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Abstract 

It is significant to perform structural analysis of large sparse matrices in order to obtain scalable direct solvers. In 

this paper, we focus on spectral analysis of large sparse matrices. We believe that the approach for exception 

handling of challenging matrices via Gerschgorin circles and using tuned parameters is beneficial and practical to 

stabilize the performance of sparse direct solvers. Nearly defective matrices are among challenging matrices for the 

performance of solver. We observe that the usage of super-nodal storage parameters affects the number of fill-ins 

and memory usage accordingly. 
 

1. Introduction  

We design and implement a new hybrid algorithm and solver for large sparse linear systems. We consider 

scalable direct solvers because of their robustness and examine the SuperLU_DIST 3.3 for distributed memory 

parallel machines among several sparse direct solvers (see Li et al. [1], Li and Demmel [2], Amestoy et al. [3], 

Schenk and Gartner [4, 5], Duran and Saunders [6], Duran et al. [7] and references contained therein). Duran et al. 

[8] and Celebi et al. [9] discussed the advantages and limitations of the SuperLU solvers and tested the code of 

SuperLU_DIST 3.0 in order to measure the performance scalability for various patterned sparse matrices and 

randomly populated sparse  matrices (see [10] for the theoretical foundation regarding the distribution of 

eigenvalues for some sets of random matrices).  Although the existing versions of SuperLU work well for many 

matrices, they need to be improved for certain types of sparse matrices.  

It is important to estimate the elapsed time to solve large sparse linear systems for time-restricted real life 

decision making applications such as oil and gas reservoir simulators and financial applications (see [11]). 

Challenging matrices should be distinguished and handled separately because they may lead to performance 

bottleneck. Therefore, structural analysis of large sparse matrices for scalable direct solvers are needed. In this work, 

we focus on spectral analysis of large sparse matrices and check whether there is relationship between the 

eigenvalue distribution of matrix and the performance of the solver. We try to examine the eigenvalue distribution of 

various sparse matrices. We may find all eigenvalues in order to obtain the distribution graph of eigenvalues, if 

possible. However, it is very expensive to find all eigenvalues. Therefore, Gerschgorin's theorem may be used to 

bound the spectrum of square matrices. Several behaviors such as being disjoint, overlapped or clustered of 
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Gerschgorin circles may give clue regarding the distribution of the eigenvalues and the performance of the solver for 

that matrix.   

The presence of repeated eigenvalues can be one of the source of challenges. The repeated eigenvalue may have 

fewer eigenvectors than the multiplicity of eigenvalue. While such eigenvalue is called defective eigenvalue, the 

corresponding matrix is referred as a defective matrix (see [12]). If the matrix of eigenvectors is singular, then the 

matrix cannot be diagonalizable and the matrix is defective. We observe that it takes longer time to solve sparse 

linear system having defective or nearly defective matrix than regular matrix. Moreover, defective matrix may lead 

to memory restriction due to the appearance of more fill-ins than that of diagonalizable matrix.  

The existing versions of SuperLU are sensitive to challenging matrices and need exception handling. Apart from 

the solver, spectral analysis can be done and tuned parameters may be used accordingly. The exception handling is 

one of the new properties of SuperLU_MCDT (Multi Core Distributed) solver (see Duran et al. [8] and Celebi et al. 

[9]). 

The remainder of this work is organized as follows. In Section 2, the test matrices including randomly populated 

matrices and patterned matrices are described. Later, the computation for spectral properties is presented and several 

illustrative examples are given. Section 3 concludes this work.  

2. Methods and results 

We consider a portfolio of test matrices containing  randomly populated sparse matrices in addition to patterned 

matrices. We generate 30 different randomly populated matrices RAND_30K_3, ..., RAND_30K_100 for each. We 

describe the matrices in Table 1 and Table 2, respectively.  

