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FOREWORD

Altering a dream to a real experience is defined by three main steps which are ask,
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whether having an online meeting or face-to-face meeting, revise my work step by step
and inspired me for whole time. I am deeply appreciate my dear supervisor Assoc.

Prof. Dr. Ugur ALGANCI for all of these inspirations and encouragements.

I would like to express my sincere thanks to Prof. Dr. Dursun Zafer SEKER. I cannot

explain in any word how much I am thankful for all of his favors to me as a professor
in the class and as the best mentor for accomplishing my goals. Prof. Dr. Dursun Zafer

SEKER provided me the ambition and the knowledge to keep goinng on my dreams.

Lastly, completing my thesis would not be possible without my friends’ helps and

encouragements.
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EVALUATING BFAST ALGOREFHM IN LANDSAT TIME SERIES

ANALYSIS OF MONITORING DEFORESTATION DYNAMICS IN

CONIFEROUS AND DECIDUOUS FORESTS: A CASE STUDY ON
MARMARA REGION, TURKEY

SUMMARY

Forest resources for ost of the individual countries have been known as significant
resources to provide food, water, wood products, minerals, medicines, etc., to support
not only the fundamental facilities for human survival but also economic survival.
More specifically, it is proved that in recent years the rate of forest loss due to human-
induced or natural disasters has been increased globally. In this regard, having a

practical and precise method to prohibit or control deforestation would be necessary.

Countries such as Turkey, hosts different type of forest ecologies, various kind of
animal and plant species due to their favorable climate conditions. Protection of forest
ecosystems in these countries should be considered as a priority. The most significant
reasons for deforestation in Turkey include urban expansion, human construction,
agriculture, and fire. In this regard, finding the efficient and accurate method or
algorithm for predicting the probable deforestation from the historical data and

producing the probable map to prevent future loss in forest resources is crucial.
44
Changes on the Earth’s surface are usually detected by assessing the satellite images

as time series, for the same place. There are several criteria to define the suitable
sensors for the investigation of differenwrget study areas and different problem
definitions. These criteria include spatial, temporal, and spectral resolution of satellite
and availability of data. Moreover, apart from satellites’ characteristics, phenological
characteristic of the land should be considered as it plays prominent role to provide an

accurate result of land surface change detection.

Time series analysis with combination of remote sensing provides the opportunity to

study abrupt changes, due to serious and strict disturbances, such as deforestation,
41

agriculture, fires, and constructions, as well as gradual changes such as climate

variability and forest degradation in the ecosystem. The precision of any change
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detection analysis is highly dependents upon the ability of separation among actual

changes and fluctuation in seasonal scale.
One of the efficient methods in this context is using the Breaks For Additive Seasonal

and Trend (BFAST) set of algorithms, which indicated promising results to detect
dcforcstationércas not only on large scale but on small scale. This method invented
according to the time series of Moderate Resolution Imaging Spectrometer (MODIS)
satell&data and in recent years indicated accurate results by using Landsat time-series
data. Landsat data with more than 40 years of archive data and 30 m spatial resolution
becomes an efficient image collection for resolving the entire range of forest
disturbances. Medium-to-high resolution Landsat satellite series, since 1972
consistently collecting data from the Earth’s surface, facilitated investigation natural
resources and the environment. Free availability of Landsat data at 8-16 day intervals
at 30m resolut'ﬁn and approximately high temporal resolution with aggregation of
comparatively high spatial resolution, proved the effectiveness of Landsat for mapping

forest cover and relevant changes.
BFAST iteratively decomposes time series into trend, seasonal, and noise or remainder

components. It can deal with missing data without any requirement of interpolation
techniques. Using BFAST with a variety of spectral vegetation indices can provide an
oppurtunity in detecting changes and deforestation monitoring over different vegetated

regions.

BFAST provides % major opportunity to investigate studies on patterns and key
changes related to land cover and land use over the duration of time. This method is
based on regression modeling of historic observations, fitted on preprocessed data and
predict according to the stable harmonic model of historical period in which the
remainder data would be compared with the harmonic model. Among different
approaches for time series analysis, using spectral indices is pervasive as a result, in
BFAST algorithm, geophysical variables are spectralﬁdices, which are dimension-
less and demonstrate changes on the land surface such as Normalize Difference

getation Index (NDVI), Normalized Difference Moisture Index (NDMI),
Normalized Burn Ratio (NBR), Soil-Adjusted Vegetation Index (SAVI), Moditied
Soil-Adjusted Vegetation Index (MSAVI), Enhanced Vegetation Index (EVI). With
respect to the statistical characteristics of each of these indices there is the possibility

to conduct time series analysis for a long period to evaluate changes in these indices.

XX




In the concept of time series analysis, having access to the time-series satellite image
in perfect atmospheric conditions is vitally important. Clouds and cloud shadows are
known as significant obstacle of BFAST method, because cloud masking lead to
elimination of several pixels in the images which has a direct impact on the accuracy
of the result. Another consern in this algorithm is the numbers of accessible images
during the period of study which are related to temporal resolution of selected satellite
images. Hence, it is one of the important factors to provide a smooth seasonality during
historical period and as a result achieve an accurate prediction during monitoring

period.
5
The general objective of this thesis was to evaluate the feasibility and efficiency of

automated time series analysis such as BFAST set of algorithms in R statistical
analysis programming language for detecting and monitoring deforestation using
Landsat time-series satellite data over deciduous and coniferous types of forest in

Marmara region of Turkey.

For this purpose, four different %gctation indices (NDVI, EVI, NDMI, and NBR)
were selected as inputs of BFAST set of algorithms. Using various available set of
tools of BFAST, time-series stack for each vegetation index was provided. In the next
step breakpoints and magnitudes of them calculated to indicate the detection of
deforested spots over each study area. The accuracy assessment of the results was
performed by collecting stratified random points over the brekpoints magnitude maps
of staudy areas. The evaluation of the ﬁuracy was achieved according to the well-
known accuracy assessment metrics such as overall accuracy, user’s accuracy,

producer’s accuracy, and bias.
The results demonstrated that BFAST time series analysis tools provided éromjsing

results in accurate determination of deforestation. According to results vegetation
indices that utilize shortwave infrared bands prove to be more sensitive to detect forest
disturbance than the other indices, using red and near-infrared ban(&lt has been found
that the vegetation indices related to water absorption portions of the electromagnetic
spectrum such as NDMI and NBR are more sensitive to the changes of forest canopy
compared to vegetation indices associated with the chlorophyll absorption, which are
calculated with the Red and NIR bands such as NDVI and EVL. In addition, oderate

to negative magnitude values proved to be determining the area of deforestation with

values, widely varied over different study areas.
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The method, discussed in this thesis can produce a map to acquire prohable
deforestation, correlated to the lowest amount of magnitude class to help better

understanding of land cover dynamics and protect forest resource and biodiversity

around the world.
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LANDSAT ZAMAN SERISi iLE iGNE VE GENIS YAPRAKLI
ORMANLARDA ORMANSIZLASMA DINAMIKLERININ iZLENMESINDE
BFAST ALGORITMASININ DEGERLENDIRILMESi:MARMARA
BOLGESI; TURKIYE ORNEGI

OZET

Cogu iilkelerde orman kaynaklari, yiyecek, su, odun tirtinleri, mineraller, ilaglar vb.
saglamak i¢in dnemli kaynaklar olarak bilinmektedir. Bu kaynaklar sadece canlilarin
yasamlarimi siirdiirmesi i¢in degil, ayn1 zamanda ekonomik anlamda da temel
olanaklari saglamaktadir. Son yillarda insan kaynakli veya dogal afetler nedeniyle
kaybedilen orman oranmin arttifi bilinmektedir. Bu kapsamda, ormansizlasmayi
kontrol etmek ve 6niline gegmek icin kullamsli ve tutarll bir yonteme sahip olmak
gerekli olacaktir.

