with ellipsoidal uncertainty are considered mainly in this paper. The

rest of this section covers uncertainty representation and the value set concept for the

ellipsoidal polynomials.
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2.1.1.1 Spherical versus box representation

It is natural to think that the uncertain parameters in real life (inertia, friction

coefficient, etc.) are independent from each other.

Therefore, in the main streamline of the parametric approach, the uncertainty bounding

set, Q, is assumed to be a box. In the literature, this assumption leads to l∞

representation of the parameter box. However, it is also possible to use l2 analogue

of this representation. The comparison of sphere and box bonding set is given in

Figure 2.2. In this paradigm, the uncertainty bounding set would be a hypersphere.

Considering l2 analog does not necessarily mean that the inertia and friction coefficient

are related somehow. However, this becomes a meaningful approach specially when it

is considered that the corners of the parameter box, in other words, the maximum and

minimum values of the uncertain parameters may not be known exactly in real life.

Ellipsoidal uncertainty representation particularly fits where the mathematical models

𝑞1
+𝑞1

−

𝑞2
+

𝑞2
−

𝑞2

𝑞1

𝑄𝑚𝑖𝑛𝑞2
0

𝑞1
0 𝑞1

+𝑞1
−

𝑞2
−

𝑞2
+

𝑄𝑚𝑎𝑥

Figure 2.2 : Sphere vs. box bounding sets.
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are obtained by linear or nonlinear regression techniques [74]. A connection of the

system identification and robust controller design via ellipsoidal parametric uncertainty

representation is given in [75].

SBD theorem [76], which is given as Theorem 2.1, is particularly useful for analyzing

the systems with ellipsoidal uncertainty. The representation of Theorem 2.1 is directly

obtained from [77]. Although it can only be used where the uncertain polynomial

is interval type, the main idea behind the theorem can be extended to more complex

representations.

Theorem 2.1 (SBD Theorem) [77]: Consider the spherical family of polynomials P

with invariant degree n ≥ 1 described by

p(s,q) =
n

∑
i=0

qisi + p0(s) (2.8)

with polynomial

p0(s) =
n

∑
i=0

aisi (2.9)

and uncertainty bounding set ∥q∥2 ≤ r. For ω > 0, let

GSBD(ω) =
[Re(p0( jω))]2

∑ieven ω2i +
[Im(p0( jω))]2

∑iodd
ω2i (2.10)

Then P is robustly stable if, and only if, the following conditions are satisfied;

1) p0(s) is stable,

2) |a0|> r

3) GSBD(ω)> r2, ∀ω > 0.

Theorem 2.1 will be the basis theorem for further theoritical development.

2.1.1.2 Value set for spherical polynomials

The value set concept with the zero exclusion principle brings important machinery to

analyze the uncertain systems. It is already pointed out in [77] that the value set for

a spherical polynomial at a given frequency ω > 0 is an ellipse on the complex plane

which can be expressed in the following form;

PT
0 ( jω)WP0( jω)≤ r2 (2.11)
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𝐼𝑚

𝑅𝑒

𝐼𝑚 𝑃0(𝑗 𝜔)

𝑅𝑒 𝑃0(𝑗 𝜔)

Figure 2.3 : An ellipsoidal value set for a single frequency ω > 0.

where W is the weight matrix of the ellipse and the vector P0( jω) determines the center

of the ellipse as depicted in Figure 2.3. An important observation is that the weight

matrix is diagonal when the characteristic polynomial is of interval type. In the affine

linear polynomial case, the off-diagonal terms of the weight matrix are nonzero. The

reader may refer to [77] and [78] for further derivation of the value sets for ellipsoidal

uncertainty.

2.2 Interval Polynomials

In this section, the aim is to put an explicit relation between robustness and the

disturbance observer bandwidth using a parametric approach. Note that for a special

case in which second-order transfer function is considered, such a relation has been

obtained in [34]. However, the general case is considered here.

To derive the relation let us make the following definitions;

P(s) =
Np(s)
Dp(s)

(2.12)

Pn(s) =
Nn(s)
Dn(s)

(2.13)

Q(s) =
Nq(s)
Dq(s)

(2.14)
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Now, by considering the DOB based structure in Figure 2.1, the inner loop transfer

function can be obtained as follows;

Tury(s) =
PPn

Q(P−Pn)+Pn
(2.15)

By substituting the definitions into the Tury(s), the following transfer function is

obtained;

Tury(s) =
DqNnNp

DpDqNn −DpNnNq +DnNpNq
(2.16)

At this point, an assumption has to be made in order to use SBD theorem since it

is only applicable to interval polynomial families. If the plant uncertainty is present

only in the denominator and the relative degree of the plant is 1 then the characteristic

polynomial is an interval type. However, if uncertain parameters are at both numerator

and denominator and/or the relative degree of the plant is greater than 1 then the

characteristic polynomial type is affine linear [34]. In this section we focus on the

interval characteristic polynomials. Two possible cases exist.

2.2.1 Case-1: Same orders of P(s) and Pn(s)

The inner loop of DOB structure is given in Figure 2.4. The following assumptions are

DOB

𝐶 𝑃

𝑄

𝑄 𝑃𝑛
−1

𝑟 𝑒 𝑢𝑟

𝑑
𝑢 𝑦

𝑛−

−−

ത𝑦

Figure 2.4 : Inner loop of DOB structure.

given in order to state Lemma 2.1.

Assumption 1: Only the denominator of P is uncertain and relative degree of P is 1.

Assumption 2: Pn(s) is stable.
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Lemma 2.1: Consider the inner loop of DOB structure given in Figure 2.4 and the

inner loop transfer function given in (2.16). Assume that, Under Assumption 1 and 2,

as the bandwidth of the disturbance observer, g0, increases, the robust stability margin

of Tury increases if the g0 is higher than a certain value called its minimum value.

Proof: Due to Assumption 1;

Nn = Np (2.17)

Hence, the characteristic polynomial of Tury(s) is reduced to;

Pchar(s) = Dp(Dq −Nq)+DnNq (2.18)

Furthermore, since the relative degree of the plant is 1, Q filter shall be selected as a

first order low pass filter. Without losing generality, monic polynomials are used in the

following.

Q(s) =
g0

s+g0
(2.19)

Nn(s)
Dn(s)

=
bksk +bk−1sk−1 + . . .+b0

sk+1 +aksk + . . .+a0
(2.20)

Np(s)
Dp(s)

=
bksk +bk−1sk−1 + · · ·+b0

sk+1 +(ak +∆ak)sk + · · ·+(a0 +∆a0)
(2.21)

Here, Dp(s) can be factorized as follows;

Dp(s) = Dp0(s)+Dp∆(s) (2.22)

where;

Dp0(s) = sk+1 +aksk + . . .+a0 = Dn(s) (2.23)

Dp∆(s) = ∆aksk + . . .+∆a0 (2.24)

Finally, the closed-loop system characteristic polynomial is obtained as follows;

Pchar(s) = [Dp0(s)+Dp∆(s)]s+g0[Dn(s)] (2.25)

The closed-loop characteristic polynomial for the nominal system (Pchar,0(s)) is then

found as

Pchar,0(s) = Dp0(s)s+g0Dp0(s) (2.26)

= (sk+1 +aksk + . . .+a0)(s+g0) (2.27)
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Now, due to Theorem 2.1; Dp0(s)(g0 + s) must be stable. Assumption 2 states that

Dp0(s) is stable. Therefore, the first condition of Theorem 2.1 satisfied for g > 0.

Now, the second condition of Theorem 2.1 requires that;

|a0g0|> r (2.28)

Obviously, as the bandwidth of the disturbance observer is increased, this condition is

satisfied more easily. Finally, the last condition of Theorem 2.1 requires that,

GSBD(ω) =
[Re(Dp0( jω)(g0 + jω))]2

∑ieven ω2i +
[Im(Dp0( jω)(g0 + jω))]2

∑iodd
ω2i > r2 (2.29)

Let;

Dp0( jω) = Re(Dp0( jω))+ jIm(Dp0( jω)) (2.30)

Then, the numerator of the first part of GSBD(ω) is;[
Re(Dp0( jω)(g0 + jω))

]2
= (Re(Dp0))

2g2
0

−2(Im(Dp0)Re(Dp0))ωg0 +(Im(Dp0))
2ω2 (2.31)

Note that this is a quadratic function of g0 and (ReDp0)
2 > 0. Obviously for positive g0,

the value of this function is increased as g0 is increased if g0 is higher than a minimum

value.

The same applies to the numerator of the second part of GSBD(ω);[
Im(Dp0( jω)(g0 + jω))

]2
=

(Im(Dp0))
2g2

0 +2(Im(Dp0)Re(Dp0))ωg0 +(Re(Dp0))
2ω2 (2.32)

Note that this is a quadratic function of g0 and (ImDp0)
2 > 0. Obviously for positive

g0, the value of this function is increased as g0 is increased if g0 is higher than a

minimum value.

Note also that the denominator of the GSBD(ω) is independent of g0. Finally, it can be

concluded that as g0 is increased stability margin is also increased if g0 is higher than

a certain value called its minimum value.

□

Example: Consider the following example;

Pn(s) =
s+1

s2 +2s+2
(2.33)
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P(s) =
s+1

s2 +(2+∆a1)s+(2+∆a0)
(2.34)

Q(s) =
g0

s+g0
(2.35)

Here;
Pchar,0(s) = Dp0(s)+g0Dp0(s) =

2g0 +(2+2g0)s+(2+g0)s2 + s3
(2.36)

It is possible to draw rmax versus ω plot for different g0 values. For example, the plot

is depicted for g0 = 20 in Figure 2.5. Here, ρ = inf
ω>0

(rmax(ω))∼= 21.04 .The value sets

4 6 8 10
ω

10

20

30

40

50

rmax
g0=20

Figure 2.5 : rmax −ω plot for g0 = 20.

for different frequencies r = 1 and r = 21.04 are given in Figure 2.6. rmax −ω plot

for different g0 values is given in Figure 2.7. As it can be observed from the value sets,

although the centers of the ellipses are the same, major and minor axes of the ellipses

change dramatically as with the value of r. This is a typical result for case-1 because of

the following observation: Consider the ellipsoid inequality given in (2.37) where the

P0( jω) represents the center of the ellipse and eigenvalues of W represent the lengths

of the major and the minor axes of the ellipse.

PT
0 ( jω)WP0( jω)≤ r2 (2.37)
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Figure 2.6 : Value set for r = 1 (Red), r = 21.04 (blue), g0 = 20.
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Figure 2.7 : rmax −ω plot for g0 = {20,30,40,50,60}.

For case-1, the length of the major axis, (Rma jor), is r
√

max(λ (W−1)) and W−1 is

independent of g0. However, the distance between the center of the ellipse and the

20



origin, |P0| is |Dn( jω)||Nn( jω)|
√

g2
0 +ω2. Therefore, the axis length of ellipses does

not depend on g0, whereas the distance between the center of the ellipses and the origin

increases as g0 increases. This fact can also be observed in Figure 2.8, where value

sets for different frequencies are depicted for g0 = 10 and g0 = 15.

-120 -100 -80 -60 -40 -20 20
Re

10

20

30

40

50

60

70

Im

Figure 2.8 : Value set for g0 = 10 (green) and g0 = 15 (blue).

2.2.2 Case-2: Low-ordered Pn case

Theorem 2.1 gives a useful framework to investigate different cases of DOB based

systems. The case where the nominal plant model has a more simpler structure than

the uncertain plant is considered in this part. The following additional assumptions are

given.

Assumption 3: Only the denominator of P is uncertain and relative degree of P is 1.

Assumption 4: Pn(s) is a first order transfer function.

Lemma 2.2: Consider the inner loop of DOB structure given in Figure 2.4 and the

inner loop transfer function given in (2.16). Under Assumptions 2, 3 and 4, the

robustness margin can be determined as a function of DOB bandwidth as follows,

min
{√

GSBD(ω), |g0Np(0)|
}
> r.

Proof: Note that, whatever the uncertain plant is, the nominal plant model is assumed

to be of first order. This assumption has practical meaning especially when the exact
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plant model structure is not known. Here;

Q(s) =
g0

g0 + s
(2.38)

Np(s)
Dp(s)

=
sk +bk−1sk−1 + · · ·+b0

sk+1 +(ak +∆ak)sk + · · ·+(a0 +∆a0)
(2.39)

Nn(s)
Dn(s)

=
K

τs+1
(2.40)

It is possible to factorize Dp(s) as follows;

Dp(s) = Dp0(s)+Dp∆(s) (2.41)

where;

Dp0(s) = sk+1 +aksk + . . .+a0 = Dn(s) (2.42)

Dp∆(s) = ∆aksk + . . .+∆a0 (2.43)

Finally, the nominal characteristic polynomial is obtained as follows

Pchar,0(s) = Dp0(s)Ks+g0(τs+1)Np(s) (2.44)

Now, according to Theorem 2.1, Dp0(s)Ks + g0(τs + 1)Np(s) must be stable.

Assumption 2 states that Dp(s) is stable and also Np is stable if the plant is minimum

phase. However, the first condition of Theorem 2.1 is not held automatically. Q and Pn

must be selected carefully. Now, the second condition of Theorem 2.1 requires that;

|g0b0|> r (2.45)

Obviously, as the bandwidth of the disturbance observer is increased, this condition is

satisfied more easily. Finally, due to the last condition of Theorem 2.1, it is required

that,

GSBD(ω) =
[Re(Pchar,0( jω))]2

∑ieven ω2i +
[Im(Pchar,0( jω))]2

∑iodd
ω2i > r2 (2.46)

Let;

Dp0 = ReDp0 + jImDp0 (2.47)

Np = ReNp + jImNp (2.48)

Then, the numerator of the first part of GSBD(ω) is;[
Re(Pchar,0( jω))

]2
=

g2
0 (Re(Np)− τωIm(Dp))

2 +2g0ωKIm(Dp0)(−Re(Np)+ τωIm(Dp))

+(Im(Dp0))
2K2ω2

(2.49)
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Note that this is a quadratic function of g0 . When g0 >
ωKIm(Dp0)

Re(Np)−τωIm(Dp)
and g0 > 0,

the value of this function increases as g0 increases. The same applies to the numerator

of the second part of GSBD(ω);[
Im(Pchar,0( jω))

]2
= g2

0 (Im(Dp)+ τωRe(Np))
2

+2g0ωKRe(Dp0)(Im(Dp)+ τωRe(Np))

+(Re(Dp0))
2K2ω2

(2.50)

Note that this is a quadratic function of g0 . When g0 >
ωKRe(Dp0)

Im(Np)+τωRe(Dp)
and g0 > 0,

the value of this function increases as g0 increases. Finally, it can be concluded that the

robustness margin can be determined considering min
{√

GSBD(ω), |g0Np(0)|
}
> r .