2.1. Description of matrices 

Table 1. Description of patterned matrices 

Patterned matrices 

Name 

 

Order 

 

NNZ 

 

NNZ/N 

 

Nonzero 

pattern 

symmetry 

 

Numeric 

value 

symmetry 

 

Origin 

 

Kind of problem 

EMILIA_923 923136 40373538 43,74 100% 100% UFSMC Geomechanical 

structural 

HELM2D03LOWER_20K 392257 1939353 4,94 0% 0% UHeM  

M_UHEM3 1425825 17037638 11,94 77% 54% UHeM  

Table 2. Description of  randomly populated matrices 

Randomly populated 

matrices 

Name 

 

Order 

Number 

of 

nonzeros 

(NNZ) 

NNZ per 

row 

(NNZ/N) 

 

Condition 

number 

 

Origin 

RAND_30K_3 30000 90000 3 1,20E+006 UHeM 

RAND_30K_5 30000 150000 5 4,22E+006 UHeM 

RAND_30K_7 30000 210000 7 1,76E+006 UHeM 

RAND_30K_9 30000 270000 9 2,51E+006 UHeM 

RAND_30K_11 30000 330000 11 8,82E+005 UHeM 
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RAND_30K_30 30000 900000 30 1,13E+006 UHeM 

RAND_30K_50 30000 1500000 50 7,03E+005 UHeM 

RAND_30K_75 30000 2250000 75 1,16E+006 UHeM 

RAND_30K_100 30000 3000000 100 3,39E+006 UHeM 

RAND_10K_3 10000 30000 3 7,10E+005 UHeM 

RAND_20K_3 20000 60000 3 3,19E+005 UHeM 

RAND_30K_3 30000 90000 3 1,20E+006 UHeM 

RAND_40K_3 40000 120000 3 3,90E+006 UHeM 

RAND_50K_3 50000 150000 3 1,20E+006 UHeM 

RAND_60K_3 60000 180000 3 2,14E+006 UHeM 

 

2.2. Computation for spectral properties 

The selected eigenvalues of large matrices are computed using the Scalable Library for Eigenvalue Problem 

Computations (SLEPc) software (see [13]), which is developed based on the Portable, Extensible Toolkit for 

Scientific Computation (PETSc) (see [14]). The code has been tested up for all sparse matrices in the list on HP 

Integrity Superdome SD32B (see [15]), a computing server with shared memory architecture at UHeM. The 

software package includes implementations of a set of methods for the solution of large sparse eigenproblems on 

parallel computers. It is applicable to both symmetric and nonsymmetric matrices. In our computations, we used the 

Krylov-Schur method available in the package. The termination criterion is set as the norm of the residual be under a 

specified level, i.e. ||Av-λv||<ε, and ε is chosen as the smallest value that allows termination in a reasonable time. 

Gerschgorin's Theorem provides a range for each eigenvalue of a matrix. These ranges can be computed very 

easily. We observed that for some sparse matrices in our test the ranges suggested by the theorem provide 

meaningful information. The theorem can formally be stated as follows. Let A be an n x n matrix, and Λ be the set 

of the eigenvalues of A. Then,      
 
   where                       

 
        .  

 

 

Fig. 1. Matrix picture of HELM2D03LOWER_20K 
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The computation of all eigenvalues may not be feasible for large sparse matrices, mainly due to memory 

constraints. Therefore, we followed two strategies to get an idea about the eigenvalue distribution of the test 

matrices: 

1. For the large sparse matrices we compute the extreme eigenvalues. We try to see a rough picture of the 

distribution for the rest of the eigenvalues by using Gerschgorin's theorem. For example, we show the 

Gerschgorin's circles of matrix Emilia_923, matrix HELM2D03LOWER_20K, and the patched matrix 

M_UHEM3 (see Duran et al. [16]) in Figure 3, 2, and 4, respectively. 

2. We can compute all eigenvalues of the small randomly populated matrices and show the distribution of 

eigenvalues for RAND_30K_100 in Figure 5. We observe that nearly all eigenvalues can be found within 

the circle except for the largest eigenvalue that is indicated by cross in figure. 

Although the existing versions of SuperLU work well for many reasonable matrices, they need to be improved 

for certain types of sparse matrices. For example, we generated a new unsymmetric matrix 

HELM2D03LOWER_20K (see Duran et al. [8]), shown in Figure 1, which consists of the lower triangular part of a 

symmetric matrix HELM2D03 from the University of Florida sparse matrix collection [17] and an upper 

subdiagonal with 20000 distance from the main diagonal. We reported in our PRACE WP43 paper (see Duran et al. 