Ayrica Tirkiye gibi farkh iklim kosullarina sahip olduklar igin farkli tipte orman
ekolojileri, ¢esitli hayvan ve bitki tiirleri barindiran {ilkeler oncelikli olarak ele
alinmahdir. Tiirkiye'de ormansizlasmanin en 6nemli nedenleri kentsel genisleme,
ingaat, tarim ve yangindir. Bu baglamda, etkili ve tutarli bir ydontem ve algoritmayi
bulmak, tarihsel verilerden olast ormansizlasmay: tahmin etmek ve orman
kaynaklarinin gelecekte kaybolmasini dnlemek i¢in ormanlarin durumunu mekansal
boyutta incelemek ve haritalandirmak &nem tasimaktadir. Bu kapsamda etkili
yontemlerden biri, BEAST (Breaks For Additive Seasonal and Trend) algoritma setini
kullanmaktir. Bu yontem yalnizca ormansizlasan alanlar sadece biiyiik 6lgekte degil
ayni zamanda kiigiik dlgekte tespit etmekte de umut verici sonuglar ortaya koymustur.

Diinya yiizeyindeki degisiklikler genellikle ayni cografi alami kapsayan uydu
goriintiilerinin zaman serileri olarak degerlendirilmesiyle tespit edilir. Farkli hedef
calisma alanlarmin ve farkli problem tanimlarinin incelenmesi icin uygun sensorleri
tanimlamakta kullanilan birkag kriter vardir. Bu kriterler, uydunun mekansal,
zamansal ve spektral ¢ozliniirliiglint ve verilerin kullamlabilirligini ifade etmektedir.
Uydularin ozelliklerinden bagimsiz olarak, arazi yiizeyinde meydana gelen
degisimlerin dogru bir sekilde belirlenmesinde dnemli bir rol oynadig: i¢in arazinin
zamansal degisim karakteristikleri de dikkate alinabilmektedir.

Zaman serisi analizinin uzaktan algilama ile birlikte kullanilmasi, ormansizlagma,
tarim, yangin, yapilasma ve ayrica ekosistemde dereceli olarak degisen iklim
degiskenligi gibi ciddi ve mutlak kansikliklarin calisilabilmesine olanak
saglamaktadir. Her degisim tespiti analizinin hassasiyeti ger¢ek degisimin mevsimsel
Olcekteki dalgalanmadan ayristirilabilmesine yiiksek derecede baglhidir.

BFAST yodntemi MODIS uydu verilerinin zaman serilerine gore gelistirilmis olup son
yillarda Landsat zaman serisi verileri lizerinde de kullanilarak tutarli sonuglar ortaya
koymustur. 40 yildan fazla arsiv verileri ve 30 m uzamsal ¢dziiniirliige sahip Landsat
verileri, ormanalara iliskin olgularin analizi icin verimli bir gériintii arsivi haline
gelmektedir. Orta-yiiksek c¢oziiniirliiklii Landsat uydu serisi, 1972'den beri stirekli
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olarak Diinya ylizeyinden wveri toplayarak, dogal kaynaklarin ve ¢evrenin
aragtirilmasini kolaylastirmistir. Landsat verilerinin 8-16 giinlik zamansal araliklarla
30m uzamsal ¢dziiniirliikle iicretsiz kullanilabilirligi ve nispeten yiiksek mekansal ve
yikksek zamansal c¢oziiniirligiiniin bir araya getirilmesiyle, Landsat''n orman
ortiisiiniin ve ilgili degisikliklerinin haritalanmas: i¢in potansiyelnin yiiksek oldugu
bir¢ok ¢alismada ortaya konmustur.

BFAST, arazi ortiisii ve arazi kullanimu ile ilgili temel degisiklikleri ve degisim
modellerini aragtirmak igin biiyiik bir imkan saglamaktadir. Aslinda, bu yontem zaman
serilerini yinelemeli olarak trend, mevsimsel ve giiriiltii veya kalan bilesenlerine ayirir.
BFAST, herhangi bir enterpolasyon teknigi gerekmeksizin eksik verilerle basa
¢ikabilir. BFAST'in gesitli spektral bitki ortiisii indeksleri ile kullanilmasi, farkl bitki
ortiilti bolgelerde degisikliklerin tespit edilmesi ve ormansizlagmanin izlenmesinde bir
firsat saglayabilir.

BFAST, tarihsel gozlemlerin regresyon modellemesine dayanarak, on islenmis
verilere uygulanarak ve kalan verilerin harmonik modeli ile karsilastirilacak sekilde
doénemin kararli harmonik modeline gére tahminler firetebilmektedir. Farkli zaman
serisi analizlerinde spektral indisleri kullanmak yaygm bir yoéntemdir. BFAST
algoritmasinda by je§ffiziksel degiskenler boyutsuz olan ve yer yiizeyindeki
degisiklikleri gosteren Normalized Difference Vegetation Index (NDVI), Normalized
Difference Moisture Index (BEJMI), Normalized Burn Ration (NBR), Soil Adjusted
Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index (MSAVI),
Enhanced Vegetation Index (EVI) gibi farkli bitki ortiisii indekslerinin zaman serileri
olabilmektedir. Her indisin istatiksel karakteristikleri kullanilarak, uzun periyotlu
zaman serisi analizi gergeklestirilmesi ve bu indisler ile degisikliklerin
degerlendirilmesi miimkiindiir.

Bu bakimdan, uygun atmosferik kosullarda zaman serisi uydu goriintiisiine
erisebilmek bu yéntemde énemli bir kosuldur. Bulutlar ve bulut golgeleri, BFAST
yonteminin onemli engeli olarak bilinir, ¢linkii bulut maskeleme, gériintiilerdeki belli
bir miktar pikselin ortadan kaldirilmasina yol acarak sonucun dogrulugunu dogrudan
etkilemektedir. Bu algoritmadaki diger bir husus, segilen uydu goriintiilerinin
zamansal ¢oziintirliigi ile analiz periyodu boyunca erisilebilen goriintiilerin sayisidir.
Dolayisiyla, tarihsel dénemde sorunsuz bir mevsimsellik saglamak ve sonug olarak
izleme doneminde dogru bir tahminde bulunmak énemli faktorlerden biridir.