□

Although it is not guaranteed that GSBD(ω) increases with g0, this is a promising result

that enables us the use a simpler structure for the filter design.

Example: Consider the previous example with a low-order Pn, where

Pn(s) =
1

s+2
(2.51)

P(s) =
s+1

s2 +(2+∆a1)s+(2+∆a0)
(2.52)

Q(s) =
g0

s+g0
(2.53)

Then, the closed-system nominal characteristic polynomial is calculated as follows;

Pchar,0(s) = s3 +(2+g0)s2 +(2+2g0)s+2g0 (2.54)

It is possible to draw rmax versus ω plots for different g0 values as depicted in Figure

2.9. For g0 = 10, ρ = inf
ω>0

(rmax(ω))∼= 0.33 . The value sets with different frequencies

are depicted for r = 0.1 and r = 0.33 when g= 10 in Figure 2.10. As it can be observed

from Figure 2.10, although the centers of the ellipses are the same, lengths of major

and minor axes of ellipses change dramatically with r. Note that, it is found in previous

example (Case-1) that ρ = 21.04. This example demonstrates also that poorly designed

Pn lead to a week robustness margin. Increasing the time constant of the nominal

plant improves the robustness margin. Consider the same plant with Pn(s) = 0.1
s+0.2 and

consider the DOB filter Q(s) = 1
s+2 , where the time constant of the Q filter is 5 times

less than the nominal plant as in the previous example (g0 = 10). It can be shown that

ρ ∼= 1.93 in this case. Figure 2.11 shows rmax versus ω plots for a practical range of

g0.
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Figure 2.9 : rmax −ω plot for g0 = {10,20,30,40}.
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Figure 2.10 : Value sets for r = 0.1 (red), r = 0.33 (blue), g0 = 10.

2.3 Affine Linear Polynomials

The previous section dealt with the case where the uncertain polynomial family is of

interval type. In this case, Theorem 2.1 gives a refined solution to the problem of

determining the robust stability radius of DOB based inner loop polynomial. However,
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Figure 2.11 : rmax −ω plot for g0 = {1,2,3,4}.

in a more general case, the inner loop of a DOB based system results in an affine linear

characteristic polynomial family. Unfortunately, the available machinery seems not

very suitable for such disturbance observer-based systems in the first place.

This problem is already considered in [79], however, the proposed machinery includes

matrix inversions which may lead to unnecessarily complex solutions. The analytically

complex nature of the approach given in [79] directs the interest to the technique given

in [80], which has more geometric intuition. The reader may refer to [81] for a detailed

discussion. However, a refined solution that shows the analytical relation between

the bandwidth of the DOB and the stability radius in parameter space has not been

achieved yet.

In [34], the problem is considered only for the uncertainty represented by l∞ norm

(box representation). However, the relation between the bandwidth of DOB and the

robustness margin has not been given explicitly. The aim of this section is to provide

a refined approach to analyze the robustness margin and the bandwidth of DOB where

the uncertainty is present in both numerator and denominator of the plant.

2.3.1 Minimum-phase plant case

The following theorem can be expressed if the plant transfer function is minimum

phase.
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Theorem 2.2: Consider the uncertain plant with disturbance observer described by;

P(s) =
Np(s)
Dp(s)

(2.55)

Pn(s) =
Nn(s)
Dn(s)

(2.56)

Q(s) =
Nq(s)
Dq(s)

(2.57)

with uncertainty bounding set ∥q∥2 ≤ r. Assume that;

1) P(s) is minimum phase and Relative degree of P(s) is one, that is, n−m = 1

2) The Nominal plant Pn is stable

Then, the relation between the DOB bandwidth (g0) and the robustness margin is

expressed as follows;

PT
0 ( jω)

W
r2 P0 ( jω)>1 (2.58)

where W satisfies the following equation;

W−1r2=
(
M1+g2

0M2
)

r2 (2.59)

in which M1 and M2 are positive definite matrices.

Proof: The proof follows the same reasoning given in [77].

Np (s) =
m

∑
i=0

bisi +
m

∑
i=0

∆bisiNp (s) = Nn (s)+N∆(s) (2.60)

Dp (s) =
n

∑
i=0

aisi +
m

∑
i=0

∆aisi = Dn (s)+D∆(s) (2.61)

N∆ ( jω) ≜
m

∑
i=0

∆bi( jω)i (2.62)

D∆ ( jω) ≜
n

∑
i=0

∆ai( jω)i (2.63)

The closed-loop system characteristic polynomial Pc(s) is;

Pc (s) = DpNn
(
Dq −Nq

)
+DnNpNq (2.64)

Pc (s) = DnNn (s+g0)+D∆Nns+N∆Dng0 = P0 (s)+P∆ (s) (2.65)

P0 (s) ≜ DnNn (s+g0) (2.66)

P∆ (s) ≜ D∆Nns+N∆Dng0 (2.67)

(2.68)
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and

Pc( jω,Q) = {Pc( jω,q) : q ∈ Q} (2.69)

where;

q ≜ (∆ai,∆bk) , i = 0,1 . . .n and k = 0,1, . . . ,m (2.70)

P0( jω) can be written using the following expressions;

Im(Nn) ≜ Im{Nn( jω)} (2.71)

Re(Nn) ≜ Re{Nn( jω)} (2.72)

Im(Dn) ≜ Im{Dn( jω)} (2.73)

Re(Dn) ≜ Re{Dn( jω)} (2.74)

D∆ ( jω)Nn ( jω)( jω) =
n

∑
i=0

∆aiNn ( jω)( jω)i+1 (2.75)

=

(
Re(Nn) −Im(Nn)

Im(Nn) Re(Nn)

)(
0 −ω2 . . .

ω 0 . . .

) ∆a0
...

∆an

 (2.76)

= NAn∆a (2.77)

N∆ ( jω)Dn ( jω)g0 =
m

∑
i=0

g0∆biDn ( jω)( jω)i (2.78)

= g0

(
Re(Dn) −Im(Dn)

Im(Dn) Re(Dn)

)
1 0
0 ω

−ω2 0
. . . . . .


T  ∆b0

...
∆bm

 (2.79)

= g0DAd∆b (2.80)
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where

D ≜

(
Re(Dn) −Im(Dn)

Im(Dn) Re(Dn)

)
(2.81)

N ≜

(
Re(Nn) −Im(Nn)

Im(Nn) Re(Nn)

)
(2.82)

Ad ≜

(
1 0 −ω2 0 . . .

0 ω 0 −ω3 . . .

)
(2.83)

An ≜

(
0 −ω2 0 . . .

ω 0 −ω3 . . .

)
(2.84)

∆a ≜

 ∆a0
...

∆an

 (2.85)

∆b ≜

 ∆b0
...

∆bn

 (2.86)

Ω ≜
(

N g0D
)

(2.87)

A ≜

(
An 0
0 Ad

)
(2.88)

q ≜

(
∆a
∆b

)
(2.89)

For a fixed ω > 0

z ∈ Pc ( jω,Q) ⇐⇒ (2.90)

z = P0 ( jω)+
(

N g0D
)( An 0

0 Ad

)(
∆a
∆b

)
= P0 ( jω)+Ω A q (2.91)

For q ∈ Q, any minimum norm solution qmin of the z satisfies
∥∥qmin

∥∥
2 ≤ r. At this

point, it is time to consider the system of equations with infinitely many solutions,

such as z = P0 ( jω) +Ω A q. It is convenient to find the smallest norm solving the

optimization problem minimizex∈Rn ∥x∥ sub ject to Ax = b.

Lemma 2.3 [82]: A vector xmin satisfying Axmin = b is the minimum norm solution of

the system of equations Ax = b if, and only if, it can be written as xmin = AT v for some

v.

So, the minimum norm solution xmin can be found by solving the system AAT v = b for

v, then setting xmin = AT v.
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Thus, considering the z = P0 ( jω)+Ω A q;

z−P0 ( jω) = (ΩA)q (2.92)

qmin = (ΩA)T v (2.93)

z−P0 ( jω) = (ΩA)(ΩA)T v (2.94)

v =
[
(ΩA)(ΩA)T

]−1
(z−P0( jω)) (2.95)

W−1 ≜ (ΩA)(ΩA)T (2.96)

qmin = (ΩA)TW (z−P0( jω)) (2.97)

Then, ∥∥qmin∥∥
2 ≤ r (2.98)

(z−P0( jω)T )W (z−P0( jω))=(qmin)
2
<r2 (2.99)

At this point, the rank condition must be checked in order to guarantee that the

minimum norm solution is unique. To this end Rank (ΩA) must be 2. Considering

An and Ad , Rank(A) = 4 and also, since Dn and Nn are assumed to be coprime,

Det (N) ̸= 0 or Det(D) ̸= 0. This guarantees that Rank (ΩA) = 2. In view of the

ellipsoid expression, it is possible to check whether the origin is included or not. In

this case, the requirement is;

PT
0 ( jω)WP0 ( jω)>r2 (2.100)

and considering the value set, the larger P0( jω) and W , the larger the robustness margin

is. However, W and g0 are inversely proportional, that is;

W−1 = (ΩA)(ΩA)T (2.101)

= (NAnAT
n NT+g2

0DAdAT
d DT ) (2.102)

As g0 is increased, W gets smaller (W−1 gets larger). To show this relation clearly it is

possible to use the eigenvalues of W.

Let

M1 ≜NAnAT
n NT (2.103)

M2 ≜DAdAT
d DT (2.104)

M ≜M1+g2
0M2 (2.105)
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AnAT
n and AdAT

d are diagonal matrices of the form;

AnAT
n =

(
∑i=2,4,..2k, ω2i 0

0 ∑i=1,3,..2k+1 ω2i

)
(2.106)

≜

(
An1 0
0 An2

)
(2.107)

AdAT
d =

(
∑i=0,2,4,..2k ω2i 0

0 ∑i=1,3,..2k+1 ω2i

)
(2.108)

≜

(
Ad1 0
0 Ad2

)
(2.109)

Finally, the relation between the DOB bandwidth (g0) and the robustness margin is

expressed as follows;

PT
0 ( jω)WP0 ( jω) > r2 (2.110)

PT
0 ( jω)

W
r2 P0 ( jω) > 1 (2.111)

W−1r2=
(
M1+g2

0M2
)

r2 (2.112)

□

Corollary 4.3: It is not guaranteed that the robustness margin of the system is

increased as the bandwidth of the DOB is increased in general.

Proof: Let us define;

|Nn| ≜
√
(Re(Nn)( jω))2 +(Im(Nn)( jω))2 (2.113)

|Dn| ≜
√

(Re(Dn)( jω))2 +(Im(Dn)( jω))2 (2.114)

Since finding the eigenvalues of W is much more complicated compared to that of

W−1, the eigenvalues of W−1 are considered in the rest of the proof. Then;

λ (M1)1 = An1|Nn|2 (2.115)

λ (M1)2 = An2|Nn|2 (2.116)

λ (M2)1 = Ad1|Dn|2 (2.117)

λ (M2)2 = Ad2|Dn|2 (2.118)

Lemma 2.4 [83]: Let A and B be real symmetric matrices. Then A, B and A+B have

real eigenvalues. Let λ+ (.) and λ− (.) represent maximum and minimum eigenvalues
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of (.) respectively. Then;

λ−(A)+λ−(B)≤ λ−(A+B)≤ λ+(A+B)≤ λ+(A)+λ+(B) (2.119)

Major and minor axis lengths of the ellipsoid are r
√

λ+ (M) and r
√

λ− (M))

respectively. Since the maximum eigenvalue of M is point of interest due to the major

axis of the ellipsoid, it is possible to write the following inequality by using Lemma

2.4;

λ
+ (M)< λ

+ (M1)+g2
0λ

+ (M2) (2.120)

At this stage, the relation between the major axis of the ellipsoid and the bandwidth of

the DOB (g0) is expressed as;∣∣Rma jor
∣∣= r

√
λ+ (M1)+g2

0λ+ (M2) (2.121)

Clearly, as the g0 is increased, the major axis of the ellipsoid is increased with the

order of g0. Now, consider the distance between the center of the ellipsoid and the

origin (Figure 2.12 ).

P0 ( jω) = Dn( jω)Nn( jω)( jω +g0) (2.122)

|P0 ( jω)| = |Dn| |Nn|
√

g2
0 +ω2 (2.123)

As the g0 is increased, the distance between ellipsoid and the origin is also increased

with the order of g0.

Since the increment of |P0 ( jω)| and increment of
∣∣Rma jor

∣∣ with g0 depend on the

Nn( jω) and Ad1,d2, it can be concluded that; it is not guaranteed that the robustness

margin of the system is increased with the bandwidth of the DOB in general.

