
M.S. Celebi, A. Duran, M. Tuncel, B. Akaydin: “ Scalable and Improved SuperLU on GPU for Heterogeneous Systems”

1

Scalable and Improved SuperLU on GPU for Heterogeneous

Systems

 M. Serdar Celebi
a,c

, Ahmet Duran
b,a

*, Mehmet Tuncel
a,c

, Bora Akaydın
a,c

aIstanbul Technical University, National Center for High Performance Computing of Turkey (UHeM), Istanbul 34469, Turkey
bIstanbul Technical University,Department of Mathematics, Istanbul 34469, Turkey

 cIstanbul Technical University, Informatics Institute, Istanbul 34469, Turkey

July 13, 2012

Abstract

We consider a fast, robust and scalable solver using graphic processing units (GPU) as accelerators for a sparse linear system

AX=B. In this project, a new parallel hybrid direct solver is designed and implemented on GPU for large sparse linear systems. In

particular, we work on GPU programming using directive based Open ACC in order to obtain a scalable and improved SuperLU

on CPU+GPU heterogeneous systems.

Project ID: FP7-INFRASTRUCTURES-2011-2, PRACE-2IP —PRACE - Second Implementation Phase Project

1. Introduction

It is important to use graphic processing units (GPU) as accelerators when we consider a fast, robust and scalable

solver for a sparse linear system AX=B in many science and engineering applications. In this project, a new parallel

hybrid direct solver is designed and implemented on GPU for large sparse linear systems. In particular, we work on

GPU programming using directive based Open ACC in order to obtain a scalable and improved SuperLU on

CPU+GPU heterogeneous systems.

Section 2 describes how to implement SuperLU on CPU+GPU heterogeneous systems. Later, the scalability of

SuperLU_MT is discussed for randomly populated matrices in terms of speed up for a given matrix and dependency

on sparsity level. Section 3 concludes this work.

2. Methods and results

As a first step, we examine the effectiveness of the SuperLU_DIST 3.0 for distributed memory and

SuperLU_MT 2.0 for shared memory parallel machines among several sparse direct solvers (see [1, 2, 3, 4, 5, 6]) on

CPU and (see [7] for small matrices) on CPU-GPU. SuperLU_MT (see [8]) has three major steps including sparsity

ordering, factorization that arranges partial pivoting, symbolic factorization and numerical factorization steps to

perform in an alternating fashion, and triangular solution. While SuperLU_DIST uses BLAS 3 for factorization,

SuperLU_MT has only BLAS 2.5 with multiple matrix vector multiplication. SuperLU_DIST (see [10]) uses static

pivoting [11] instead of partial pivoting because the implementation of numerical pivoting is complicated on

distributed memory architecture. It is advantageous that symbolic and numerical factorization steps can be separated

* Corresponding author. E-mail address: aduran@itu.edu.tr.

M.S. Celebi, A. Duran, M. Tuncel, B. Akaydin: “ Scalable and Improved SuperLU on GPU for Heterogeneous Systems”

2

due to the static pivoting. Therefore, SuperLU_DIST outperforms SuperLU_MT (see [9] and [12]) for many sparse

matrices.

Second, SuperLU is a complex algorithm and it is important to choose the right combination for better intra-node

communications and inter-node communications within CPU+GPU heterogeneous systems, given current

technology limitations and developments. While SuperLU_MT is a good starting reference for intra-node

communications, SuperLU_DIST is more appealing for GPU clusters having inter-node communications using

infiniband (IB) network among its several advantages. In this project, we take advantage of SuperLU_DIST such as

the usage of the extract parallelism reducing communication by avoiding and defining dependencies of data in

addition to the usage of static pivoting and BLAS 3 for factorization. Moreover, we benefit from multicores

approach inside node analogous to SuperLU_MT. The first goal is to complete intra-node multi-GPU programming.

Next step would be inter-node multi-GPU programming.

Many multiscale modelling applications in science and engineering result in more general matrices in order to

capture more details in the system. Therefore we consider a portfolio of test matrices containing randomly populated

sparse matrices. We generate 30 different randomly populated matrices RAND_30K_3, ..., RAND_30K_30 for

each. Each experiment is done at least four times. We describe the matrices in Table 1.