Bu ¢alismanin amaci, Maramara bdlgesinde bulunan yaprak doken ve kozalakli
tiirlinde ormanlar iizerinde, Landsat zaman serisi uydu verilerini kullanarak
ormansizlagsmay: tespit etmek ve izlemek icin R istatistiksel analiz programlama
dilinde yazilmig BFAST algoritma seti ile otomatik zaman serisi analizinin
fizibilitesini ve verimliligini degerlendirmektir.

Bu amagla, BFAST algoritma setinin girdileri i¢in dort farkl bitki ortiisii indeksi
(NDVI, EVI, NDMI ve NBR) segilmistirr BFAST'in ¢esitli mevcut araglari
kullanilarak, her bitki ortiisii indeksi i¢in zaman serisi yigini saglanmistir. Bir sonraki
adimda, her ¢alisma alani {izerindeki orman niteligini kaybetmis konumlarin tespiti
icin belirli referans konumlarda kirilma noktalar1 ve biiyiklikleri hesaplanmistir.
Sonuglarin  dogruluk degerlendirmesi, c¢alisma alanlarinin  biiyiikliik haritalar
iizerinden tabakali rastgele noktalar toplanarak yapilmistir. Dogruluk degerlendirmesi,
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genel dogruluk, kullanicinin dogrulugu, treticinin dogrulugu ve BIAS gibi iyi bilinen
dogruluk degerlendirme olgiitlerine gore gergeklestirilmistir.

Sonuglara gore BFAST zaman serisi analiz araglarinin  ormansizlasmanin
belirlenmesinde umut verici ¢iktilar ortaya koydugu belirlenmistir. Kisa dalga
kizilotesi bantlari kullanan bitki ortiisti endeksleri, kirmizi ve yakin kizil6tesi bantlari
kullanan diger endekslere goére orman bozulmasim tespit etmekte daha hassas
olduklarmi kamitlamistir. Ozetlemek gerekirse, BFAST temelli ormansizlasma
analizinde, EVI ve NDVI’a kiyasla NBR ve NDMI daha tutarli sonuglar vermistir.
SWIR ve NIR bantlarindan faydalanan bitki indeksleri kanopi nemliligine ¢ok daha
fazla duyarlidir, dolayistyla, 6zellikle ormansizlagsma yamalarinda olmak tizere daha
tutarl1 bir ormansizlasma tespiti saglamaktadirlar. Diger yandan, kirmizi ve NIR
bantlarinin kullanmigmasi ile hesaplanan VI’lar NDMI ve NBR’ye kiyasla biraz daha
diisiik performans sergilemigtir. Ancak bu ¢ok biiyiik olmayan bir performans farkidir.
Sonuglar 15151da, NDMI ve NBR gibi elektromanyetik spektrumun su absorbe miktar:
ile iliskili olan bitki indislerinin klorofil absorbesi ile iliskili olan ve kirmiz1 ve NIR
bantlar1 kullanilarak hesaplanan NDVI ve EVI gibi indislere kiyasla orman kanopi
degisimine daha duyarli oldugu bulunmustur.

Buna ek olarak, orta ve negatif biiyiiklik degerlerinin ormansizlasma alanini
belirledigi ve farkli calisma alanlarina gore biiyiik olciide degisiklik gosterdigi
kanitlanmustir. Bu tezde benimsenen ydntem, olast ormansizlasmayi, en diisiik
biiytikliik sinifiyla iligskilendirilmis bir sekilde elde edilmis bir harita sunma yontemi
saglamistir ve bu teknik harita, arazi ortiisii dinamiklerinin daha iyi anlasilmasina ve
diinyadaki orman kaynaklarmin ve biyolojik ¢esitliliginin korunmasina yardimei
olabilecektir.
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1. INTRODUCTION

Global deforestation and loss in biodiversity, due to the significant development in
industry and economy turn to the major concern (McKinney & Lockwood, 1999;
Portillo-Quintero et al., 2015). Moreover, land cover changes induced by human
and/or natural disaters lead to major costs of extinction of species (Gillespie et al.,
2008). Earth’s surface change due to human activities is the major concern, led to
climate change and biodiversity loss (Klein Goldewijk et al., 2011). In this regard
conducting research to ascertain the spatial exten and the dynomics of land
transformation is essential to address such issues and expantion of human existance
on the Earth (Wulder and Franklin, 2012). Deforestation and forest degredation are
the dominant results of climate change due to human activities and urban expansion.
As forest biomass encompasses myriad amount of carbon, dcfoastation and forest
degredation contribute as a considerable human-induced carbon emissions (Alley et
al., 2007; van der Werf et al., 2009) into the atmosphere, which is the main reason of

climate change in this century.

mote sensing technique has been known as essential alternative to investigate
Earth’s surface changes due to the accessibility and accumulation of satellite images
especially in recent decades (Wu et al., 2020). Thed'litial common methods, to
spatiotemporal analysis of land cover changes are image differencing/ ratioing,
principal component analysis. tesseled a} transform, post classification comparison,
and change vector analysis (Bruzzone et al., 2004; J. Chen et al., 2011; D. Lu et al.,
2004). The main concept behind these methods is to define the differences between
two images during two time duration, however the limitation of that kind of change
detection methods are the requirements for acquisition images of the same sensors with
the same temporal, spatial, and spectral resolution. Apart from appropriate satellite
image data collections requirements, the precise setting of threshold value is the
second considerable challenging issue in change detection analysis with these early
common methods (D. Lu et al., 2004). The scarcity of such kind of surface

transformation analysis is that they do not have the capacity to define the magnitude




of change and the logical reason behind that change (Jan Verbesselt, Hyndman,

Newnham, et al., 2010; Wu et al., 2020).

It is proved that time series analysis in comparison with other initial methods
demonstrates considerable accuracy in abrupt changes SUCE‘; deforestation detection.
Some of the time series based upon change trajectories include: vegetation change
tracker, Landtrendr (Huang et al., 2010; Kenne%t al., 2010), using for detecting
&turbances and regrowth monitoring (Griffiths et al., 2012; Wang et al., 2021), and
continuous change detection and classification algorithm (CCDC) (Zhu & Woodcock,
2014). In fact tlﬁ CCDC uses all available Landsat images during the time analysis
and defines the land &)ver changes and land cover categories after change detection.
One of the current time series analysis method is known as Breaks for Additive
Seasonal and Trend (BFAST) with high frequency (e.g. monthly) data, which enables
demonstrating the changes with detection of the time of changes and more importantly
with the magnitude of them. These properties make BFAST an efficient method in
determining the abrupt characteristic of the changes such as deforestation and forest
degradation (Boriah, 2010). Among all of the time series based change detection
methods, the BFAST demonstrated promising results in detecting c%ges in different
type of land covers such as tropical dry forests (Loic Paul Dutrieux %., 2015; Smith
et al.,2019), wetland (L. Chen et al., 2014), wildlife naturﬁeserve (Platt et al., 2016),
city (Tsutsumida et al., 2013), vegetation (Loic Paul Dutrieux et al., 2015; Jan
Verbesselt et al., 2012a), agriculture (Saxena et al., 2018), savanas (Detsch et al.,
2016), vegetation fire detection (Hulley et al., 2014), and abandond energy (Waller et

al., 2018).
The main challenge through change detection with time series analysis is to detect land

cover change from other phenological vegetation changes. At this point, BFAST
decomposites changes through trend seasonal and remainder components iteratively

and try to separate phenological changes from land cover changes.