□

Example: Consider the following plant and Q filter ;

P(s) =
(1+∆b1)s+(∆b0 +5)

(3+∆a2)s2 +(∆a1 +4)s+∆a0 +6
(2.124)

Pn (s) =
s+5

3s2 +4s+6
(2.125)

Q(s) =
g0

s+g0
(2.126)

then the characteristic equation becomes;

Pc (s,q) = P0 (s)+∆a0 P1 (s)+∆a1P2 (s)
+∆a2 P3 (s)+∆b0P4 (s)+∆b1P5 (s)

(2.127)
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Figure 2.12 : Representation of the |P0( jω)| and |Rma jor|.

where;
P0(s) = 3s4 +(19+3g)s3 +(26+19g)s2

+(30+26g)s+30g
(2.128)

P1 (s) = 5s+ s2 (2.129)

P2 (s) = 5s2 + s3 (2.130)

P3 (s) = 5s3 + s4 (2.131)

P4 (s) = g0(6+4s+3s2) (2.132)

P5 (s) = g0(6s+4s2 +3s3) (2.133)

(2.134)

then;

ΩA =

(
ReP1 ReP2 ReP3 ReP4 ReP5

ImP1 ImP2 ImP3 ImP4 ImP5

)
(2.135)

W =
(
(ΩA)(ΩA)T

)−1
(2.136)

DOB based inner loop is robustly stable if,

• P0(s) is stable

• zero frequency condition |P( j0)|> r is satisfied
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and

PT
0 ( jω)WP0 ( jω)>r2 (2.137)

for all frequencies. Since P0(s) is stable and |P0( j0)| = 30g, first two conditions

can be satisfied easily. In order to find the minimum r value depending on

the g0, PT
0 ( jω)WP0 ( jω) is plotted for various g0 in Figure 2.13. Since ρ =

2 4 6 8 10
ω
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5

rmax
g0=4 g0=8 g0=12

Figure 2.13 :
√

PT
0 ( jω)WP0( jω) for different g0. The minimum value of each graph

represents the robustness margin of the system for a given g0.

min{|30g0|, |3|,rmax}, the robustness margin is determined by rmax and as the

bandwidth of DOB is increased robustness margin decreases in the low-frequency

range. Now, consider the same example with a different plant numerator, as follows,

Pnew (s) =
s+(∆b0 +5)

(3+∆a2)s2 +(∆a1 +4)s+∆a0 +6
(2.138)

where, the uncertain parameter, b1, is omitted. In this case, the characteristic equation

Pc(s,q) becomes;

Pc (s,q) = P0 (s)+∆a0 P1 (s)+∆a1P2 (s)+∆a2 P3 (s)+∆b0P4 (s) (2.139)

where, P1(s),P2(s),P3(s), and P4(s) are the same as in the previous example. It

can be observed from Figure 2.14 that as g0 is increased, the minimum value of
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PT
0 ( jω)WP0 ( jω) is also increased. That means that the uncertainty bound r is

increased with the bandwidth of the disturbance observer until the rmax = |an|, since

ρ = min{|30g0|, |3|,rmax}. However, as it is seen in Figure 2.13, it is not always

true that the robustness margin improves as with the g0 considering the practical

bandwidth design for DOB. Because of the noise concerns, DOB bandwidth has an

upper bound in practical applications, therefore, throughout the study, DOB filter

bandwidths have been selected such that, the bandwidth of DOB is several times larger

than the bandwidth of the nominal plant. Actually, what the DOB filter does is to make

0.5 1.0 1.5 2.0 2.5 3.0
ω

5

10

15
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rmax
g0=4 g0=8 g0=12

Figure 2.14 :
√

PT
0 ( jω)WP0( jω) for different g0. The minimum value of each graph

represents the robustness margin of the system for a given g0.

the inner loop dynamic response as close to that of the nominal plant Pn(s) as possible.

From this point of view, as the bandwidth of the DOB filter is increased, the inner loop

poles get close to the nominal poles so that the robustness margin improves. As it can

be seen from Figure 2.14, although increasing the bandwidth of DOB improves rmax,

the radius of the uncertainty ball cannot be greater than an = 3. However, increasing

the DOB bandwidth, the inner loop pole spread converges to the nominal poles. Figure

2.15 emphasizes this feature.

2.3.2 Non-minimum phase plant case

The disturbance observer uses the system inverse as it is shown in Figure 2.16 . This

brings about an important problem, that is, if the plant is a non-minimum phase plant,
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Figure 2.15 : Nominal poles (green) , pole spread of P(s) (blue) and inner loop with
g0 = 12 (red).

internal stability problems occur. In this case, SBD theorem is not applicable.

The common approach for such a case is to divide the plant into two parts so that the

non-minimum phase and the minimum phase parts are handled separately [20].

Lemma 2.5: Theorem 2.2 can be utilized for plants with non-minimum phase zeros,

if,

1) Only the denominator of P is uncertain and relative degree of P is 1.

2) Pn (s) is stable.

3) P(s) has a non-minimum phase zero.

4) Pn(s) is factorized as, Pn(s) = Pn1(s) Pn2(s)

Where Pn1 includes a pole at the reflection of right half plane zero and Pn2 includes a

right half plane zero.

Proof: By doing such a distinction, the invertible part of Pn may be used as a pre-filter

as seen in Figure 2.16. For simplicity, the time delay is ignored. Considering the new

assumptions following transfer functions are used in the analysis;

Np(s)
Dp(s)

=
(s+bk)(s+bk−1) . . .(−s+b0)

sk+1 +(ak +∆ak)sk + · · ·+(a0 +∆a0)
(2.140)
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Figure 2.16 : DOB design for non-minimum phase systems.

Pn1(s) =
Nn1(s)
Dn1(s)

=
(s+bk)(s+bk−1) . . .(s+b0)

sk+1 +aksk + · · ·+a0
(2.141)

Pn2(s) =
Nn2(s)
Dn2(s)

=
−s+b0

s+b0
(2.142)

Q(s) =
g0

s+g0
(2.143)

The affine linear characteristic polynomial is given as follows;

Pchar(s) = g0Dp0(s)Nn2(s)+Dp(s)[g0(Nn1(s)−Nn2(s))+ sNn1(s)] (2.144)

The nominal characteristic polynomial is obtained as follows;

Pchar,0(s) = Dp0(s)Nn1(s)Dq(s) (2.145)

Now, in this case;

P0 (s) ≜ DnNn1 (s+g0) (2.146)

P∆ (s) ≜ D∆Nn1s+D∆(Nn1 −Nn2)g0 (2.147)

Pc (s) = P0 (s)+P∆ (s) (2.148)

Then; for a fixed ω > 0

z ∈ Pc ( jω,Q) ⇐⇒ (2.149)

z = P0 ( jω)+ [Nn1 +g0(Nn1 −Nn2)]An∆a (2.150)

= P0 ( jω)+Ω A q (2.151)
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where

Ω ≜ [Nn1 +g0(Nn1 −Nn2)] (2.152)

A ≜ An (2.153)

q ≜ ∆a (2.154)

since

W−1 = (ΩA)(ΩA)T (2.155)

= (ΩAnAT
n Ω

T ) (2.156)

λ (Ω)1 = An1|Ω|2 (2.157)

λ (Ω)2 = An2|Ω|2 (2.158)

it can be concluded that as the g0 is increased, major axis of the ellipsoid is increased

with the order of g0. Finally;

P0 ( jω) = Dn( jω)Nn( jω)( jω +g0) (2.159)

|P0 ( jω)| = |Dn| |Nn|
√

g2
0 +ω2 (2.160)

As the g0 is increased, the distance between the ellipsoid and the origin is also

increased with the order of g0.

Since P0 and W are obtained, Theorem 2.2 can be directly applied.

□

Example: Consider the pan-tilt system transfer function given in [84];

P(s) =
−s+3101
s+3101

0.85308(s+3101)
s2 +369.8s+1057

(2.161)

Here, the following decomposition is made in order to split the plant into its minimum

and non-minimum phase.

Pn1(s) =
0.85308(s+3101)
s2 +369.8s+1057

(2.162)

Pn2(s) =
−s+3101
s+3101

(2.163)

Finally, the nominal characteristic polynomial is as follows;

Pchar,0(s) = g
(
1.146s3 +3069.53s2 +9794s+2.796×106)

+s
(
s3 +3470.8s2 +1.1478×106s+3.2777×106) (2.164)
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Figure 2.17 : rmax −ω plot for g0 = (10,20,30), non-minimum Phase Case.

It can be observed in Figure 2.17 that as g0 increases, the robustness margin also

increases. The robustness margin for a given DOB bandwidth can always be found

by using the value set approach. For example, consider g0 = 10, then rmax is 374.179.

A zero inclusion occurs when ∥q∥2 ≥ 374.179.

2.4 Conclusion

This study proposes a new way of analyzing the DOB based system utilizing the

spherical polynomial approach. The value set concept for spherical polynomials has

been adopted to validate the results. The main contributions are listed below;

• The spherical value set approach for uncertain polynomials is adopted for the first

time for disturbance observer based control systems.

• The robustness margin for a given DOB based system has been systematically stated

for the first time in the context of spherical polynomial families.

• Non-minimum phase case is examined, and bandwidth constraints are discussed.

• Effects of low-order DOB filter design are discussed.
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The analyses show that for the case where the nominal and uncertain plants have

the same structure and uncertain parameters present only on the denominator of the

plant, then robustness margin improves as with the DOB filter bandwidth (if DOB

bandwidth is higher than its minimum value). It is also shown that if the nominal plant

is first-order regardless of the order of the uncertain plant, the robustness margin-DOB

bandwidth relation is not straightforward and it is not guaranteed that the increased

DOB bandwidth leads to improved robustness margin in general. The same conclusion

is valid for the affine linear case where uncertain parameters are present both on

the numerator and the denominator of the plant. The proposed method also allows

analyzing the non-minimum phase case in which the DOB based systems may lose

their superiorities.

The relation between bandwidth and robustness of disturbance observer is analytically

derived using a spherical polynomial representation.
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3. GUARDIAN MAP FOR ROBUST D-STABILITY

3.1 State of the Art

The basic idea of predicting the effects of the disturbances emerged in the late 60s [15],

and the idea eventually led to the concept of extended state observer [16]. The

disturbance observer structure as we use today is introduced by [17] to attenuate

the effects of parameter changes, disturbances, and nonlinear effects. In addition,

a different line of research called active disturbance rejection has shown that the

problem of designing a controller can be viewed as a disturbance attenuation problem

by putting the disturbances at the center of the design philosophy [21]. The reader

may refer [70] for further discussion on similar design perspectives such as “unknown

input observer”, “extended state observer”, and “uncertainty estimation”. Although

DOB has been successfully applied in industry, theoretical developments in design

and analysis have lagged behind practical applications [31]. Especially in the context

of the robust DOB design, H∞ based conservative methods predominates the literature

[43–45]. The first attempts to analyze DOB-based systems under uncertainty were

made by [42] and [85]. In [72], an analysis of DOB-based control systems via

spherical polynomials is presented. However, these studies do not cover the state-space

domain and do not propose a state-space design method. It can be said that no special

attention has been paid to the case where the perturbation is real and time-invariant

in the state-space approach. Although approaches are made under the concept of

quadratic stability for design under linear time-invariant perturbations, it is generally

conservative in the matrix case [12]. To address this problem, the researchers turned

their attention to a line of research called the guardian map approach, which suggested

less conservative results. The guardian map approach is suggested by [86] and is

utilized in application areas such as robotics [87] and flight control [88], as well

as theoretical studies related to interval systems [89] and linear systems with real

parameter uncertainty [90]. However, to the best of the author’s knowledge, no attempt
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has been made to design a DOB-based system under real parameter uncertainty in

state-space by using this approach. This study aims to fill this gap.

3.2 An Approach for Robust Stability

Consider

A(q) = A0 +E(q) (3.1)

Where A0 is n x n Hurwitz matrix, and E is a constant uncertainty matrix which has the

following form;

E = ∑
p
i=1 qiAi (3.2)

At this point Kronecker sum and Kronecker product have to be defined;

Kronecker Product: Let A be an n-dimensional matrix and B an m-dimensional matrix.

The mn-dimensional matrix C defined as

A⊗B =C =

a11B . . . a1nB
... . . . ...

am1B . . . amnB

 (3.3)

is called the Kronecker product of A and B.

Kronecker sum: The matrix A ⊕ B is called the Kronecker sum of A and B and is

defined as follows;

A⊕B = A⊗ Im + In ⊗B (3.4)

Theorem 3.1 [12] : The system A(q) = A0 +E(q) is robustly stable if and only if

det
(
A0 ⊕A0 +∑

p
i=1 qi(Ai ⊕Ai)

)
̸= 0 (3.5)

Proof [90]: If the system is robustly stable, then

Re λi (A(q)⊕A(q)) = Re
(

λ j (A(q))+λk (A(q))
)
< 0 (3.6)

for every eigenvalue λi of A(q)⊕A(q).

To prove sufficiency, suppose the system is not robustly stable; for example, A(q∗) has

purely imaginary eigenvalues. Then,

det(A(q∗) ⊕A(q∗)) = 0 (3.7)

□
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Note here that the problem is converted into a nonsingularity problem which can be

handled by a symbolic algebra tool more easily. Before going into the analysis, a

suitable state space approach should be stated first.

Let family A = {A(q) : q ∈ Q} of nxn matrices with A(q) depending continuously on

q. Family A is robustly stable if and only if the family A is robustly nonsingular where;

A ≜ A⊕A (3.8)

Since the linear transformation on A preserves the affine linear dependence of matrix

entities on uncertain parameters, the nonsingularity problem involves a polytope

of matrices. However, linear transformation does not preserve the interval matrix

structure. Therefore, the interval matrix family transforms into a polytope of matrices.

The following example from [77] shows this result;

A =

[
q11 1
3 q22

]
(3.9)

A⊕A =


2q11 1 1 0

3 q11 +q22 0 1
3 0 q11 +q22 1
0 3 3 2q22

 (3.10)

Before getting into detail on the uncertain systems, the definition of the guardian map

has to be given.

Definition [86]: Let v : Rnxn →R be a given mapping. Then v is said to guard on open

set of nxn matrices A if v(A) ̸= 0 for A ∈ A and v(A) = 0 for A ∈ δA. For such cases,

we call v a guardian map for A.

For example, for A ∈ Rnxn,

v(A) = det(A⊕A) (3.11)

is a guardian map for the set A of stable nxn matrices. The spectrum of A is spec(A⊕

A) =
{

λi +λ j : λi,λ j ∈ spec(A)
}

. So, the matrix A⊕A is nonsingular if, and only if,

λi +λ j ̸= 0, i, j = 1,2, . . . ,n

3.2.1 Uncertain matrices

Consider an uncertain matrix of the form;

ẋ = A(q)x, x(0) = x0 (3.12)
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where

A(q) = ∑
r
i=0 qiAi = A0 +E(q) (3.13)

The parameter vector qT = [q1,q2, . . . ,qr] belongs the the hyper-rectangular set Ω(β )

defined by:

Ω(β ) = (q ∈ Rr : q0
i −βwmin

i ≤ qi ≤ q0
i +βwmax

i ) (3.14)

where i∈{1,2, . . . ,r}, β > 0, and wmin and wmax for i= 1,2, . . . ,r are positive weights.

Depending on the characteristic of the E(q), the family of matrices takes different

names. Consider the following representation;

E(q) = ∑
r
i=0 qiAi (3.15)

where Ai are constant and with no restrictions on the structure. This type of

representation produces a polytope of matrices in the matrix space. A special case

of the polytope of matrices is independent variations case where;

E(q) = ∑
r
i=0 qiEi (3.16)

and Ei contains a single non-zero element at a different location in the matrix for each

i. In this case, the set of possible A(q) matrices forms a hyper-rectangle in matrix

space [12]. In this representation, the family of matrices is labelled as an interval

matrix family. In this study, interval matrix family representation is going to be used.

