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Abstract 

We consider a fast, robust and scalable solver using graphic processing units (GPU) as accelerators for a sparse linear system 

AX=B. In this project, a new parallel hybrid direct solver is designed and implemented on GPU for large sparse linear systems. In 

particular, we work on GPU programming using directive based Open ACC in order to obtain a scalable and improved SuperLU 

on CPU+GPU heterogeneous systems. 

Project ID: FP7-INFRASTRUCTURES-2011-2, PRACE-2IP —PRACE - Second Implementation Phase Project 

1. Introduction 

It is important to use graphic processing units (GPU) as accelerators when we consider a fast, robust and scalable 

solver for a sparse linear system AX=B in many science and engineering applications. In this project, a new parallel 

hybrid direct solver is designed and implemented on GPU for large sparse linear systems. In particular, we work on 

GPU programming using directive based Open ACC in order to obtain a scalable and improved SuperLU on 

CPU+GPU heterogeneous systems. 

Section 2 describes how to implement SuperLU on CPU+GPU heterogeneous systems. Later, the scalability of 

SuperLU_MT is discussed for randomly populated matrices in terms of speed up for a given matrix and dependency 

on sparsity level. Section 3 concludes this work. 

2. Methods and results 

As a first step, we examine the effectiveness of the SuperLU_DIST 3.0 for distributed memory and 

SuperLU_MT 2.0 for shared memory parallel machines among several sparse direct solvers (see [1, 2, 3, 4, 5, 6]) on 

CPU and (see [7] for small matrices) on CPU-GPU. SuperLU_MT (see [8]) has three major steps including sparsity 

ordering, factorization that arranges partial pivoting, symbolic factorization and numerical factorization steps to 

perform in an alternating fashion, and triangular solution. While SuperLU_DIST uses BLAS 3 for factorization, 

SuperLU_MT has only BLAS 2.5 with multiple matrix vector multiplication. SuperLU_DIST (see [10]) uses static 

pivoting [11] instead of partial pivoting because the implementation of numerical pivoting is complicated on 

distributed memory architecture. It is advantageous that symbolic and numerical factorization steps can be separated 
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due to the static pivoting. Therefore, SuperLU_DIST outperforms SuperLU_MT (see [9] and [12]) for many sparse 

matrices. 

Second, SuperLU is a complex algorithm and it is important to choose the right combination for better intra-node 

communications and inter-node communications within CPU+GPU heterogeneous systems, given current 

technology limitations and developments. While SuperLU_MT is a good starting reference for intra-node 

communications, SuperLU_DIST is more appealing for GPU clusters having inter-node communications using 

infiniband (IB) network among its several advantages. In this project, we take advantage of SuperLU_DIST such as 

the usage of the extract parallelism reducing communication by avoiding and defining dependencies of data in 

addition to the usage of static pivoting and BLAS 3 for factorization. Moreover, we benefit from multicores 

approach inside node analogous to SuperLU_MT. The first goal is to complete intra-node multi-GPU programming. 

Next step would be inter-node multi-GPU programming.  

Many multiscale modelling applications in science and engineering result in more general matrices in order to 

capture more details in the system. Therefore we consider a portfolio of test matrices containing randomly populated 

sparse matrices. We generate 30 different randomly populated matrices RAND_30K_3, ..., RAND_30K_30 for 

each. Each experiment is done at least four times. We describe the matrices in Table 1.   

2.1. Description of matrices 

Table 1. Description of randomly populated matrices 

Randomly populated 

matrices 

Name 

 

Order 

 

NNZ 

 

NNZ/N 

 

Condition number 

 

Origin 

RAND_30K_3 30000 90000 3 1.20 x 106 UHeM 

RAND_30K_5 30000 150000 5 4.22 x 106 UHeM 

RAND_30K_7 30000 210000 7 1.76 x 106 UHeM 

RAND_30K_9 30000 270000 9 2.51 x 106 UHeM 

RAND_30K_11 30000 330000 11 8.82 x 105 UHeM 

RAND_30K_15 30000 450000 15 3.20 x 107 UHeM 

RAND_30K_20 30000 600000 20 9.51 x 106 UHeM 

RAND_30K_25 30000 750000 25 5.10 x 106 UHeM 

RAND_30K_30 30000 900000 30 1.13 x 106 UHeM 

RAND_40K_3 40000 120000 3 3.90 x 106 UHeM 

 

2.2. Scalability of SuperLU_MT 

The code of SuperLU_MT has been tested up to 64 threads for a list of patterned sparse matrices on HP Integrity 

Superdome SD32B [see 13], a computing server with shared memory architecture at UHeM. A performance 

scalability between 4 (for an unsymmetric matrix with low sparsity) and 32 (for a small almost symmetric matrix 

with low sparsity) is achieved depending on the number of nonzeros per row, total number of nonzeros and 

structural symmetry (see [12]). These results with different machine are in the line of Demmel et al. [8]. 
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Fig. 1. Speed up for matrix RAND_40K_3. 

 
Fig. 2. Average wall clock time as a function of various sparsity levels for 

randomly populated sparse matrices. 

 

          Table 1. Wall clock time using SuperLU_MT for randomly populated sparse matrices as sparsity level decreases with 16 cores 

NNZ per row 3 5 7 9 11 15 20 25 30 

Wall clock time 124.46 750.10 1448.22 2003.09 2346.67 2759.27 2969.65 3054.11 3062.57 

 

In this project, the code of SuperLU_MT has been tested up to 64 threads for randomly populated sparse matrices 

on HP Integrity Superdome SD32B (see [13]) computing server. Almost linear speedup is achieved (see for example 

Figure 1 for RAND_40K_3). Moreover, we tested the scalability of SuperLU_MT depending on the sparsity level in 

terms of NNZ per row. Figure 2 and Table 1 show that average wall clock time increases slowly as sparsity levels 

decreases and almost levels off after 15 number of nonzeros per row for randomly populated sparse matrices of 

order 30000.   

3. Conclusions 

In sum, after obtaining a robust version of scalable SuperLU we design a new hybrid algorithm for CPU+GPU 

heterogeneous systems by taking SuperLU_DIST as a starting reference in this project. We are implementing 

directive based parallelization approach using OpenACC for CPU+GPU heterogeneous systems. Later, we will be 

testing its performance on the heterogeneous systems for various large sparse matrices. 
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