2.1. Description of matrices

Table 1. Description of randomly populated matrices

Randomly populated

matrices

Name

Order

NNZ

NNZ/N

Condition number

Origin

RAND_30K_3 30000 90000 3 1.20 x 106 UHeM

RAND_30K_5 30000 150000 5 4.22 x 106 UHeM

RAND_30K_7 30000 210000 7 1.76 x 106 UHeM

RAND_30K_9 30000 270000 9 2.51 x 106 UHeM

RAND_30K_11 30000 330000 11 8.82 x 105 UHeM

RAND_30K_15 30000 450000 15 3.20 x 107 UHeM

RAND_30K_20 30000 600000 20 9.51 x 106 UHeM

RAND_30K_25 30000 750000 25 5.10 x 106 UHeM

RAND_30K_30 30000 900000 30 1.13 x 106 UHeM

RAND_40K_3 40000 120000 3 3.90 x 106 UHeM

2.2. Scalability of SuperLU_MT

The code of SuperLU_MT has been tested up to 64 threads for a list of patterned sparse matrices on HP Integrity

Superdome SD32B [see 13], a computing server with shared memory architecture at UHeM. A performance

scalability between 4 (for an unsymmetric matrix with low sparsity) and 32 (for a small almost symmetric matrix

with low sparsity) is achieved depending on the number of nonzeros per row, total number of nonzeros and

structural symmetry (see [12]). These results with different machine are in the line of Demmel et al. [8].

M.S. Celebi, A. Duran, M. Tuncel, B. Akaydin: “ Scalable and Improved SuperLU on GPU for Heterogeneous Systems”

3

Fig. 1. Speed up for matrix RAND_40K_3.

Fig. 2. Average wall clock time as a function of various sparsity levels for

randomly populated sparse matrices.

 Table 1. Wall clock time using SuperLU_MT for randomly populated sparse matrices as sparsity level decreases with 16 cores

NNZ per row 3 5 7 9 11 15 20 25 30

Wall clock time 124.46 750.10 1448.22 2003.09 2346.67 2759.27 2969.65 3054.11 3062.57

In this project, the code of SuperLU_MT has been tested up to 64 threads for randomly populated sparse matrices

on HP Integrity Superdome SD32B (see [13]) computing server. Almost linear speedup is achieved (see for example

Figure 1 for RAND_40K_3). Moreover, we tested the scalability of SuperLU_MT depending on the sparsity level in

terms of NNZ per row. Figure 2 and Table 1 show that average wall clock time increases slowly as sparsity levels

decreases and almost levels off after 15 number of nonzeros per row for randomly populated sparse matrices of

order 30000.

3. Conclusions

In sum, after obtaining a robust version of scalable SuperLU we design a new hybrid algorithm for CPU+GPU

heterogeneous systems by taking SuperLU_DIST as a starting reference in this project. We are implementing

directive based parallelization approach using OpenACC for CPU+GPU heterogeneous systems. Later, we will be

testing its performance on the heterogeneous systems for various large sparse matrices.

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework

Programme (FP7/2011-2013) under grant agreement no. 283493. Computing resources used in this work were

provided by the National Center for High Performance Computing of Turkey (UHeM)

(http://www.uybhm.itu.edu.tr/eng) under grant number 1001682012.

References

1. X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki, SuperLU Users' Guide, Tech. Report UCB, Computer Science

Division, University of California, Berkeley, CA, 1999, update: 2011.

M.S. Celebi, A. Duran, M. Tuncel, B. Akaydin: “ Scalable and Improved SuperLU on GPU for Heterogeneous Systems”

4

2. P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling,

SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15–41.

3. O. Schenk and K. Gartner, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Generation Computer Systems, 20

(2004), pp. 475-487.

4. O. Schenk and K. Gartner, On fast factorization pivoting methods for sparse symmetric indefinite systems, Electronic Transactions on

Numerical Analysis, 23 (2006), pp. 158 – 179.

5. A. Duran and B.D. Saunders, Gen_SuperLU package (version 1.0, August 2002), a part of LinBox package, containing a set of subroutines to

solve a sparse linear system A*X=B over any field.

6. A. Duran, B. D. Saunders and Z. Wan, Hybrid algorithms for rank of sparse matrices, Proceedings of the SIAM International Conference on

Applied Linear Algebra (SIAM-LA), Williamsburg, VA, July 15-19, 2003.

7. L. Li, L. Li and Y. Guangwen, A highly efficient GPU-CPU hybrid parallel implementation of sparse LU factorization, Chinese J. of

Electronics, 21:7-12, 2012.

8. J.W. Demmel, J.R. Gilbert, and X.S. Li. An asynchronous parallel supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix

Analysis and Applications, 20(4):915-952, 1999.

9. X.S. Li. Evaluation of sparse LU factorization and triangular solution on multicore platforms. VECPAR 2008, Springer.

10. X. S. Li and J. W. Demmel, Superlu-dist: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans.

Math. Softw., 29 (2003), pp. 110–140.

11. L. Grigori, J.W. Demmel, and X.S. Li. Parallel symbolic factorization for sparse LU with static pivoting. SIAM J. Scientific Computing,

29(3):1289-1314, 2007.

12. M.S. Celebi, A. Duran, M.Tuncel, B. Akaydin, Scalability of SuperLU solvers for large scale complex reservoir simulations, SPE and SIAM

Conference on Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs, Istanbul, Turkey, September 3-5,

2012.

13. nPartition Administrator's Guide, HP part number: 5991-1247B, 1st Edition, February 2007, Hewlett-Packard Development Company.