3.3 Guardian Map Based Disturbance Observer Design For D-Stability

After the introduction of the interval matrix family and guardian map approach, let us

give the following corollary of Theorem 3.1;

Corollary 3.1 [12]: The system

ẋ = A(q)x, x(0) = x0 (3.17)

A(q) = ∑
r
i=0 qiAi = A0 +E(q) (3.18)

is robustly stable if, and only if;

det(A0 ⊕A0 +∑
r
i=0 qi (Ai ⊕Ai) ) ̸= 0 ∈ Ω (3.19)
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By utilizing the rationale behind the corollary, the following approach has been

proposed by [91], where only the robust Hurwitz stability problem is considered, and

the robust D-Stability is not addressed. Let us denote

A ≜ A⊕A (3.20)

Aq ≜ ∑
r
i=0 qi (Ai ⊕Ai) (3.21)

Then, for robust Hurwitz stability, the following condition has to be satisfied;

det
(
A+Aq

)
̸= 0 (3.22)

Since A is assumed to be stable;

det
(
A
)
̸= 0 (3.23)

Hence,

det
(

A
(

I +A−1 Aq

))
̸= 0 (3.24)

et
(
A
)

det
(

I +A−1 Aq

)
̸= 0 (3.25)

det
(

I +A−1 Aq

)
̸= 0 (3.26)

If

ρ

(
A−1Aq

)
< 1 (3.27)

where ρ is the spectral radius, then A(q) is robustly stable.

3.3.1 Path to a new guardian map

The previous method considers only robust Hurwitz stability. However, by adopting

the rationale behind the approach, a new guardian map can be proposed for robust

D-Stability.

Consider the following system to illustrate the proposed idea

ẋ = Ax+E(q) (3.28)

A =

(
a11 a12

a21 a22

)
(3.29)

E(q) =

(
d1 0
0 d4

)
(3.30)

Er = r

(
eiw 0
0 eiw

)
(3.31)
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It is possible to diagonalize the A matrix using the following transformation;

V =
(

v1 v2

)
(3.32)

where v1 and v2 are the eigenvectors of A. Then, it is possible to write

D =V−1AV (3.33)

where D matrix is a diagonal matrix consisting of the eigenvalues.

If the diagonal case is used for simplicity following representation could be used for

evaluating the D-stability;

A+E(q)− (D+Er) (3.34)

Using the Kronecker sum operation, the following definitions are made;

A ≜ A⊕A (3.35)

Eq ≜ E(q)⊕E(q) (3.36)

Er ≜ Er ⊕Er (3.37)

D ≜ D⊕D (3.38)

Finally, let us investigate the eigenvalues of the following matrix

Λ = A+Eq −
(
D+Er

)
(3.39)

The eigenvalues can be shown to be given as

λ1 = d1 +d4 −2e jωr (3.40)

λ2 = d1 +d4 −2e jωr (3.41)

λ3 = 2
(
d1 − e jωr

)
(3.42)

λ4 = 2
(
d4 − e jωr

)
(3.43)

where i =
√
−1. Especially λ3 and λ4 are particularly useful for evaluating the pole

spread around the nominal poles. By adjusting the spread radius r, it can be calculated

how much uncertainty can be tolerated for a given radius. If the uncertainty value d is

equal to the given radius, some of the eigenvalues of Λ go to zero, and therefore the

determinant in (3.19) goes to zero.
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Since the problem is to cluster all eigenvalues inside a predefined region, it is

convenient to represent the system in a diagonal form in which assigning the

robustness-related function is easier.

To this end, consider the following representations;

ẋ = Ax+E(q) (3.44)

A =

(
a11 a12

a21 a22

)
(3.45)

E(q) =

(
d1 d2

d3 d4

)
(3.46)

Er =

(
r1e jω 0

0 r2e jω

)
(3.47)

It is possible to diagonalize the matrix A+E(q) using the following transformation;

V =
(

v1 v2

)
(3.48)

Where v1 and v2 are eigenvectors of A.

Dq =V−1 (A+E(q))V (3.49)

where Dq is a diagonal matrix consisting of eigenvalues of A+E(q). Similar to the

previous section, D matrix represents the diagonal form of the A matrix.

Now, let us transform the uncertain matrix A+E(q) into the diagonal form and assign

an uncertainty region to each eigenvalue.

V−1 (A+E(q))V − (D+Er) = Dq −D−Er (3.50)

=

(
λ1(q) 0

0 λ2(q)

)
−

(
λ1 0
0 λ2

)
−

(
r1e jω 0

0 r2e jω

)
(3.51)

Where λ1,2(q) represent eigenvalues of A+E(q) and λ1,2 represent eigenvalues of A.

Note that the statement above is diagonal.

In order to convert the problem into a robust nonsingularity problem, the Kronecker

sum operation is introduced.

Dq = Dq ⊕Dq (3.52)

D = D⊕D (3.53)
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Er = Er ⊕Er (3.54)

Finally, let’s investigate the eigenvalues of the following statement;

Det
(
Dq −D−Er

)
(3.55)

If there is no uncertainty, Dq = D. Since Det
(
Er
)
̸= 0, then Det

(
Dq −D−Er

)
̸= 0. If

the eigenvalues of Dq are equal to those of D+Er in the presence of uncertainty, then

Det
(
Dq −D−Er

)
= 0. Actually, D+Er defines a circle around the eigenvalues of D,

in which the radius of the circle is determined by Er.

Although it is useful to define such a guardian map, it is also difficult to determine the

singular points where the determinant vanishes, that is,

Det
(
Dq −D−Er

)
̸= 0, ∀E(q) (3.56)

Since A is stable, so is D. Therefore,

det(D⊕D) ̸= 0 (3.57)

det
(
D
)
̸= 0 (3.58)

Hence, Det
(
Dq −D−Er

)
̸= 0 is equivalent to,

Det
(
−I +D−1 (Dq −Er

))
̸= 0 (3.59)

This expression shows that if one of the eigenvalues of D−1
(Dq −Er) is 1, then the

determinant vanishes, which means that one of the eigenvalues of the uncertain system

crosses the predefined region border.

An interesting observation is that the distance between the eigenvalues of D−1
(Dq −

Er) and 1 indicates how close an uncertain eigenvalue is to the predefined region

border. This idea can be used for defining a cost function for D-stability.

One additional operation is required to isolate the more meaningful elements of

D−1
(Dq −Er).

Spectrum of X , where X = X ⊕ X is spec(X ⊕ X) =
{

λi +λ j : λi,λ j ∈ spec(X)
}

.

Consequently, for 2x2 matrix X,

X =

(
λ1 0
0 λ2

)
(3.60)
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spec(X ⊕X) = {2λ1, λ1 +λ2,λ1 +λ2,2λ2} (3.61)

Since it is more convenient to consider the first and the last eigenvalues, an isolation

matrix can be defined.

Let M be an isolation matrix for 2x2 A matrix,

M2x2:=

(
1 0 0 0
0 0 0 1

)
(3.62)

Then, M D−1 (Dq −Er
)

MT is a 2x2 matrix, and the eigenvalues of this matrix are

related to the cost function for each eigenvalue of the uncertain system.

For a 3x3 A matrix, the isolation matrix is,

M3x3:=

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

 (3.63)

By following the same pattern, required isolation matrices can be found for

higher-order systems.

3.3.2 The proposed guardian map

Although it is quite convenient to express the problem with the previous guardian

map, it suffers from the direction search problem since the search algorithm has to

investigate all directions of the term eiw for the circular D-region case. This leads to an

unnecessarily complex search algorithm. The new approach should rely directly on the

distance without involving the direction. At this point, the Kronecker product may be

more useful since the spectrum of the Kronecker product consists of the multiplication

of all eigenvalues, that is,

spec(A⊗B) = λi µ j, i = 1,2, . . .n, j = 1,2, . . .m (3.64)

where λi is an eigenvalue of A and µi is an eigenvalue of B. Multiplication of

eigenvalues leads to the square of the distance. This idea may be useful for representing

uncertainty radius.

Consider the following expression;

DKP =
(
Dq −D

)
⊗
(
Dq −D

)
(3.65)
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Here, Dqand D represent the uncertain diagonal matrix and the nominal diagonal

matrix, respectively. Kronecker product of the difference matrix leads to the distance

information between nominal and perturbed poles, that is,(
Dq −D

)
⊗
(
Dq −D

)
=[(

λq1 0
0 λq2

)
−

(
λ1 0
0 λ1

)]
⊗

[(
λq1 0
0 λq2

)
−

(
λ1 0
0 λ2

)]
(3.66)

{(
λq1 −λ1

)2
,
(
λq2 −λ2

)2
}
∈ spec{DKP} (3.67)

Now, in order to define an uncertainty region, the following matrix can be used;

Er =

(
r1 0
0 r2

)
(3.68)

Since the aim is to make the determinant zero when the uncertain poles cross the

boundary, the following expression can be used;

det
[
(Er ⊗Er)

−1 (Dq −D
)
⊗
(
Dq −D

)
− I
]
̸= 0 (3.69)

Note that when there is no uncertainty, the expression is reduced to;

det[−1] ̸= 0 (3.70)

Also, if the uncertain poles cross the boundary, one of the entities of

(Er ⊗Er)
−1 (Dq −D

)
⊗
(
Dq −D

)
(3.71)

is reduced to 1, and therefore the determinant is zero.

Theorem 3.2: Let Aq =A0+Eq be a family of uncertain matrices, where A0 is the n×n

nominal matrix with no eigenvalues on the imaginary axis, and Eq is the perturbation

matrix.Let,

V =
(

v1 v2

)
(3.72)

where v1 and v2 are eigenvectors of Aq.

Dq =V−1AqV (3.73)

D is the diagonal matrix whose entities are eigenvalues of A0.

Er:=

r1 0 0

0 . . . 0
0 0 rn

 (3.74)
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Then, Aq is D-stable if and only if

det
[
(Er ⊗Er)

−1 (Dq −D
)
⊗
(
Dq −D

)
− I
]
̸= 0 ∀Eq (3.75)

where; D regions are defined by circles with radii defined by Er and their centers are

defined by D.

Corollary 3.2 :

det
[
(Er ⊗Er)

−1 (Dq −D
)
⊗
(
Dq −D

)
− I
]
̸= 0 ∀Eq (3.76)

if

ρ

[
(Er ⊗Er)

−1 (Dq −D
)
⊗
(
Dq −D

)]
< 1 (3.77)

where ρ is the spectral radius.

3.4 State Feedback Controller Design

The proposed approach can be applied to the state feedback problem. The following

design guideline shall be followed;

1. Define (A+Eq ,B,C,D) matrices

2. Check controllability

3. Transform A+Eq +B K into modal form to obtain Dq

4. Define the desired eigenvalue locations in diagonal form, D

5. Obtain following;

M (Dq −D)⊗
(
Dq −D

)
(Er ⊗Er)

−1 MT (3.78)

where the matrix M=

(
1 0 0 0
0 0 0 1

)
for 2× 2 A matrix. Note that, depending

on the size of A, the structure of M matrix is changed.

6. Define the uncertainty radius for each eigenvalue

7. Define the cost function Jp to minimize as follows;

Jp = Max λ

(
M
(
Dq −D

)
⊗
(
Dq −D

)
(Er ⊗Er)

−1 MT
)
∀Eq (3.79)

8. Minimize Jp for K
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3.4.1 Case study: State feedback controller design

Consider the following example,

ẋ = A0x+E(q)+Bu (3.80)

u = Kx (3.81)

A0 =

(
−5 3
−3 −1

)
(3.82)

E(q) =

(
d1 0
0 d4

)
=

(
[0, 1] 0

0 [0, 0.4]

)
(3.83)

Er =

(
r1 0
0 r2

)
(3.84)

B =

(
1
1

)
(3.85)

C =
(

1 0
)

(3.86)

Since Rank
(

B AB
)
= 2, the system is observable. Let,

Dq ≜ Diag
(
A+Eq +B K

)
(3.87)

such that

Dq =

(
Dq1 0

0 Dq2

)
(3.88)

where,

Dq1 =
1
2

(
−6+d1 +d4 + k1 + k2 −

√
a+b+ c

)
(3.89)

a = d2
1 +d2

4 +4(−5+ k1 − k2) (3.90)

b = 2d4 (4− k1 + k2) (3.91)

c =−2d1(4+d4 − k1 + k2)+(k1 + k2)
2 (3.92)

Dq2 =
1
2

(
−6+d1 +d4 + k1 + k2 +

√
d + e+ f

)
(3.93)

d = d2
1 +d2

4 +4(−5+ k1 − k2) (3.94)

e = 2d4 (4− k1 + k2) (3.95)

f =−2d1 (4+d4 − k1 + k2)+(k1 + k2)
2 (3.96)
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The desired eigenvalue location matrix D is given below;

D =

(
−10 0

0 −2

)
(3.97)

Finally, the controller gains can be obtained as a result of the following optimization;

Min Jp =

Max λ

(
M
(
Dq −D

)
⊗
(
Dq −D

)(
Eq ⊗Eq

)−1 MT
)
∀Eq

sub ject to K

(3.98)

After the optimization the following controller gains and objective function are

obtained;

Table 3.1 : Controller gain and objective function.

Controller Gain Objective Function(
1.105 −7.996

)
0.806

Since the objective function given in Table 3.1, Jp < 1, all uncertain eigenvalues are

contained in a predefined D-region.

The eigenvalue spread of the uncertain system is obtained as in Figure 3.1

-10 -8 -6 -4 -2
σ

-0.4

-0.2

0.2

0.4

jω

Figure 3.1 : Eigenvalue spread obtained for K∗.
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3.5 State Space Representation of DOB

Finally, the proposed design method is applied to the disturbance observer design in

this section. Assumptions: The following assumptions have been made [92];

1. The plant model is strictly proper

2. The plant model does not have zero at the origin

3. The disturbance model is known

Let the nominal system has the following form;

ẋ = Ax+B(u+d) (3.99)

y =Cx (3.100)

where x ∈ Rn , and the system is both observable and controllable. The disturbance

model is;

ẋd = Adxd (3.101)

d =Cdxd (3.102)

Where xd ∈ Rnd , (Ad,Cd) is observable, and Ad has at least one zero eigenvalue.

The observability condition can easily be understood in the context of a disturbance

observer since the disturbance estimation is based on the system output signal.

At this point, it is also worth noting that the disturbance signal d and the control input u

are assumed to affect the system via the same channels, which is called in the literature

as the “matched condition”. But in general, this may not be true. However, for the sake

of simplicity more specific case has been considered at this point.

To express the complete system more compactly, the augmented plant, Pz, is given as

follows;

ẋa = Aa xa +Bau (3.103)

ya =Ca xa (3.104)

where the augmented state vector is xa =
[
xT xT

d

]T , and the augmented system

matrices are,

Aa =

[
A B Cd

0 Ad

]
, Ba =

[
B
0

]
, Ca =

[
C 0

]
(3.105)
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By assuming the augmented plant is observable;

˙̂xa = Aa x̂a +Ba u+L(ya −Ca x̂a)= (Aa +LCa)xa +
[
Ba L

][u
y

]
(3.106)

d̂ =
[
0 Cd

]
xa (3.107)[

0 Cd

]
≜Cda (3.108)

where Cda is the augmented output matrix. The DOB structure in state space is given

in Figure 3.2.