[8]) that SuperLU_DIST 3.0 failed for HELM2D03LOWER_20K due to symbolic factorization error, although it 

works well for the matrix HELM2D03 on the Linux Nehalem Cluster (see [18]) available at UHeM. Later, the bug 

in the factorization routine was fixed in April 2013. 

  

 

Fig. 2. Gerschgorin's circles of matrix HELM2D03LOWER_20K 

We used the SuperLU_DIST 3.3 with tunings of super-nodal storage parameters. However, it runs slowly for the 

matrix HELM2D03LOWER_20K compared to EMILIA_923 (see Table 3), because HELM2D03LOWER_20K is a 
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challenging matrix. It takes approximately 7,5 times longer than EMILIA_923, although 

HELM2D03LOWER_20K's order, total number of non-zeros and the number non-zeros per row are less than that of 

EMILIA_923. Table 3 shows the performance of the SuperLU_DIST 3.3 for  HELM2D03LOWER_20K and 

EMILIA_923 by using standard BLAS [19] and Intel's Math Kernel Library (MKL) [20] which is a kind of 

optimized BLAS on the Linux Nehalem Cluster with 64 (8x8 mesh) cores.  

The tunings of super-nodal storage parameters are important. For example, the usage of tuned parameters 

(relax:100 and maxsuper:110) outperforms at least 1.8 times faster than that of default parameters (relax:12 and 

maxsuper:60) for HELM2D03LOWER_20K using the SuperLU_DIST 3.3. Moreover, the usage of super-nodal 

storage parameters affects the number of fill-ins. For instance, there are 3 208 629 380 non-zeros in L+U with the 

default parameters compared to 3 477 287 771 non-zeros of L+U in presence of the tuned parameters. 

 

 

Fig. 3. Gerschgorin's circles of matrix Emilia_923 

Table 3. The performance of the SuperLU_DIST 3.3 for  HELM2D03LOWER_20K and EMILIA_923. 

Wall clock time (s) BLAS MKL 

Patterned matrices Default 

Parameters 

Tuned 

Parameters 

Default 

Parameters 

Tuned 

Parameters 

HELM2D03LOWER_20K   5594,72 3047,56 5310,04 2324,00 

EMILIA_923 743,29    
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When we examine the spectral properties of HELM2D03LOWER_20K in Figure 2, the real parts of the 

eigenvalues range between 2.294563 and 4.944602 with  many repeated eigenvalues. Those clustered eigenvalues 

can be observed via Gerschgorin circles as in Figure 2. Therefore, HELM2D03LOWER_20K is a nearly defective 

matrix. 

 

 

Fig. 4. Gerschgorin's circles of matrix M_UHEM3. 
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Fig. 5. Distribution of eigenvalues for matrix RAND_30K_100 

3. Conclusions 

We believe that the approach of exception handling of challenging matrices via Gerschgorin circles and using 

tuned parameters is beneficial and practical to stabilize the performance of sparse direct solvers. 

Nearly defective matrices are among challenging matrices. Such matrices should be handled separately in order 

to get rid of potential performance bottleneck. Clustered eigenvalues observed via Gerschgorin circles may be used 

to detect nearly defective matrix.   

We reported in our PRACE WP43 paper (see Duran et al. [8]) that SuperLU_DIST 3.0 failed for 

HELM2D03LOWER_20K due to symbolic factorization error. Later, the bug in the factorization routine was fixed 

in April 2013. We noticed that the SuperLU_DIST 3.3 with tunings of super-nodal storage parameters works for 

HELM2D03LOWER_20K but slowly. 

The tunings of super-nodal storage parameters are important. For example, the usage of tuned parameters 

outperforms at least 1.8 times faster than that of default parameters for HELM2D03LOWER_20K using the 

SuperLU_DIST 3.3. Moreover, we observe that the usage of super-nodal storage parameters affects the number of 

fill-ins and memory usage. 
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