The main objective of this thesis is to evaluate th iciency and accuracy of BFAST
analysis in demonstrating the deforestation in two different types of forests (i.e. conifer
and deciduous forests) with use of four vegetation indices. The further aim is to
termine the magnitude of change and the type of land cover change after

deforestation during the period of seven years.




1.1 Deforestation and Forest Degradation

Two main crucial phenomena that threaten the forests are deforestation and forest
degradation. In general, forest degradation is known as the forerunner of deforegtation
(Asner et al., 2005). According to Food and Agricultural Organization (FAQO) forests
are defined as areas, covered with trees taller than 5 meters in height and with n'ﬂe
than 10% canopy cover. Moreover, for the precision of definition this organization has
classified forests into four major categories: natural forests (untouched), modified
natural forests (native species, some human traces), semi-natural forests (assisted

ral regeneration and plantation of indigenous species) and plantation forests
(Global Forest Resources Assessment 2015 Desk Reference, 2015). Both natural
forests and anthropogenic forest plantations are included in this classiffication of
forests (Lund, 2013; Matthews, 2014). Deforestation expresses as the cliranation of
forest cover to less than 10% compared to its original condition. While there is no

mon definition for forest degradation, generally it is described as a serious
reduction in both tree density and the fraction of forest cover, alternatively, it means
the transition from closed or dense forest to the open or dividcchjnc (DeFries et al.,
2007; Key et al ., 2004). Ecological repercussions associated with deforestation include
changes in soil composition, erosion, changes in microclimates and biodiversity loss.
In addition, the ecological balance of the ec&%ystcm is disappeared, and despite of the
use of artificial nutrients, eradication of energy stored in human and nutrients is

occurred (Elburz et al., 2018).

1.2 Deforestation and Biodiversity

Deforestation is one of the critical environmental issues around the globe, led to
extreme contribution in the loss of biodiversity and carbon sequestration (Portillo-

Quintero et al., 2015).

The significance of biodiversity is not encapsulated in aesthetics in nature and
accessibility of allure natural resources, but in the context of measuring productivity,
broadly, there is a positive correlation between productivity of a forest and species
richness (Vila et al., 2007). In this regard, the loss of biodiversity around the globe is
a-major concern in term of biological conservation. Taken together near-real-time
monitoring and restoring of residual forests in high biodiversity ecoregion are needed

to trigger efficient results to prohibit loss of biodiversity. A plethora of studies have




proved that several decades ago, the vast majority of land areas on the Earth were
dedicated to forests. Recently FAO announce that globally 129 million hectares of
forests were eradicated either because of human-induced or anthropogenic activities

between 1990 and 2015.

1.4 Forest Monitoring From Space

Remote sensing change detection is defined as the procedure of identifying differences
between images at different times (Singh, 1989). It plays a prominent role in
characterizing human and natural disturbances in forest areas to provide information
for managing forest areas. Given that, there ara;ome considerations apparent as major
noises, such as seasonal differences due to solar angle differences, and vegetation
phenological changes and need to be considered at the stage of opting satellite data.
Remote sensing instruments are categorized into two different types either active or
passive. In active remote sensing sensors (RADAR sensors) generates their own
electromagnetic radiation, measured when reflected back from the Earth’s surface

hile Passive sensors (Optical sensors) assess the solar energy reflected or emitted
from the Earth’s surface at the wavelengths in visible, near Infrared (NIR), Short-Wave
Infrared (SWIR), and Thermal Infrared (TIR) (Peng et al., 2016). Moreover, in active
sensors radiations can penetrate through clouds and provide information through areas
with high cloud cover. However, both of these sensors have advantages in the field of
forest and change detection analysis of land cover. In this thesis, optical sensors have

been used due to their wide accessibility to the data and associated methods.

1.5 Remote Sensing and GIS in Forest Monitoring

Remote sensing and Geographical Information System (GIS) plﬂﬁl prominent role in
the detection of deforestation from past patterns. Furthermore, satellite images have
been widely used for monitoring earth surface and change detection across the world.
Remote sensing means acquiring information about the physical characteristics of an
object at or near the surface of the Earth by measuring the reflected or emitted radiation
through the device typically satellites or spacecrafts that are not in contact with the
subject under investigation. In this context remote sensing is useful to provide
information that is problematic or infeasible to obtain (D. Lu et al., 2004; Purkis &

Klemas, 2013).




Satellite images have the abilitiy to provide large data repositories of vegetation cover
for a long period. Earth observation satellite images are widely used to monitoring and
facilitating area of deforestation (Coppin et al., 2004; Mas, 1999; Singh, 1989).

GIS has been defined as a system to collect, analyze and retrieve information. It has
wide range of application in environmental issues, in the context of deforestation
mostly used for the preparation of hot and cold spot analysis, effects of anthropogenic
and meteorological aspects and role of digital elevation model in deforested areas to
help forest managers and stockholders to make a decision and take steps in respect to

prohibit loss of forests (de By etal., 2001).

1.5.1 The efficiency aspects of satellite images in deforestation
During the 21st century Moderate Resolution Imaging S%trornctcr (MODIS) have

played a key role in change detection analysis, however, due to the relatively coarse
spatial resolution of this sate&e small and subtle changes have been excluded across
the Earth’s forest. Therefore Landsat data with more than 40 years of archive data and
30 m spatial resolution becomes an efficient image collection for resolving the entire
range of forest disturbances (Cohen et al., 2017). Medium-to-high resolution Landsat
satellite series, since 1972 consistently collecting data from the Earth’s surface,
facilitated investigation natural resources and the environment. Free availability of
Landsat data at 8-16 day intervals at 30m resolution and approximately high temporal
resolution with aggregation of comparatively high spatial resolution. The Multi-
spectral Scanner (MSS) sensors have spcctrawmgc from 0.5 to 1.1 pgm, indicated
visible and Near Infrared (NIR) wavelengths. Thematic Mapper (TM) and Enhanced
Thematic Mapper Plus (ETM+) sensors on board Landsat 4, Landsat 5, and Landsat 7
respectively have ﬂﬁ wider range of Electromagnetic Spectrum (ELS). It is worth
mentioning that the Scan Line Corrector (SLC) on board Landsat 7 failed in 2003 as a
result,, after this year all the scenes have lost approximately 22% of data (B DeVries,
2015; Maxwell et al., 2007).