DOB

Augmented Plant

ሶ𝑥𝑎 𝑥𝑎
න𝐵𝑎

𝐴𝑎

𝐶𝑎

𝐵𝑎 න

𝐴𝑎

𝐶𝑎

𝐿

0 𝐶𝑑

ሶො𝑥𝑎 ො𝑥𝑎

መ𝑑

𝑢𝑎 𝑢

Figure 3.2 : Disturbance observer structure in state space.

3.5.1 Case study: Design of the DOB based on a new guardian map

Consider the following example for the system given in (3.103);

A0 =

(
−2 0
0 −1

)
(3.109)

E(q) =

(
d1 0
0 d4

)
=

(
[0, 0.5] 0

0 [−0.5, 0.5 ]

)
(3.110)
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Er =

r1 0 0
0 r2 0
0 0 r3

=

1.5 0 0
0 1.5 0
0 0 2

 (3.111)

B =

(
1
1

)
(3.112)

C =
(

1 1
)

(3.113)

Ad = (0) (3.114)

Cd = (1) (3.115)

L =

l1
l2
l3

 (3.116)

Then,

A+LC =

−2+d1 + l1 l1 1
l2 −1+d4 + l2 1
l3 l3 0

 (3.117)

The desired eigenvalue locations are assumed to be -20, -3, and -3. Following the

design steps outlined in Section 3.4, the observer gain matrix is found to be;

L =

−25.6938
2.79406
−42.6519

 (3.118)

The same D-region (a disk centered at −3 with radius 1.5) is assigned to the dominant

eigenvalues. However, the D-region for the third eigenvalue (a disk centered at −20

with radius 2) is left more relaxed. Figure 3.3 shows the eigenvalue spread of the

design. It is one of the main advantages of the proposed design method that the

uncertainty regions can be assigned to specific nominal eigenvalues. In the DOB design

example, more strict D-regions are assigned to the dominant eigenvalues, both of which

are at −3. Hence, the objective of the design is to restrict dominant eigenvalues to these

regions.
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-20 -15 -10 -5
σ

-2

-1

1

2

jω

Figure 3.3 : Eigenvalue spread of the proposed design.

3.5.2 Conclusion

This study proposes a new way of designing DOB for uncertain systems by a novel

guardian map. The main contribution of the study is that it allows constraining

uncertain eigenvalues into separate predefined D-regions. The predefined regions for

nominal eigenvalues can be different from each other. As a result, different robustness

criteria are assigned for each of the nominal eigenvalues. However, the curse of

dimensionality is the main drawback of the method, and handling it is considered in

future work.
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4. DISTURBANCE OBSERVER DESIGN BY EXTENDED LOOSE
EIGENSTRUCTURE ASSIGNMENT FOR DISJOINT D-REGION
STABILITY

4.1 Introduction

Previous chapter show that the proposed guardian map is useful for representing the

problem. However, the method is computationally ineffective and this situation gets

even worse when the system order is high. Therefore, we aim to represent the problem

in a different framework. The aim of this study is to cluster the closed loop eigenvalues

in a prescribed design region such a way that design regions are defined around the

desired closed loop eigenvalues. Therefore, the design regions should be disjoint as

we have studied in the guardian map approach. Generally, there is a useful LMI

representation for D-stabilization in which the various LMI regions can be defined.

Let us review the classical results of general D-stabilization in the LMI framework

based on the work of [65].

Let D = DL,M be an LMI region, whose characteristic function is

FD = L+ sM+ sMT (4.1)

Design a state feedback control law u = Kx for the linear system

ẋ = Ax+Bu (4.2)

Such that closed loop system is DL,M stable.

The matrix A+BK is DL,M stable if and only if there exist a symmetric positive definite

matrix P such that;

RD(A,P) = L⊗P+M⊗ ((A+BK)P)+MT ⊗ ((A+BK)P)T < 0 (4.3)

Where ⊗ represents Kronecker product. Let W = KP,

L⊗P+M⊗AP+MT ⊗PAT +M⊗BW +MT ⊗W T BT < 0 (4.4)

59



Then the control matrix K is defined as follows;

K =WP−1 (4.5)

The most common LMI regions are given in Figure 4.1. This method clusters

all closed loop eigenvalues in a connected region and does not consider the

eigenstructure assignment. When the assignment regions are not common and disjoint,

assignment condition cannot be reduced to a well-known Lyapunov inequality. This

is the main difficulty of working with the disjoint regions. The aim is to cluster

uncertain eigenvalues into a disjoint region by using eigenstructure assignment. In

the eigenstructure assignment, eigenvalues are assigned strictly to desired points.

However, instead of assigning eigenvalues to specific point, designer may utilize

design regions so that there is much more design freedom left for the further control

objectives.

𝑅𝑒

𝐼𝑚

𝑅𝑒

𝐼𝑚

𝑅𝑒

𝐼𝑚

𝑟

−𝑞 −𝛼−𝛽
𝜃

Figure 4.1 : LMI regions.

4.2 Preliminaries

4.2.1 Eigenstructure assignement approach

The above discussion motivates to introduce a new regional assignment approach to

the eigenstructure assignment problem. In this study, aim is to constrain each closed

loop eigenvalue to individual regions. Consider the LTI system:

ẋ = Ax+Bu (4.6)

u = Kx (4.7)

where A ∈ Cnxn, B ∈ Cnxm. In the classical eigenstructure assignment, desired closed

loop eigenvalues, λi, are fixed in the beginning of the design. If there exist gain
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parameters ξi,ζi ∈ CnxCm, ξi ̸= 0, such that,[
λiI −A B

][
ξi

ζi

]
= 0 (4.8)

holds on R ≜ [ξi . . .ξn] is nonsingular, a desired state feedback is determined as

K = QR−1 (4.9)

where Q = [ζi . . .ζn]. Here, ξ s are closed loop eigenvectors. At this point, in order to

obtain more design freedom, methods which is proposed in the literature divided into

two different lines of research;

1. Strict partial eigenvalue assignment [62], [93]

2. Regional assignment [63]

4.2.2 Previously proposed method

A quadratic region in a complex plane is defined as follows;

For a given Θ =

[
α β

β γ

]
∈ H2, detΘ < 0, a closed region is defined as follows [66];

DΘ =

{
λ ∈C|

[
1 λ

]
Θ

[
1
λ

]
≥ 0

}
(4.10)

For example, a closed disc with center: λc ∈C, radius: r > 0 is defined as follows;

α = r2 −|λc|2 , β = λc, γ =−1 (4.11)

If γ ≤ 0, then DΘ is convex, and if Θ is real symmetric, then DΘ is symmetric with

respect to the real axis. Finally, a region DΘ which is convex and symmetric wrt real

axis can be represented by an LMI region.

Lemma-1 in [66] states that, two column vectors p,q ∈Cn with q non-zero satisfy;[
q p

][a b∗

b c

][
q p

]∗
≥ 0 (4.12)

if and only if p = sq for some s ∈ DC.

The result of this lemma leads to an LMI relation to determine if there exists an

eigenvalue of matrix A in the region defined by a,b and c. Consider

(λ I −A)u = Bv (4.13)

λ Iu = Au+Bv (4.14)
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Let q ≜ u and p ≜ Au+Bv, then;

[
u Au+Bv

]
(Θ)

[
u∗

(Au+Bv)∗

]
≥ 0 (4.15)

Then, for a given DΘ, A ∈Cnxn, the following statements are equivalent [66];

• ∃λ ∈ DΘ s.t. (λ I −A)u = 0 for some u ∈Cn, u ̸= 0

• ∃X ∈ Hn s.t.

X ̸= 0,X ≥ 0 (4.16)[
I A

]
(Θ⊗X)

[
I

A∗

]
≥ 0 (4.17)

Finding an X such that the above inequalities are satisfied is an LMI problem. By

solving this feasibility problem, it is possible to check whether A has at least one

eigenvalue in DΘ or not. The following theorem gives an elegant method which utilizes

this property;

Theorem 4.1. [67]: Consider the system;

ẋ = Ax+Bu (4.18)

u = Kx (4.19)

where A ∈ Cnxn, B ∈ Cnxm. Let DΘi, i = 1, . . . ,n is given in the form of

Θi =

[
α β

β γ

]
∈ H2 (4.20)

Assume B has full column rank and γ < 0. There exist pairs (ui,vi) satisfies flowing;

[
λiI −A −B

][ui

vi

]
= 0 (4.21)

for some λi ∈ DΘi , if and only if there exists Zi ∈ Hn+m such that;

[
I 0 A B

]
(Θi ⊗Zi)


I
0

A∗

B∗

 ≥ 0 (4.22)

Z ̸= 0 (4.23)

Z ≥ 0 (4.24)
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In [67], the equivalence between (4.22) and the existence of a Zi, such that rank Zi = 1

is shown. The aim of this study is to show similar results can be obtained without

solving the rank-constrained optimization by introducing auxiliary LMI conditions.

A method to find controller gains is also proposed by [67]. Once the Z ≥ 0 is found, a

full rank factorization of Z is made as follows;

Z =

[
U
V

][
U∗ V ∗

]
(4.25)

In this case, (4.22) can be rewritten as follows;{
(AU +BV )+

β

γ
U
}{

(AU +BV )+
β

γ
U
}∗

− c2UU∗ ≤ 0 (4.26)

where c ≜−detΘ

γ2 , and Θ =

[
α β

β γ

]
∈ H2 .

Furthermore, by following Lemma-3 in [94], it is possible to find a matrix W , that is,

(AU +BV )+
β

γ
U = cUW (4.27)

where, the right eigenvectors ξ of W lead to finding closed loop system eigenvector,

that is, u ≜Uξ and v ≜V ξ . Lemma-3 in [94] is given in Appendix A1.

Taking arbitrary right eigenvector ξ ̸= 0 and eigenvalue λ of W,

cUWξ ξ
∗W ∗U∗c =

{
(AU +BV )+

β

γ
U
}

ξ ξ
∗
{
(AU +BV )+

β

γ
U
}∗

(4.28)

Since |λ |2 < 1, then,

cUWξ ξ
∗W ∗U∗c = c2

λ
2Uξ ξ

∗U∗ ≤ c2Uξ ξ
∗U∗ (4.29)

Finally, {
(AU +BV )+

β

γ
U
}

ξ ξ
∗
{
(AU +BV )+

β

γ
U
}∗

≤ c2Uξ ξ
∗U∗ (4.30)

By taking u ≜Uξ and v ≜V ξ , the initial inequality is obtained.

[
u Au+Bv

]
θ

[
u∗

Au+Bv

]
≥ 0 (4.31)

Since R ≜ [u1 . . .un] is nonsingular, the desired state feedback is determined as K =

QR−1 w here Q = [v1 . . .vn]. Here, uis are closed-loop eigenvectors.
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This elegant method, called loose eigenstructure assignment method, which is

proposed by [67] is successful in the case of nominal eigenstructure assignment.

However, in the presence of uncertainties, it is not possible to find an W matrix by using

Lemma-1 in [94]. Therefore right eigenvectors of W cannot be used as a candidate

eigenvector to solve the eigenstructure assignment problem. This study introduces a

novel method for designing DOB in the presence of parametric uncertainties. The

method does not guarantee the existence of the common eigenvector that restrict

all uncertain eigenvalues into the predetermined design regions, but it proposes a

systematic approach to find a candidate eigenvectors.

4.3 Problem Formulation

The main purpose of the study is to extend the result of loose eigenstructure assignment

to the uncertain matrix case. The following corollary of Theorem 4.1 is introduced for

further investigation.

Corollary 4.1: Consider the system;

ẋ = A(δ )x+Bu (4.32)

u = Kx (4.33)

where A(δ ) ∈ Cnxn, B ∈ Cnxm and

A(δ )≜ A0 +∆A(δ ) (4.34)

∆A(δ )≜ δ1A1 +δ2A2 + . . .+δkAk, δ =
{

δ1 δ2 . . . δk

}
∈ ∆ (4.35)

∆ ≜ δ |∑k
i=1 δi = 1, δi(t)≥ 0, i = 1,2, . . . ,k (4.36)

where A0 is the nominal matrix and Ai ∈Rnxn, i= 1,2, . . .k represents the perturbation

directions.

Let DΘi, i = 1, . . . ,n is given in the form of

Θi =

[
α β

β γ

]
∈ H2 (4.37)

then, there exist pairs (ui,vi) satisfy flowing;[
λiI − (A0 +A j) −B

][ui

vi

]
= 0, j = 0,1, . . . ,k (4.38)

64



for some λi ∈ DΘi, if there exists a common Zi ∈ Hn+m such that;

[
I 0 A0 +A1 B

]
(Θi ⊗Z)


I
0

(A0 +A1)
∗

(B)∗

≥ 0 (4.39)

...

[
I 0 A0 +Ak B

]
(Θi ⊗Z)


I
0

(A0 +Ak)
∗

B∗

≥ 0, Z ̸= 0, Z ≥ 0 (4.40)

Since the intersection of convex sets is also convex, it is possible to search for a

common positive semi-definite matrix Z for all matrix family.

Proof: If there exist a common Z ̸= 0, Z > 0, then the inequalities of

[
I 0 A0 +A j B

]
(Θi ⊗Z)


I
0(

A0 +A j
)∗

B∗

≥ 0, (4.41)

are satisfied for all j = 1,2, . . . ,k. By Theorem 4.1, the following equality is satisfied,

[
λiI − (A0 +A j) −B

][ui

vi

]
= 0, j = 1,2, . . . ,k (4.42)

for some λi ∈ DΘi .

□

4.4 Main Results

Corollary 4.1 is the first step of the proposed approach. Consider the system in (4.32)

and (4.33). If Corollary 4.1 is satisfied, then ∃Z ≥ 0 and Z can be rewritten using a full

rank decomposition as follows;

Z =

[
U
V

][
U∗ V ∗

]
(4.43)

{
((A0 +A1)U +BV )+

β

γ
U
}{

((A0 +A1)U +BV )+
β

γ
U
}∗

− c2UU∗ ≤ 0 (4.44)
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...{
((A0 +Ak)U +BV )+

β

γ
U
}{

((A0 +Ak)U +BV )+
β

γ
U
}∗

− c2UU∗ ≤ 0 (4.45)

Let us use the following definitions;

Fi ≜ ((A0 +Ai)U +BV )+
β

γ
U (4.46)

G ≜ cU (4.47)

As stated in the previous section, it is not usually possible to find a common W [94],

such that WW ∗ ≤ I and Fi = GW for all i = 1,2, . . .k. To find a common eigenvector

for the matrix family, the following step is proposed.

Theorem 4.2. Let P ∈ Hn+m and the singular value decomposition of P be given as

follows;

P =UpSpV ∗
p (4.48)

where

Up =
[
ξ1 ξ2 · · · ξn+m

]
(4.49)

If there exists P > 0 satisfying following inequalities;

FPF∗ ≤ GPG∗ (4.50)

then there exists at least one f and g pair that satisfies || f || ≤ ||g||, where f and g are

a rank one matrices in the form of

f ≜ σiFξiξ
∗
i F (4.51)

g ≜ σiGξiξ
∗
i G (4.52)

and ξi is the ith column of the Up.

Proof: If there exists P > 0 satisfying the following inequality;

FPF∗ ≤ GPG∗ (4.53)

then the singular value decomposition of P can be written as follows;

P =UpSpV ∗
p =UpSpU∗

p (4.54)
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Since P is positive definite Up = Vp. Let us write rank one decomposition of P as

follows;

UpSpU∗
p = σ1ξ1ξ

∗
1 +σ2ξ2ξ

∗
2 + . . .+σn+mξn+mξ

∗
n+m (4.55)

then,
F
(
σ1ξ1ξ ∗

1 + . . .+σn+mξn+mξ ∗
n+m
)

F∗

−G(σ1ξ1ξ ∗
1 + . . .+σn+mξn+mξ ∗

n+m)G
∗ ≤ 0

(4.56)

σ1 {F (ξ1ξ ∗
1 )F∗−G(ξ1ξ ∗

1 )G∗}+
. . .+σn+m

{
F
(
ξn+mξ ∗

n+m
)

F∗−G
(
ξn+mξ ∗

n+m
)

G∗}≤ 0
(4.57)

Since ξiξ
∗
i is a rank one matrix, F (ξiξ

∗
i )F∗ and G(ξiξ

∗
i )G∗ matrices are also rank one

which means that there is only one nonzero eigenvalue for those matrices. Following

definitions are necessary for further investigation;

fi ≜ σiFξiξ
∗
i F (4.58)

gi ≜ σiGξiξ
∗
i G (4.59)

By introducing reasonable conservatism, frobenius norm of each component in (4.57)

can be taken as follows;

(|| f1||− ||g1||)+(|| f2||− ||g2||)+ . . .(|| fn+m||− ||gn+m||)≤ 0 (4.60)

Since the overall inequality is satisfied already, then at least one component of the

inequality, that is,

(|| fk||− ||gk||) , k = 1,2, ..,n+m (4.61)

has to be less or equal to zero.

□

Corollary 4.2: If there exists a common ξi that satisfies || fi|| ≤ ||gi|| for all inequalities

given below;

Fj
(
σ1ξ1ξ

∗
1 + . . .+σn+mξn+mξ

∗
n+m
)

F∗
j −G

(
σ1ξ1ξ

∗
1 + . . .+σn+mξn+mξ

∗
n+m
)

G∗ ≤ 0

(4.62)

where j = 1,2, . . . ,k, then ui is the best candidate eigenvector derived from the positive

definite matrix P in order to satisfy the following statement for all A0 +A j, j =

1,2, . . . ,k, [
λiI − (A0 +A j) −B

][u
v

]
= 0 (4.63)
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where λi ∈ D, u ≜Uξ , v ≜V ξ .

Note that this method does not guarantee σiFξiξ
∗
i F ≤ σ1Gξiξ

∗
i G. However, the

candidate eigenvector derived from the singular value decomposition of P is the closest

eigenvector which makes the inequality σiFξiξ
∗
i F ≤ σ1Gξiξ

∗
i G valid.

Theorem 4.2 and Corollary 4.2 give a design method for robust eigenstructure

assignment.

4.4.1 Design steps

1. Check Corollary 4.1 to determine if there exist a Z ̸= 0, Z ≥ 0, Z ∈ Hn+m

2. Using full rank decomposition of Z, that is,

Z =

[
U
V

][
U∗ V ∗

]
(4.64)

define the following expressions;

Fi ≜

{
(AiU +BV )+

β

γ
U
}

(4.65)

G ≜ cU (4.66)

3. Check Theorem 4.2 for P > 0. If there exists P > 0 obtain singular value

decomposition of P, that is,

P =UpSpU∗
p (4.67)

4. If there exists a common ξ (a column of Up) satisfying the conditions of Corollary

4.2, then calculate the controller gain as follows;

u ≜ Uξ and v ≜V ξ (4.68)

R ≜ [u1 . . .un] , Q = [v1 . . .vn] (4.69)

K = QR−1 (4.70)

Note that, a unique design region Θ can be defined for each nominal eigenvalue. This

allows defining more strict conditions for the dominant eigenvalues so that, eigenvalues

that are not close to the dominant region can be left to lie in a more relaxed design

region. This feature is especially useful when high-order systems are of concern.
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Design for nominal systems has already been proposed by [67]. With this novel

method, we extended the related theory by showing that loose eigenstructure

assignment is also applicable to uncertain systems.

The method in the literature requires one LMI solution. Furthermore, If the W matrix

is found, all eigenvectors of W can be used for the design. However, such a design

method is not suitable for the simultaneous stabilization of matrix families. On the

other hand, the proposed method in this paper employs a two-stage design in which

simple LMI solutions are required throughout the design process. Furthermore, there is

no guarantee that more than one eigenvector can be found, but at least one eigenvector

of the P matrix satisfies the condition. The most important feature of the proposed

method is that it is suitable design method in the presence of parametric uncertainties.

The proposed method has no advantage over the method in [67] for the design of the

nominal system. However, the proposed method can also be applied to the uncertain

system with parametric uncertainty while, the method in [67] cannot.

4.4.2 Design of disturbance observer in the presence of the parametric

uncertainty

Assumptions: Following assumptions have been made [92];

• The plant model is strictly proper

• The plant model does not have zero at the origin

• The disturbance model is known

Let Pn has the following form;

ẋ = Ax+B(u+d) (4.71)

y = Cx (4.72)

where x ∈ Rn , and the system is both observable and controllable. The disturbance

model is;

ẋd = Adxd (4.73)

d = Cdxd (4.74)
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where xd ∈ Rnd , (Ad,Cd) is observable, and Ad has at least one zero eigenvalue. The

state-space representation of the DOB is already given in Figure 3.2.

The observability condition can easily be understood in the context of disturbance

observer since the disturbance estimation is based on the system output signal.

At this point, it is also worth noting that disturbance signal d and the control input u

are assumed to affect the system via the same channels, which is called in the literature

a “matched condition”. But in general, this may not be true. However, for the sake of

simplicity, more specific case has been considered at this point.

To express the complete system more compactly, augmented plant, Pz, is given as

follows;

ẋa = Aaxa +Bau (4.75)

ya = Caxa (4.76)

where augmented state vector is xa =
[
xT xT

d

]T , and augmented system matrices are,

Aa =

[
A BCd

0 Ad

]
, Ba =

[
B
0

]
, Ca =

[
C 0

]
(4.77)

By assuming the augmented plant is observable;

˙̂xa = Aa x̂a +Ba u+L(ya −Ca x̂a)= (Aa −LCa)xa +
[
Ba L

][u
y

]
(4.78)

d̂ =
[
0 Cd

]
x̂a (4.79)

[
0 Cd

]
≜Cda (4.80)

where Cda is the augmented output matrix.

The relation between time domain and frequency domain representations of the

disturbance observer is given as follows [92];

d̂ =−G1 (s)u+G2 (s)y (4.81)

where

G1 (s) =

[
Aa +LCa −B

Cda 0

]
, G2 (s) =

[
Aa +LCa L

Cda 0

]
(4.82)
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Considering the frequency domain disturbance observer equations;

d̂ =−Q(s)u+Q(s)P−1
n (s)y (4.83)

Error dynamics can be written as follows;

ė = (A(δ )−LC)e− (A−A(δ )) x̂a (4.84)

Obviously, if λ {A(δ )−LC} ∈ D, then the system with disturbance observer

performance is determined by the eigenvalue spread which is constrained by the design

region D. The DOB design in the presence of the parametric uncertainty is based on

the design steps given in section 4.4.1 in which augmented system in (4.77) is utilized.

4.4.3 Disturbance observer design for reduced-order case

The motivation for studying reduced order case is twofold; the first reason is obvious,

there are some cases where all states are not observable [95]. Secondly, even if

all states are observable, the designer may want to utilize low order DOB which is

more desirable for number of reasons such as fast disturbance estimation and low

complexity. For discrete system, a DOB design has been proposed in [96].

Consider the system

ẋ = Ax+B(u+d) (4.85)

y = Cx (4.86)

where x ∈ Rn and the disturbance model is;

ẋd = Adxd (4.87)

d = Cdxd (4.88)

where xd ∈ Rnd , (Ad,Cd) is observable, and Ad has at least one zero eigenvalue.

As it is given in (4.75), the augmented plant is given as follows;

ẋa = Aaxa +Bau (4.89)

ya = Caxa (4.90)

where augmented state vector is xa =
[
xT xT

d

]T , and augmented system matrices are,

Aa =

[
A BCd

0 Ad

]
, Ba =

[
B
0

]
, Ca =

[
C 0

]
(4.91)
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In this case, if the observability matrix of (Aa,Ca) has rank≤ n+ nd , where n+ nd is

the size of Aa, then there exists a similarity transformation such that;

Aa = TAaT T (4.92)

Ba = T Ba (4.93)

Ca = CT T (4.94)

where T is unitary and the transformed system has unobservable modes, if any, in the

upper left corner. The transformed matrices are given below;

Aa =

[
Aano A12

0 Aao

]
(4.95)

Ba =

[
Bano

Bao

]
(4.96)

Ca =
[
0 Cao

]
(4.97)

where (Cao,Aao) is observable, and the eigenvalues of Aano are the unobservable modes.

Now, only observable part is considered during the design process. Consider the

transformed system given below;

ż = Aa(δ )z+Bau (4.98)

y = Caz (4.99)

where Aa ∈ C(n+nd)x(n+nd), Ba ∈ C(n+nd)x(m).Let,

Aa(δ ) = Aao +A1 + · · ·+Ak (4.100)

where

A1 = TA1T T (4.101)

Ak = TAkT T (4.102)

Let DΘi, i = 1, . . . ,n is given in the form of

Θi =

[
α β

β γ

]
∈ H2 (4.103)

There exists pairs (ui,vi) satisfies following;[
λiI − (Aao +Ai)

∗ −CT
a

][ui

vi

]
= 0 (4.104)
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For some λi ∈ DΘi , if there exists a common Zi ∈ Hn+nd+m such that;

[
I 0 (Aao +A1)

∗ CT
a

]
(Θi ⊗Z)


I
0

(Aao +A1)

Ca

≥ 0 (4.105)

If a solution exists, then ∃Z ≥ 0 and can be rewritten by using full rank decomposition

as follows;

Z =

[
U
V

][
U V

]∗
(4.106)

{
(AT

aoU +CT
a V )+

β

γ
U
}{

(AT
aoU +CT

a V )+
β

γ
U
}∗

− c2UU∗ ≤ 0 (4.107)

{
((AT

ao +AT
1 )U +CT

a V )+
β

γ
U
}{

((AT
ao +AT

1 )U +CT
a V )+

β

γ
U
}∗

− c2UU∗ ≤ 0

(4.108)
...{

((AT
ao +AT

k )U +CT
a V )+

β

γ
U
}{

((AT
ao +AT

k )U +CT
a V )+

β

γ
U
}∗

− c2UU∗ ≤ 0

(4.109)

Following definitions are required for further investigation;

Fi ≜

{
((AT

ao +AT
i )U +CT

a V )+
β

γ
U
}

, i = 1,2, . . . ,k (4.110)

G ≜ cU (4.111)

As it is stated in the previous section it is not possible to find a common W , such that

WW ∗ ≤ I, and

F1 = GW (4.112)

F2 = GW (4.113)

...

Fk = GW (4.114)
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In order to find a common eigenvector for all matrix family, similar design steps can be

followed. Note that, with the above definitions, Theorem 4.2 can be applied directly.

If there exists a common ξ for all inequalities given below,

Fi
(
σ1ξ1ξ ∗

1 + . . .+σn+mξn+mξ ∗
n+m
)

F∗
i

−G(σ1ξ1ξ ∗
1 + . . .+σn+mξn+mξ ∗

n+m)G
∗ ≤ 0

(4.115)

σ1 {Fi (ξ1ξ ∗
1 )F∗

i −G(ξ1ξ ∗
1 )G∗}+ . . .

+σn+m
{

Fi
(
ξn+mξ ∗

n+m
)

F∗
i −G

(
ξn+mξ ∗

n+m
)

G∗}≤ 0
(4.116)

where, i = 1,2, . . . ,k. Then ξ is the candidate vector to satisfy the following statement

for all A j, j = 1, . . . ,k

[
λiI −

(
AT

ao +AT
j

)
−CT

a

][u
v

]
= 0 (4.117)

where, λi ∈ D, u ≜Uξ , v ≜V ξ .

4.5 Case Studies

This section explores three case studies. The first study examines a nominal system

with no uncertainties, while the second example considers an observable system with

uncertainties. Finally, the third case study explores the reduced order system scenario.

4.5.1 Case-1: Design example for nominal system

Now let us use the proposed method for the nominal system. Let A and B be given as

follows;

A =

[
−3 3.1
−3.1 −3

]
, B =

[
0.5
0.6

]
(4.118)

and Θ ∈ H2 be given by

Θ =

[
−33.97 −5+3.1 j

−5−3.1 j −1

]
(4.119)

This means that the eigenvalue region is defined as a disc centered at −5± 3.1 j with

radius 0.8. By solving the following inequality,

[
I 0 A B

]
(Θ⊗Z)


I
0

A∗

B∗

≥ 0 (4.120)
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Z is found to be as follows;

Z =

0.1247 0.0064−0.206 j −0.4329+0.5056 j
∗ 0.3537 −0.9578−0.7293 j
∗ ∗ 4.4512

 (4.121)

Eigenvalues of Z are given below;

λ (Z) =

 0
0.0488
4.9907

 (4.122)

So, Z is clearly positive semi-definite. Let z be re-written as follows;

Z =

[
U
V

][
U∗ V ∗

]
(4.123)

where

U =

[
−0.3201 0.1491 −0.037

−0.0314−0.5745 j −0.0248+0.1482 j −0.0005+0.00035 j

]
(4.124)

V =
[
1.3683+1.6047 j 0.0338+0.0535 j 0.0001+0.0004 j

]
(4.125)

Then,

F = (AU +BV )+
β

γ
U (4.126)

G = cU (4.127)

Solution for FPF∗ ≤ GPG∗ is given below;

P =

2.1873 0.0638−0.0127 j −0.0008+0.007 j
∗ 1.7518 0.0250−0.0783 j
∗ ∗ 0.8264

 (4.128)

λ (P) =

0.8190
1.7496
2.1969

 (4.129)

Clearly, P is positive definite. Therefore, the SVD of P can be written as follows;

P =UpSpU∗
p (4.130)
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where

Sp =

2.1969 0 0
0 1.7496 0
0 0 0.8190

 (4.131)

Up =
[
ξ1 ξ2 ξ3

]
(4.132)

=

 −0.9894 0.1451 −0.0093
−0.1425−0.0283 j −0.9666−0.1917 j 0.0867+0.0174 j
−0.0004+0.0036 j −0.01−0.0882 j −0.1103−0.989 j

(4.133)

In this case, the columns of Up are the candidates for the solution. As suggested by the

Theorem 4.2, at least one ξ has to satisfy the inequality of ||Fξ ξ ∗F∗|| ≤ ||Gξ ξ ∗G∗||.