In 2013, US Geological Survey (USGS) launched Landsat 8 with Operational land
imager (OLI) sensor, with an expanded spectrum of wavelengths and extra bands in
coarison with TM and ETM+ sensors. These features enhanced the ability of OLI
in atmospheric correction and cloud masking (Irons et al., 2012; Langner, 2009).
Recently Landsat 9 was introduced and would be launched in September 2021.

Landsat 9 will have the broadest spectrum coverage with collecting data in three




Shortwave Infrared (SWIR) bands and two Thermal Infrared (TIR) bands, in addition

to visible- Near Infrared (VNIR).

Landsat collections have progmoted land-monitoring algorithms whether in seasonal or
long-term trends (Brooks etal., 2014, Kennedy et al., 2010; Jan Verbesselt, Hyndman,
Newnham, et % 2010, Zhu & Woodcock, 2014). Moreover, alongside the increasing
proportion of Landsat time series (LTS) (Broich et al., 2011; Grecchi et al., 2017,
Huang et al., 2010; Kennedy et al., 2010; Zhu & Wooﬁoek, 2012), myriad numbers
of studies have proved the effectiveness of Landsat for mapping forest cover and
relevant changes (Hansen & Loveland, 2012; Loveland & Dwyer, 2012; Pflugmacher
etal., 201& Roy et al., 2014; Wulder etal., 2012).

Applying high-resolution satellite images, such as those derived from Sentinel-2, have
been demonstrated prominent result in change detection analysis. However, converse
to the Landsat satellites series Sentinel-2 does not cover images from vast range of
time duration as it has launched in 2015. Recently NASA hasprovided the continuous
surface reflectance products of Earth’s surface, Harmonized Landsat-8 and Sentinel-2
data (HLS), stemmed from images of Multispectral Instrument (MSI) and Operational
Land Observation (OLI) onboard sensors of Sentinel-2 and Landsat-8 satellites

respectively (Pastick et al., 2018).

Comparison of Landsat 7 and 8 bands with Sentinel-2
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Figure 1.1: Comparison between spectral bands among Landsat 8 OLI,
Landsat 7 ETM+, and Sentinel 2 (https://landsat.gsfc.nasa.gov/wp-
content/uploads/2015/06/Landsat.v.Sentinel-2.png).




1.6 Change Monitoring Algorithms
Changes on the Earth’s surface are usually detected by assessing the satellite images

as time series, for the same place. There are several criteria to define the suitable
sensors for the investigation of differenkﬁxrget study areas and different problem
definitions. These criteria include spatial, temporal, and spectral resolution of satellite
and availability of data. Moreover, apart from satellites’ characteristics, phenological
characteristic of the land should be considered as it plays prominent role to provide an

accurate result of land surface change detection.

3
This approach is implemented by supervised or unsupervised classification algorithms

&detect every changes pixel basis for the entire scene. The problem with such kind of
Land Use Land Cover (LULC) change detection is the misclassification error that
reduce the Euracy of algorithm (Mardian, 2020). As a matter of the fact, more direct

algorithms have been developed based on the radiometric characteristics of the images.

1.6.1 Threshold-based change detection

Image differencing is one of the ubiquitous change detection techniques due to its
simplicity. This method works only by calculating differences between two pixels.
There are some concerns related to this method that makes disability to demonstrate
all changes on the land surface, contribute to the issue of having not any control on
some prominent factors such as solar illumination, sensor calibration and atmospheric

conditions (Mardian, 2020).

Equivalently, image ratioing, instead of subtracting two images, aims to detect the
changes by using ratios of images. The prosperity of image differencing to image
ratioing is the ability to remove noise from the slope, aspect, sollar illumination, and
seasonal changes (Berberoglu et al., 2016; Mardian, 2020). It is important to mention
that the barrier of this method is that the source of change cannot be defined as only
the magnitude of change is obtained as a result. This method has been widely used for
variety of applications such as for grassland monitoring, as it is capable of identifying

both abrupt changes and gradual changes.

1.6.2 Harmonic model

The usage of the harmonic model is with cyclical data by breaking a time series, in

two or more waveform shape data use number of summation between sinusoidal series.




In terms of deforestation several algorithms can be applied, while ong_of the most
frequently used algorithms with Landsat data collections is the Landsat-based
detection of Trends in Disturbance and Recovery (Land Trendr) (Kennedy et al.,
10). This algorithm is used for detecting abrupt changes such as deforestation.
Normalized Burn Ratio (NBR) is the main change index in this method. Land Trendr
works based on the segmentation method, while a slope is fitted to each segmentj
respect to demonstrating gradual changes (Zhu, 2017). Another model named, the
Vegetation Change Tracker (VCT) (Huang et al., 2010), works based on the
thresholding method with a contribution of normalization of each images to
demonstrate abrupt changeésuch as deforestation. Earning this approach is upon of
converting each image to forest probability index, called integrated forest z-score.
(&er applications of VCT including detecting abrupt changes in crop and wet-land
(Huang et al., 2010; Sexton et al., 2013; Zhu, 2017). Both Land Trendr and&T are
offline and univariate change detection methgds and cannot use for real-time
monitoring of land surface (Zhu, 2017). The Continuous Change Detection and
Classification (Zhu & Woodcock, 2014) and The Breaks for Additive Season and
Trend (BFAST) algorithm (Jan Verbesselt, Hyndman, Newnham, et al., 2010) are near
real time algorithm to indicate abrupt changes. These algorithms are based on high
frequency type of satellite images (Zhu, 2017). BFAST is encompassed of at least three
main components, trend, season, and noise, which make the capability of BFAST to
detect both abrupt and gradual changes. Initially this algorithrbwas based upon
MODIS composite time series to demonstrate vegetation change in an offline mode
(Jan Verbegselt, Hyndman, Newnham, et al., 2010). After that BEFASTMonitor, was
dcvclopedg
(Jan Verbesselt et al., amb). Recently, BFAST showed the promising result in

detect drought in vegetation in real time by utilizing MODIS time series

contribution of Landsat time series data to detect forest changes such as deforestation
and fires (B DeVries, 2015; Loic P. Dutrieux et al., 2016; M. Lu et al., 2017). These
exclusive techniques in remote sensing context provide an explicit way to detect
changes in surface reflectance to assess trend as remarkgble changes in pixel values
among spate of satellite images, led to modification of changes in land cover or land

use.

Among these algorithms, the most pervasivane in the context of near real time (time

series analysis) change detection is the Breaks for Additive Season and Trend




(BFAST) algorithm. Briefly, BFAST can evaluate the number of abrupt changes
within time series and describes these changes according to their magnitude and
Eections. BFAST is an appropriate tool for analyzing different types of time series
such as Moderate Resolution Imaging Spectrometer (MODIS) and Landsat (Schultz et
al.,2013; Jan Verbesselt et al., 2012a; Jan Verbesselt, Hyndman, Zeileis, et al., 2010).

1.6.3 BFAST analysis

&c&:ntly BFAST has been widely used in biotic and abiotic environmental
disturbances such as droughts, ﬁrﬁand vegetation changes (Jan Verbesselt, Hyndman,
Newnham, et al., 2010; Watts & Laffan, 2014), in both agriculture (Atzberger, 2013)
and forested landscapes (Lambert et al., 2013, 2015; Schmidt et al., 2015), confirmed
as a reliable tool (Chandra, 2011). Considerably time series analysis with the
contribution of related statistical techniques such as BFAST_provides the major
opportunity to investigate studies on patterns and key changes related to land cover
and land use over the duration of time, although in most of the algorithms in change
detection analysis just a before and after scenario take into the consideration. Detailed

information about BFAST algorithm could be found in Chapter 3.
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2.LITERATURE REVIEW

Over the decades, remote sensing techniques have rapidly been advanced. In the field

of monitoring and mapping earth E’face, two sensors played a more prominent role
than others, Moderate to High resolution Imaging Spectroradiometer (MODIS),
aboard Terra and Aqua NASA satellites by monitoring the Earth since 2000 and
Landsat series of satellites, by collecting information since 1970s. Manual digitization
of forest cover by using aerial photography and satellite imagery to provide ground
truth information of forest cover is known as an initial stage of deforestation mapping.
Trejo & Dirzo (2000), demonstrated early potential vegetation maps to make a
comparison between plausible and existing vegetation. This concept needs an
enormous effort among both digitizers and analysts to investigate any change detection
merely in a few duration of time. However, since the 1970’s, this constraint has been
diminished due to technological improvements in automated mapping tools and
satellite imaging technologies. These developments allowed scientists to map forests
over any particular area of the world, assessing the temporal trends of deforestation

either annually or across decades.

Time series analysis aim to use an input as series of data, which can be both continuous
or discrete, and the values degonstrate observations that collected during the time-
sequential (Chatfield et al., n.ﬂ). The aim of time series is to define the variation in
the subject of interest within these time intcrvzﬁnd execute the effect such as trend,
correlation, cycle or changing behavior. With a the aspect of remote sensing of land
cover change, time series analysis defined as temporal analysis of land surface
dynamics through the continuous observations and assessment of the trajectory of
dependent variables such as geophysical indices or thematic variables (Collins et al.,

2018; Jamali et al., 2015; Wohlfart et al., 2016)

Time series analysis with combination of remote sensing provides the opportunity to
study abrupt changes, due to serious and strict disturbances, such as deforestation,

41
agriculture, fires, and constructions, as well as gradual changes such as climate
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variability and forest degradation in the ecosystem. The precision of any change
detection analysis is highly dependents upon the ability of separation among actual
changes and fluctuation in seasonal scale (Jan Verbesselt, Hyndmané\lewnham, etal.,
2010). Among different approaches for time series analyﬁ, using spectral indices is
pervasive (Hislop et al., 2018). Spectral indices, such as Normalize Vegetation Index
(NDVI), Leaf Area Index (LAI), Normalize Burn Ratio (NBR), are dimensionless
geophysical variables that demonstrate changes on the land surface. With respect to
the statistical characteristics of each of these indices there is the possibility to conduct
time series analysis for a long period to evaluate changes in these indices. Thematic
variables can be derived from some approaches such as classification and regression
analysis of original valuwtack them to gather and interpret the changes during the

sequential of time (Tran et al., 2018).

Verbesselt et al. (2010) developed BFAST as the statistical package in R programmin&

language, which stands for Breaks for Additive Seasonal TreHs. It is based on a
harmonic analysis model for &tection changes in time series, for each pixel in the
Landsat scene, it fits the best seasonal regression model with a trend component. At
the initial stage BFAST was used to demonstrate forest change in southern Australia
with respect to Normalized Difference Vegetation Index (NDVI) stem from MQDIS,
the most frequent type of data for other studies in the field of BFAST (Bullock et al.,
2020). The main objective of BFAST is to determine the moment @d location of
changes during the time series. In this regard, BFAST decomposes time series into
three main components, harmgupic, trend, and remainder or error term. The aggregation
of BFAST and MODIS 250m in various dry tropical forest types using the Normalized

Difference Moisture Index (NDMI) (Grogan et al.,2016).
NDVI has been used in several investigations in the context of forest change detection,

such as deforestation detection in the boreal forest (Hiittich et al., 2014), clear cut
mapping in a temperate forest (Lambert et al., 2015), mixed forest change detection in
Australia on hyper-temporal data (Schmidt et al., 2015) and deforestation detection.
M. Lu etdﬁl. (2016) disclosed BFAST as robust change detection algorithm, in
confining changes from temporally and spatially autocorrelated Enhanced Vegetation
Index 2 (EVI12) time series across the moist tropical forest. Apart from the application

of BFAST in forest change detection, Cai et al. (2016) indicated the capability of
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BFAST to measure the flooding of e Yangtze river, additionally Che et al. (2017)

assessed the fluctuation of lake size in Tibet.

Verbesselt et al. (2012b) revealed the new domain of BFAST, BFASTMonitor. The
novel method was more flexible and robust especially when data are irregular and
scares (Reiche et al., 2015). BEFASTMonitor performs based on the historical data
observations in which it defines their model and make prediction into a monitoring
period and observation would be compared to this model. Change magnitude values
defined when there is an extreme deviation between observed and modeled value
during the monitoring period. Moreover, if this deviation is significant at a specific
moment in time, this timing is implemented. Verbesselt et al. (2012b) demonstrated
that BFAST indicates accurate results in significant changes whether in gradual or
abrupt changes over long time period, and has the capability of eradicating noise or
false positive breaks. Although in 2016, Schultz et al. indicated the enormous number
of errors related to BFAST algorithm, such as topography, atmosphere, edge effects
and data availability and variance. These factors would affect commission errors;
however, the availability of data during monitoring time is significant because the
number of observations has a prowent effect on accuracy and omission errors.
Enormously BFAST Monitor was utilized in the field of deforestation and forest
degradation, but there are several investiga&ﬁns, applied this method in other
applications such as detection of burned area in a savannah landscape Liu et al. (2018),
estimation of forest canopy change (Romero-Sanchez & Ponce-Hernandez, 2017).
Potter (2019) used MODIS 250 m NDVI time series as an input for BEAST method to
evaluate vegetation changes more specifically due to wildfires over Yellowstone
National Park (USA). This study concluded that BFAST can indicate burned spots as
well as representing regrowing domains over the study area (Potter, 2019). Recently
Wu et al. (2020) implemented BFASTémd Landsat NDVI time series in the West
Dongting Lake region to investigate conversion from forest to other land cover
category, from other land cover category to the forest and from forest &J forest due to
flooding or reforestation. They demonstrated that BFAST is capable to detect multi-
type forest changes with low data availability (Wu et al., 2020). Bueno et al. (2020),
used BFAST Monitor in seven different vegetation indices (NDVI, EVI, SAVI,
MSAVI, NBR, NBR2, and NDMI) and three distinct domains (Atlantic forest,

savanna, and semi-arid woodland) in Brazil to compare provided disturbance maps
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and analyze if there is any correlatan among them. They concluded that variation in
input data leads to producing non-spatially correlated disturbance maps and
representing site-specific sensitivity. The aggregation of BFASTMonitor and Google
Earth Engine was investigated by (Hamunyela et al., 2020). They used time-series
Landsat for NDMI to evaluate theiré}ElE BFAST Monitor implementation to detect
forest disturbances in three distinct forest areas, including humid tropical forest, dry
tropical forest, and miombo woodland and compare the result with the original
BFASTMonitor with R programming language. They ascertained the high amants of
spatial and temporal agreements between the results stemmed from both the original
BFASTMonitor and their GEE BFASTMonitor implementations for forest

disturbance.
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3.BFAST THEORY IN DETAIL