The solutions of ||Fξiξ
∗
i F∗|| ≤ ||Gξiξ

∗
i G∗|| for i = 1,2,3 are given below;

||Fξ1ξ
∗
1 F∗||− ||Gξ1ξ

∗
1 G∗||=−0.245 (4.134)

||Fξ2ξ
∗
2 F∗||− ||Gξ2ξ

∗
2 G∗||= 0.1727 (4.135)

||Fξ3ξ
∗
3 F∗||− ||Gξ3ξ

∗
3 G∗||= 0.0019 (4.136)

Only ξ1 satisfies the inequality, so the closed-loop eigenvectors can be found as

follows;

u1 ≜ Uξ1 =

[
0.2954−0.0042 j
0.0388+0.5480 j

]
(4.137)

v1 ≜ V ξ1 =
[
−1.3571−1.5962 j

]
(4.138)

u2 = u∗1 (4.139)

v2 = v∗1 (4.140)

Then,

Rn =
[
u1 u2

]
(4.141)

Qn =
[
v1 v2

]
(4.142)

K = QnR−1
n =

[
−4.2066 −2.0451

]
(4.143)

The assigned eigenvalues and D-Regions are shown in Figure 4.2.
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Figure 4.2 : The location of eigenvalues (Case 1: Nominal System).

4.5.2 Case 2: Design example for an uncertain system

In this case study, a DOB-based inner loop is designed in the presence of parametric

uncertainty. Let A and B be given as follows;

A0 =

 −3 3.1 0
−3.1 −3 0

0 0 −6

 (4.144)

A1 =

 0.9 0.9 0
−0.9 0.9 0

0 0 0.4

 (4.145)

A2 =

−0.9 −0.9 0
0.9 −0.9 0
0 0 −0.4

 (4.146)

B =

 1 0.2
0.5 1
1 0.6

 (4.147)

where, the matrix family is defined as; A(δ ) = A0 + δ1A1 + δ2A2. The disturbance

model is given below;

ẋd = Adxd (4.148)

d = Cdxd (4.149)

where xd ∈ Rnd

Ad = 0 (4.150)

Cd =

[
1
0

]
(4.151)
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Finally, the augmented state vector is xa =
[
xT xT

d

]T , and augmented system matrices

are,

Aa(δ ) =

[
A(δ ) B Cd

0 Ad

]
, Ba =

[
B
0

]
, Ca =

[
C 0

]
(4.152)

and Θ1,Θ2 ∈ H2 be given by

Θ1 =

[
−39.36 −6+3 j
−6−3 j −1

]
(4.153)

Θ2 =

[
−144 −12+ j

−12− j −1

]
(4.154)

which mean that eigenvalue region Θ1 is defined as a disc centered at −6± 3 j with

radius 2.5, and Θ2 is defined as a disc centered at −12±1 j with radius 1. By utilizing

the duality principle, the following LMIs are to be solved;

[
I 0 (A0 +A1)

∗ CT
a

]
(Θ1 ⊗Z)


I
0

(A0 +A1)

Ca

 ≥ 0 (4.155)

[
I 0 (A0 +A2)

∗ CT
a

]
(Θ1 ⊗Z)


I
0

(A0 +A2)

Ca

 ≥ 0 (4.156)

[
I 0 (A0)

∗ CT
a

]
(Θ1 ⊗Z)


I
0

(A0)

Ca

 ≥ 0 (4.157)

[
I 0 (A0)

∗ CT
a

]
(Θ2 ⊗X)


I
0

(A0)

Ca

 ≥ 0 (4.158)

Z ≥ 0 (4.159)

X ≥ 0 (4.160)

Z and X are found to be as follows;

Z = 10−7


0.0524 z12 z13 z14 z15

∗ 0.0135 z23 z24 z25

∗ ∗ 0.0896 z34 z35

∗ ∗ ∗ 0.0033 z45

∗ ∗ ∗ ∗ 0.4414

 (4.161)
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where,

z12 = 0.0058+0.0222 j (4.162)

z13 = 0.0189−0.0459 j (4.163)

z14 = −0.0082+0.0103 j (4.164)

z15 = −0.1167−0.0716 j (4.165)

z23 = −0.0062−0.0077 j (4.166)

z24 = 0.0021+0.0041 j (4.167)

z25 = −0.04993+0.0225 j (4.168)

z34 = −0.0172−0.0031 j (4.169)

z35 = −0.0198−0.1604 j (4.170)

z45 = 0.0085+0.0374 j (4.171)

X =


0.1101 x12 x13 x14 x15

∗ 0.0259 x23 x24 x25

∗ ∗ 0.1728 x34 x35

∗ ∗ ∗ 0.0049 x45

∗ ∗ ∗ ∗ 5.997

 (4.172)

where,

x12 = 0.053+0.0047 j (4.173)

x13 = 0.1376−0.0071 j (4.174)

x14 = −0.0231+0.0023 j (4.175)

x15 = −0.8030−0.0929 j (4.176)

x23 = 0.0658−0.0092 j (4.177)

x24 = −0.0109+0.0021 j (4.178)

x25 = −0.3940−0.0113 j (4.179)

x34 = −0.0291+0.0014 j (4.180)

x35 = −0.9932−0.1661 j (4.181)

x45 = 0.1649+0.0359 j (4.182)
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Eigenvalues of Z and X are given below;

λ (Z) = 10−7


0
0

0.004
0.040
0.556

 , λ (X) =


0
0
0
0

6.308

 (4.183)

Let Z be re-written as follows;

Z =

[
Uz

Vz

][
Uz Vz

]∗
(4.184)

Then,

F1 ≜ (AaUz +BVz)+
β1

γ
Uz (4.185)

F2 ≜ (Aa +A1)Uz +BVz)+
β1

γ
Uz (4.186)

F3 ≜ (Aa +A2)Uz +BVz)+
β1

γ
Uz (4.187)

Gz = c1Uz (4.188)

where c1 =
√
−det(Θ1) = 2.5 . Considering Theorem 4.2, there exists a solution for

P, that is,

P =


0.0233 p12 p13 p14 p15

∗ 0.0366 p23 p24 p25

∗ ∗ 0.0944 p34 p35

∗ ∗ ∗ 0.0021 p45

∗ ∗ ∗ ∗ 0.0066

 (4.189)

where

p12 = 0.001+0.0005 j (4.190)

p13 = −0.0001+0.0018 j (4.191)

p14 = −0.0032−0.0014 j (4.192)

p15 = 0.0013+0.0026 j (4.193)

p23 = 0.0241−0.0034 j (4.194)

p24 = 0.0014−0.0025 j (4.195)

p25 = −0.0028+0.0013 j (4.196)

p34 = 0.0058+0.0017 j (4.197)

p35 = −0.0026−0.0058 j (4.198)

p45 = −0.0008−0.0014 j (4.199)
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Since all eigenvalues of P are positive, the SVD of P can be written as follows;

P =UpSpU∗
p (4.200)

where

Up =
[
ξp1 ξp2 ξp3 ξp4 ξp5

]
(4.201)

In this case, columns of Up are candidates for eigenvectors. As suggested by Theorem

4.2, at least one ξp has to satisfy the inequality of ||Fξpξp
∗F∗|| ≤ ||Gξpξp

∗G∗||. Only

ξp3=


−0.9190

0.297+0.1509 j
−0.1142−0.0914 j
0.1084−0.0301 j
−0.0643+0.0797 j

 (4.202)

satisfies the inequalities ||Fiξp3ξp3
∗F∗

i || ≤ ||Gξp3ξp3
∗G∗|| for all i.

Let X be re-written as follows;

X =

[
Ux

Vx

][
U∗

x V ∗
x

]
(4.203)

Then,

F4 ≜

{
(AaUx +BVx)+

β2

γ
Ux

}
(4.204)

Gx ≜ c2Ux (4.205)

where c2 =
√

−det(Θ2) = 1, Considering the Theorem 4.2, there exists a solution for

R, that is,

R =


2.3412 r12 r13 r14 r15

∗ 1.9221 r23 r24 r25

∗ ∗ 1.3904 r34 r35

∗ ∗ ∗ 0.9692 r45

∗ ∗ ∗ ∗ 0.1390

 (4.206)
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where

r12 = −0.1208+0.0405 j (4.207)

r13 = −0.0650+0.0365 j (4.208)

r14 = −0.0110−0.0230 j (4.209)

r15 = −0.1639−0.1803 j (4.210)

r23 = −0.0342+0.0449 j (4.211)

r24 = 0.0284+0.0456 j (4.212)

r25 = 0.3408+0.0352 j (4.213)

r34 = −0.0231+0.0235 j (4.214)

r35 = 0.1626+0.1218 j (4.215)

r45 = −0.0383+0.0978 j (4.216)

Since all eigenvalues of R are positive, SVD of R can be written as follows;

R =URSRU∗
R (4.217)

UR =
[
ξr1 ξr2 ξr3 ξr4 ξr5

]
(4.218)

In this case columns of UR are candidates for eigenvectors.

As suggested by Theorem 4.2, at least one ξp has to satisfy the inequality of

||F4ξrξr
∗F4

∗|| ≤ ||Gξrξr
∗G∗||.

Since ||F4ξr1ξr1
∗F4

∗|| − ||Gξr1ξr1
∗G∗|| = −0.243, ξr1 given below satisfies the

inequality ||F4ξr1ξr1
∗F4

∗|| ≤ ||Gξr1ξr1
∗G∗||.

ξr1=


−0.9368

0.3064+0.0383 j
0.0781+0.0213 j

0.01553−0.0152 j
0.1192−0.0760 j

 (4.219)

Hence, the closed-loop eigenvectors can be found as follows;
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u1 ≜ UZξp3 = 10−4


0.6949+0.0562 j
0.1295−0.3020 j
0.2904+0.5669 j
−0.1086−0.1352 j

 (4.220)

v1 ≜ VZξp3 = 10−4
[
−1.6397+1.0083 j

]
(4.221)

u2 = u∗1 (4.222)

v2 = v∗1 (4.223)

u3 = UX ξr1 =


0.2995−0.0012 j
0.1492−0.0124 j
0.3673+0.0149 j
−0.0604−0.0054 j

 (4.224)

v3 = VX ξr1 =
[
−2.2840+0.2633 j

]
(4.225)

u4 = u∗3 (4.226)

v4 = v∗3 (4.227)

(4.228)

then,

Rn =
[
u1 u2 u3 u4

]
(4.229)

Qn =
[
v1 v2 v3 v4

]
(4.230)

L = QnR−1
n =


−18.9317
17.1332
−21.1235
−142.1487

 (4.231)

The eigenvalue-spread of the proposed design is given in Figure 4.3. Note that,

all dominant eigenvalues are restricted in the predetermined disjoint regions. Only

nominal eigenvalues corresponding to the eigenvectors u3 and u4 are constrained in the

predetermined regions and uncertain eigenvalues are not constrained in those regions.

The comparison of the step responses of system with DOB and without DOB is given

in Figure A.1 in Appendix A2. As shown in Figure A.1, the open-loop system without

DOB is more sensitive to both parameter changes and unknown disturbance input.

On the other hand, the step response of the uncertain system with DOB is close to

the nominal step response even under the unknown disturbance inputs. Note that,
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Figure 4.3 : The design by the proposed method (Case 2: DOB Design for uncertain
system).

DOB estimates not only the external disturbances but also the effects of the parameter

changes.

4.5.3 Case 3: Design example for reduced-order case

In this case study, a DOB-based inner loop is designed in the presence of parametric

uncertainty. Let A and B be given as follows;

A0 =

 −3 3.1 0
−3.1 −3 0

0 0 −6

 (4.232)

A1 =

 0.7 1.5 0
−1.5 0 0

0 0 0.1

 (4.233)

A2 =

−0.7 −1.5 0
1.5 0 0
0 0 −0.1

 (4.234)

B =

 1 0.2
0.5 1
1 0.6

 (4.235)

C =
[
1 1 0

]
(4.236)
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where, the matrix family is defined as; A(δ ) = A0 + δ1A1 + δ2A2. The disturbance

model is given below;

ẋd = Adxd (4.237)

d = Cdxd (4.238)

where xd ∈ Rnd

Ad = 0 (4.239)

Cd =

[
1
0

]
(4.240)

Finally, the augmented state vector is xa =
[
xT xT

d

]T , and augmented system matrices

are,

Aa(δ ) =

[
A(δ ) B Cd

0 Ad

]
, Ba =

[
B
0

]
, Ca =

[
C 0

]
(4.241)

and Θ1,Θ2 ∈ H2 be given by

Θ1 =

[
−21.61 −4+3 j
−4−3 j −1

]
(4.242)

Θ2 =

[
−384 −20
−20 −1

]
(4.243)

which mean that eigenvalue region Θ1 is defined as a disc centered at −4±3.1 j with

radius 2, and Θ2 is defined as a disc centered at −20 with radius 4.

Note that, system (Aa,Ca) is not observable. Let us decompose the system into

observable and unobservable subspaces.

Using similarity transformation, T , that is;

T =


0 0 1 0

0.2289 −0.2289 0 0.9462
−0.6690 0.6690 0 0.3237
0.7071 0.7071 0

 (4.244)

Aa =


−6 0.9462 0.3237 0
0 −0.2061 0.9559 1.0035
0 0.6024 −2.7939 −2.9331
0 0 3.2764 −3

 (4.245)

Ca =
[
0 0 0 1.4142

]
(4.246)
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Note that, Aano = −6, so only one mode of Aa is not observable. By utilizing duality

principle, following LMIs are to be solved.