Generally, BFAST iteratively decomposes time series into trend, seasonal. and noise

or remainder components. It c%d be whether utilized for variety of satellite image
time series or other subjects such as hydrology, climatology, and econometrics.
Algorithm can be applied on seasonal or non-seasonal time series. Moreover, BFAST
can deal with missing data without any requirement of interpolation techniques (Jan

Verbesselt et al., 2015).

Recently, there are several studies indicated the capability of BFAST algorithm and
Landsat time series using a variety of spectral vegetation indices in change detection
and deforestation monitoring over different vegetated regions. Among all of them, the
most pervasive one is the Landsat time series and NDVI to demonstrate the ability of

this spectral index in land degradation and deforestation areas (Bueno et al., 2020b).

Apart from NDVI, other vegetation indices such as EVI, NBR, ba)Ml, NDFI,
indicated their suitability in the application of BFAST. In the context of near real-time
monitoring of disturbances such as degradation and deforestation by the utility of
BFAST, one of the subdivided of this algorithmﬂas opened up and it is called
BFASTMonitor, provided the ability to monitoring changes in near-real-time approch

(Verbesselt et al., 2012b; Schultz, 2018).

This method is based on regression modeling of historic observations, fitted on
preprocessed data and perform prediction according to the stable harmonic model of
historical period, in which the remainder data would be compared with the harmonic
model. BFAST Monitor approximately indicated reasonable result, implementing on
Landsat or similar data, characterized by 30 m resolution and irregular observation
cycle (Reiche et al., 2015). To detect forest disturbances, we applied a pixel-wise time
series method based on the BFAST monitoring approach described in (Jan Verbesselt
et al., 2012a). Ip this thesis, three main approaches would be considered to detect
changes for the pixels included in the benchmark forest mask: (1) For the first step a
harmonic model according to the observations in the historic period is dealed. (2)

Testing approach would be performed according to the break from fitting harmonic
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model; and (3) Calculating the median of the residuals for all estimated and real
observations within the monitoring period. These steps are described in more detail

below.

1) Fitting a harmonic model: this model assumes each new pixel in a time series as a
historical period and a monitoring period which is defined by ti € [t éw]; The
monitoring period start time at ta the history period would be defined as t1 <ti< ta and
monitoring period as the remainder of the time which is ta < ti < tv (Figure 3.1 by

DeVries (2015) shows the demonstration of these variables).
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Figure 3.1 : First ordered harmonic model fitted to the Landsat pixels
observations by DeVries (2015), indicating seasonal monitoring approach for

detecting break (Red line).

It is persumed that the stable forested pixels refer to the begining of the monitoring
period (ta). So according to the Verbesseltet al. (2012b) the first order harmonic model

defied, fitting to all observations during history period showed in equation 3.1.
. [2mt
y£=a+ysm(T+6) + & (3.1)

Where:

y, is dependent variable
tis independent variable
f is temporal frequency

o is intercept

Y and 8 are amplitude and phase of the components respectively
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g, is the noise components (residual).

2) Detecting change (break points): For detecting significant deviation among pixels
during monitoring period from the historical period we used Ordinary Least Square
(OLS) moving sum of residuals (MOSUM) using fraction of observation, defined by

lag value (h) during historical period.

t
1
MO, = axjﬁ Z (ys _ys) (32)
s=t—h+1
(=]
g - —
g o ivt |
- ! : It"ﬁ| I 'o 'y
o | I : i\ 1|
S : 5 it Nt
j=] 4
" D T
— 1Al |
k| | i\
a o= | f
8 i l a (g t ‘ \
o [ | e !
I 1 galal| | . th
‘ bid histPry | A
- fif based ¢ ns ble |st0ry ' |
g --* Sfartof the Mo |mr1ng period : |
s Time of detected break : !

T T T T
2000 2005 2010 2015

Index
Figure 3.2 : Example of a break point on a single-pixel by BEAST (Break

detected at 2014 (149th pixel) (B DeVries, 2015).

Where respectively y and ¥ are real and estimated observations, n is the number of
sample observations, h is the fraction of number of observation known as the
Hﬁmdwidth of MOSUM during history period (n) Verbesselt et al. (2012b), & is the
estimator of the variance (B DeVries, 2015; Zeileis et al., 2005). The signal of break
point would be defined when deviates from zero to beyond 95% significance

boundary (Leische et al., 2000). (Figure 3.2)

3) Computing change magnitude: BFAST also provides this opportunity to earn the
magnitude of change M during monitoring period t» < ti < tn by calculating the

median of residuals Equation 3.3:

M={y, -y} (3.3)

where ¥, and ¥, are real and estimated observations, respectively (B DeVries, 2015).
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The vitally important parameters that can be modified by BFAST are listed below.

Although; there are other parameters, these are the most significant ones:

s formula — regression model formula (harmonic and/or trend component)
e order — order of the harmonic term
e start — starting date of the monitoring period

e history — specification of the stable history period
e h - Bandwidth relative to the sample size in the MOSUM monitoring process,

the numeric between 0-1.

3.1 BFASTMonitor and BFASTspatial

In the context of near real-time monitoring of disturbances such as degradation and
deforestation by the utility of BFAST, one of the subdivision of this algorithm, BFAST
Monitor has opened up. However, it should be noted that, since BEASTMonitor time-
series input is univariate, it cannot be used with raster data input. In this regard, the
optimized version “bfmspatial” can accept a raster brick as an input and run
“bfastmonitor” for each pixel of an image. Raster brick is an object class in R,
encompassed multiple layers, in this case, satellite image layers. The output of
“bfmspatial” is a raster brick with layers of break point, magnitude, and error, also
there would be supplementary layers such as r.squared, adj.r.squared, and coefficients,
but there are not in the scope of this research (Schultz, Verbesselt, et al., 2016; Jan

Verbesselt et al., 2012b).