[
I 0

(
A∗

a

)∗
CT

a

]
(Θ1 ⊗Z)


I
0

Aa

Ca

 ≥ 0 (4.247)

[
I 0

(
Aa +A1

)∗ CT
a

]
(Θ1 ⊗Z)


I
0

(Aa +A1)

Ca

 ≥ 0 (4.248)

[
I 0

(
Aa +A2

)∗ CT
a

]
(Θ1 ⊗Z)


I
0

(Aa +A2)

Ca

 ≥ 0 (4.249)

[
I 0

(
Aa
)∗ CT

a

]
(Θ2 ⊗X)


I
0

(Aa)

Ca

 ≥ 0 (4.250)

Z ≥ 0 (4.251)

X ≥ 0 (4.252)

Z and X are found to be as follows;

X =


0 −0.0001 0.0004 −0.0037
∗ −0.0023 −0.0107 0.1160
∗ ∗ 0.0513 −0.5822
∗ ∗ ∗ 6.8923

 (4.253)

Z = 10−3


−0.0106 z12 z13 z14

∗ 0.4168 z23 z24

∗ ∗ 0.4965 z34

∗ ∗ ∗ 0.5133

 (4.254)
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where

z12 = −0.0485−0.0288 j (4.255)

z13 = −0.0199+0.0568 j (4.256)

z14 = 0.0428−0.0364 j (4.257)

z23 = −0.1053−0.4536 j (4.258)

z24 = −0.0857+0.4218 j (4.259)

z34 = −0.4590−0.2234 j (4.260)

Eigenvalues of Z and X are given below;

λ (Z) = 10−2


0
0
0

0.14

 , λ (X) =


0
0
0

6.9435

 (4.261)

Let Z be re-written as follows;

Z =

[
Uz

Vz

][
Uz Vz

]∗
(4.262)

Then,

F1 ≜
(
AT

aoUz +CT
a Vz
)
+

β1

γ
Uz (4.263)

F2 ≜
(
(AT

ao +AT
1 )Uz +CT

a Vz
)
+

β1

γ
Uz (4.264)

F3 ≜
(
(AT

ao +AT
2 )Uz +CT

a Vz
)
+

β1

γ
Uz (4.265)

G ≜ c1U (4.266)

where, c1 =
√

−det(Θ1) = 2, considering the Theorem 4.2, there exists a solution for

P s.t. P > 0. Therefore, SVD of P can be written as follows;

P =UpSpUT
P (4.267)

where

Up =
[
ξp1 ξp2 ξp3 ξp4

]
(4.268)

ξp1 =


−0.0705

−0.7355+0.5258 j
−0.1463−0.3777 j
0.0966−0.0647 j

 , ξp2 =


0.9811

−0.0711−0.0117 j
−0.0818−0.0016 j
0.0009−0.1596 j

 (4.269)
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ξp3 =


−0.1374

0.1226−0.2002 j
−0.1062−0.3827 j
−0.2886−0.8277 j

 , ξp4 =


0.1163

0.2991+0.1810 j
0.4758−0.6672 j
−0.2898+0.3297 j

 (4.270)

In this case columns of Up are candidate for eigenvectors. As suggested by Theorem

4.2, at least one ξp has to satisfy the inequality of ||Fξpξp
∗F∗|| ≤ ||Gξpξp

∗G∗||. Only

ξp2 satisfies the inequalities ||Fiξp2ξp2
∗F∗

i || ≤ ||Gξp2ξp2
∗G∗|| for all i, that is,

||F1ξp2ξp2
∗F1

∗||− ||Gξp2ξp2
∗G∗||=−0.0034

||F2ξp2ξp2
∗F2

∗||− ||Gξp2ξp2
∗G∗||=−0.0005

||F3ξp2ξp2
∗F3

∗||− ||Gξp2ξp2
∗G∗||=−0.0021

(4.271)

Let X be re-written as follows;

X =

[
Ux

Vx

][
U∗

x V ∗
x

]
(4.272)

Then,

F3 ≜
(
AT

a Ux +CT
a Vx
)
+

β2

γ
Ux (4.273)

G ≜ c2Ux (4.274)

where c2 =
√

−det(Θ2) = 4. Considering the Theorem 4.2, there exist a solution for

R such that R > 0. Therefore, SVD of R can be written as follows;

R =URSRU∗
R (4.275)

where,

UR =
[
ξr1 ξr2 ξr3 ξr4 ξr5

]
(4.276)

In this case columns of UR are candidate for eigenvectors. Then, at least one ξr has to

satisfy the inequality of ||F1ξrξr
∗F∗

1 || ≤ ||Gξrξr
∗G∗||.

ξr1 given below satisfies the inequality ||F1ξr1ξr1
∗F∗

1 || ≤ ||Gξr1ξr1
∗G∗||.

ξr1 =


−1

−0.0023
−0.007
−0.0088

 (4.277)
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Finally, the closed-loop eigenvectors can be found as follows;

u1 ≜ Uzξp2 =

 0.0027+0.0007 j
−0.0169+0.0107 j
−0.008−0.0207 j

 (4.278)

v1 ≜ Vzξp2 =
[
0.0156+0.0151 j

]
(4.279)

u2 ≜ u∗1 (4.280)

v2 ≜ v∗1 (4.281)

u3 ≜ UX ξr1 =

 0.0014
−0.0445
0.2217

 (4.282)

v3 ≜ VX ξr1 =
[
−2.6252

]
(4.283)

Then,

Rn =
[
u1 u2 u3

]
(4.284)

Qn =
[
v1 v2 v3

]
(4.285)

K =

[
0

QnR−1
n

]
=


0

−145.2808
−17.4654
−14.4169

 (4.286)

Note that, all dominant eigenvalues are restricted in the predetermined disjoint regions

as it is seen in Figure 4.4.

Unobservable eigenvalues are not taken into account, but they are in the left half plane,

so the design is valid.

The comparison of the step responses of system with DOB and without DOB is

given in Figure A.2 in Appendix A3. As shown in Figure A.2, the open-loop

system without DOB is more sensitive to both parameter changes and unknown

disturbance input. On the other hand, the step response of the uncertain system with

DOB is close to the nominal step response even under the unknown disturbance inputs.

4.6 Conclusion

This study proposes a new controller design method for uncertain systems via

extended loose eigenstructure assignment. The study’s main contribution is that it

89



Uncertain Eigenvalues

Nominal Eigenvalues

-25 -20 -15 -10 -5
Re

-4

-2

2

4

Im

Figure 4.4 : Reduced-order design by proposed method (Case 3: Design example for
reduced-order case).

allows handling robust root clustering problems for disjoint regions in the context

of eigenstructure assignment. The concept of loose eigenstructure assignment has

been enhanced to cover uncertain systems with acceptable conservatism. The method

does not require any heuristic algorithms, and eigenvectors are selected among a finite

number of vectors.

The concept has been applied to a disturbance observer design to restrict uncertain

eigenvalues spread into predetermined disjoint regions. The method allows the

flexibility of defining the different levels of measures for each nominal eigenvalue so

that some eigenvalues can be left more relaxed, as it is carried out in the case study.

Using the proposed method, an inner loop DOB-based system is designed to reject both

external disturbances and the effect of internal uncertainties. Results showed that the

behaviour of the uncertain system with DOB-based inner loop is close to the behaviour

of the nominal system.

There are some cases where all states are not observable, or the designer may want

to utilize low-order DOB, which is more desirable due to several reasons such as fast

disturbance estimation and low complexity. To cover these kinds of design concerns,

the reduced-order disturbance observer design will be studied in the future.
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5. CONCLUSION

In this thesis, the disturbance observer-based control systems are analysed and

various design methods are proposed for designing DOB-based control systems in the

presence of parametric uncertainties. The research direction begins with the analysing

DOB-based control systems in the frequency domain and spherical polynomials are

used to represent uncertain dynamics. The value set concept is adopted to validate

the results. In order to design a robust disturbance observer-based control system,

two methodologies in which robustness is the major design criterion are proposed.

Although the first method is useful to represent the disjoint uncertain regions and

to constrain the uncertain eigenvalues within those regions, the method suffers from

curse of dimensionality which leads to a computationally inefficient approach when

the high dimensions are the case. On the other hand, the extended loose eigenstructure

method is promising in that sense especially when dealing with reduced-order system

dynamics.

The first research study within the thesis suggests a novel method for examining the

DOB-based system by utilizing the spherical polynomial approach. The verification of

the outcomes has been established through the adoption of the value set principle for

spherical polynomials.

The main contributions of this study can be listed as follows: Firstly, the adoption of the

spherical value set approach for uncertain polynomials has been made for the first time

in disturbance observer-based control systems. Secondly, the robustness margin for a

given DOB-based system has been systematically described in the context of spherical

polynomial families, which has not been done before. Thirdly, the non-minimum

phase case has been examined, and a detailed discussion has been made regarding the

bandwidth constraints. Lastly, the effects of low-order DOB filter design have been

investigated and discussed for potential impacts.

The analyses conducted in the first part of the study show the following results: If the

nominal and uncertain plants have the same structure, and the uncertain parameters
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are present only on the denominator of the plant, then the robustness margin will

increase as the DOB filter bandwidth increases (if the DOB bandwidth is higher than

its minimum value). Additionally, the study demonstrates that when the nominal plant

is first-order, irrespective of the order of the uncertain plant, the relation between

robustness margin and DOB bandwidth is not straightforward. Therefore, it is not

guaranteed that an increased DOB bandwidth will lead to an improved robustness

margin in general. The same conclusion is valid for the affine linear case, where

uncertain parameters are present both in the numerator and denominator of the plant.

Lastly, the proposed method in this study enables the examination of the non-minimum

phase case, in which the DOB-based systems may lose their superiorities, allowing

for a more comprehensive analysis. The analytical derivation of the relation between

the bandwidth and robustness of a disturbance observer has been carried out using a

spherical polynomial representation.

The results obtained in the first part of the study have led to a new research direction.

Specifically, the state space approaches are utilized to introduce novel design methods

for the disturbance observer under parametric uncertainties. To this end, two new

approaches are proposed. The first study presents a new approach to designing

DOB for uncertain systems through the use of a novel guardian map. The main

contribution of this study is that it allows for the constraint of uncertain eigenvalues

into separate predefined D-regions. It is noteworthy that the predefined regions for

nominal eigenvalues can differ from each other, thereby assigning different robustness

criteria for each of the nominal eigenvalues. However, it is important to note that

the method has a drawback, namely the curse of dimensionality, which requires

further consideration in future work. As the dimension of the system increased, the

computational effort also increased.

The final part of the study proposes a new controller design method for uncertain

systems using a novel eigenstructure assignment within the LMI framework. The

main contribution of this method is that it enables robust root clustering problems to

be addressed for disjoint regions in the context of eigenstructure assignment. Notably,

the concept of loose eigenstructure assignment has been improved to accommodate

uncertain systems while maintaining acceptable conservatism. Furthermore, this
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method does not require the use of heuristic algorithms, and robust eigenvectors are

selected from a finite number of alternatives.

The concept of extended loose eigenstructure assignment has been applied to the

design of a disturbance observer to constrain the spread of uncertain eigenvalues

into predetermined disjoint regions. The proposed method enables the flexibility of

defining different levels of measures for each nominal eigenvalue, thereby allowing

certain eigenvalues to be left more relaxed, as demonstrated in the case study. By

utilizing this method, an inner loop DOB-based system has been designed to reject

both external disturbances and the effect of internal uncertainties. The obtained results

have demonstrated that the behavior of the uncertain system with a DOB-based inner

loop is similar to the behavior of the nominal system.

It is acknowledged that there may be cases where not all states are observable or

where the designer may prefer to use a low-order DOB due to advantages such

as faster disturbance estimation and lower complexity. Therefore, to address these

design concerns, another study is being carried out that focuses on the design of a

reduced-order disturbance observer. The goal of this study is to provide a method

for designing a DOB that can estimate disturbances effectively with fewer states

while maintaining robustness against parametric uncertainties. Results from this study

provide insights into the design of reduced-order DOB filters that can be applied to a

wide range of practical engineering problems.
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APPENDIX A: Lemma-3 of the Paper "On the Kalman-Yakubovich-Popov Lemma"

Lemma [94] : Let F and G be complex matrices of the same size. Then;

1. FF∗ = GG∗ if and only if there exists a matrix W such that WW ∗ = I and F = GW .

2. FF∗ ≤ GG∗ if and only if there exists a matrix W such that WW ∗ ≤ I and F = GW .

3. FG∗ +GF∗ = 0 if and only if there exists a matrix W such that WW ∗ = I and
F(I +W ) = G(I −W ).

4. FG∗ +GF∗ ≥ 0 if and only if there exists a matrix W such that WW ∗ ≤ I and
F(I +W ) = G(I −W ).

Proof [94]: The statements (3) and (4) follow from (1) and (2) respectively, by
replacement of F and G with G−F and F +G. It remains to prove (1) and (2). Let
the size of F and G be kxl. Consider first (1) for square matrices, i.e. the case k = l.
Assuming that FF∗ = GG∗, introduce the polar decompositions

F = HFWF (A.1)
G = HGWG (A.2)

where HF and HG are hermitian and positive semi-definite, while WF and WG are
unitary. Then;

HF = (FF∗)1/2 = (GG∗)1/2 = HG (A.3)

so the unitary matrix W =W ∗
GWF satisfies F = GW .

The case k < l follows immediately by extending F and G with zero rows to square
matrices. If k > l4, then let F1 be a submatrix of F with the same rank, but a minimal
number of rows. Let G1 be defined by the corresponding rows in G1. Then FIF∗

1 =
G1G∗

1 and existence of a unitary matrix W such that F1 = G1W follows as above. In
fact, since all rows of F and G are linear combinations of the rows in F1 and G1, the
desired equality F = GW is proved as well.

To prove (2) from (1), note that FF∗ ≤ GG∗, if and only if there exists an H such that
[F H][F H]∗ = [G 0][G 0]∗. By (1), this is equivalent to existence of H and a unitary
matrix [

W V
V ∗ X

]
(A.4)

such that, [
F H

]
=
[
G 0

][W V
V ∗ X

]
(A.5)

Such matrices exist if and only if F = GW and W ∗W ≤ I. So (2) is proved.

□
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• Akyol, İ.E., Söylemez, T.,2021. “Analysis of Disturbance Observer-Based Control
Systems via Spherical Polynomials",International Journal of Control, 2021.

INTERNATIONAL CONFERENCE PUBLICATIONS:
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