Some studies shown promising results by utilizing the BFAST far% algorithm to
detect abrupt and gradual phenological changes (Schultz, Clevers, et al., 2016; Jan
Verbesselt, Hyndman, Newnham,etal., 2010). In their research conduct, several errors
related to BEAST such as topography, atmosphere, edge effects, data availability, and
variance were not discussed. In the context of data availability, the density of the data
plays an important role on deriving the more accurate result from time series. Recently,
due to the wide range of temporal resolution of satelite images and specially the
existance of optical satellite missions such as Sentinel-2A & 2B it is feasible to fill
the gap during monitoring period of the time series investigations (Schultz, Verbesselt,

et al., 2016).
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4. MATERIALS AND METHODOLOGY

4.1 Study Area and Project Context

Turkey hosts a significant variety of forest types in its different regions. In this thesis,
two different regions of Turkey with different forest types were selected as study
regions to evaluate the accuracy of BFASTspatial in detecting deforestation. The

detailed information about dominant forest types in these regions are as follow:

4.1.1 Euxine—Colchic deciduous forests

These forests are categoriz& as temperate broadleaf and mixed forests ecoregion
(Figure 4.1). Vegetation ranges from temperate rainforest to coastal bottomland
forests, peatlands and coastal sand dunes. This ecoregion is located in southern of
Black Sea, extended from the short region in the southeastern of Bulgaria to the
northern parts of Turkey to the eﬁ of Georgia. The Colchian forests have various kind
of tree species, which include, deciduous black alder (Alnus glutinosa), hornbeam
(Carpinus betulus and C. orientalis), Oriental beech (Fagus orientalis), and sweet
chestnut (Castanea sativa), with combination of evergreen Nordmann fir (Abies
nordmanniana, the tallest tree in Europe at 78m), Caucasian spruce (Picea orientalis)

and Scots pine (Pinus sylvestris) (Colak et al., 2011).
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Figure 4.1 : Euxine—Colchic deciduous forests (Istanbul natural park).

0]
4.1.2 Anatolian conifer and deciduous forests

These forests are located in the southern part of Marmara Seaﬁgion and the western
parts of Turkey. The main plant communities of this realmae pure pine forests, mixed
pine, oak woodlands, and shrublands. This type includes the oaks Quercus cerris, Q.
ithaburensis ssp. macrolepis, and Q. Cocifera (Colak et al., 2011).
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Figure 4.2 : Anatolian conifer and deciduous forests (View of Uludag from Sarialan).

Below the location of these two forest areas is demonstrated over the Marmara region
of Turkey. The first one is in the northern part of Marmara, indicated Istanbul forest

areas and second the western part of Marmara, Canakkale province Figure 4.3.

For the sake of interpreting deforestation two sub-division of these areas were selected
to be investigated through BFAST analysis, with more amount of forest land cover
changes during the period of study, 2013-2020. In Istanbul the main reason
fordeforestation was construction of a new airport (Alganci, 2019), while in Canakkale

deforestation was due to the mining activities (Colak et al., 2011).
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Study area A : This site is located in the northern part of Istanbul city in the following
coordinate, UTM 35 N WGS84, and extent of 4577505 m north and 678195 m east in
Turkey. Istanbul with an approximately 5400 km? area is the largest city of Turkey
with about 15,462,452 people. This city is known as not only a cultural and historical
center but also known as an economical center of Turkey (Alganci, 2019). Istanbul
located between the Black Sea and Marmara regions and takes advantages of different
climatic conditions. This metropolitan city has warm and hot weather during the
summer while winter is rainy and mild (Unal et al.,2011). It is indicated that the annual
precipitation of Istanbul in the year 2020 was 820 mm and an average temperature of
14.95 °C. This study site has been selected due to the acceleration, in urban expansion,

which led to deforestation and forest disturbances.

Study area B : The second study area is located in Canakkale province, in northwestern
Turkey with the coordinates of UTM 35N WGS84, 4443705 m north and 480555 m
east. Canakkale such as Istanbul has European and Asian parts with 541,548 pgople.
Itis located among the Aegean Sea, Canakkale Strait, and the Marmara Sea. Its climate

is characterized by hot and dry summer and cold, windy, and rainy winter (Kale, 2017).

The reason for selecting thiese two sites was the massive deforestation in Istanbul due
to airport construction and the second one is deforestation in Canakkale province
because of mining activities. This study used BFASTspatial analysis to evaluate the
accuracy of this method to detect the deforestation different from the other studies

which used this algorithm to detect deforestation induced by fire (Hulley et al., 2014).

4.2 Data Acquisition and Preprocessing

From historical investigations, it is proved that the truthfulness of conducting time
series analysis of satellite imagery highly depend upon the accuracy of image
preprocessing and homogeneity of satellite images. These are divided to numerous

steps, defined in the literature in the next steps.
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4.2.1 Satellite data
In this study, Landsat 8 OLI, Collection 1 Level 2 satellite image products were used

as the inputs. Level 2 processed Landsat 8 OLI image contains surface reflectance
products that are %ometrically and radiometrically corrected and quantized by 10000
scale factor. The Landsat saﬁlite images have a 30-meter spatial resolution with 16-
day temporal resolution. In Landsat 8 the sensor was updated to Operational Land
Imager (OLI) and Thermal Infrared Sensor (TIRS), which together are contained
eleven spectral bands and improved radiometric precision (USGS, 2019). Landsat
Collection 1 Level 2 surface reflectance products are provided on-demand and in this
respect, all of the images should be ordered from the personal account in Earth
Explorer. The informa about bands and wavelength is demonstrated in Table 4.1.
Within the context of this study, all available Landsat 8 (OLI) data from two study
areas (Path/Row, 180/031 and 181/032), that has cloud cover less than 10%, between
the period of February 2013- December 2020 were ordered and downloaded. Overally

70 images that meet the criteria were used for this study.

61
Table 4.1 : Bands information of Landsat 8 OLI.

Bands W.avelength Resolution
7 (micrometer) (meter)
Band 1 - Coastal aerosol 0.43-0.45 30
Band 2 - Blue 0.45-0.51 30
Band 3 - Green 0.53-0.59 30
d4 - Red 0.64-0.67 30
Band 5 - Near Infrared
0.85-0.88 30
(NIR)
Band 6 - SWIR 1 1.57-1.65 30
Band 7 - SWIR 2 2.11-2.29 30
Band 8 - Panchromatic 0.50-0.68 15
nd 9 - Cirrus 1.36-1.38 30
Band 10 - Thermal
Infrared (TIRS) 1 106-11.19 100
Band 11 - Thermal
Infrared (TIRS) 2 11.50-12.51 100
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4.2.2 Image preprocessing

As it is mentioned in above sections, the accuracy of time series analysis is highly
related to the preprocessing steps. Fortunately, the Landsat 8 Collection 1 Level 2
surface reflectances product has already been geometrically and radiometrically
corrected. The only remaining steps are cloud and cloud shadow masking and
optionally using scale factor to put all bands in the range between 0-1, the scale factor
for collection 1 datais 0.0001. Pixel QA is used to mask cloud and cloud shadow in R
with the processLandsatBatch function. For the sake of purpose of this thesi
investigating deforestation, the forest mask of two study regions were performed to
ensure only forested areas were observed and monitored for detecting changes
according to follow:

The initial step, inspiring from the works of Schultz et al., (2013) and Sextop et al.,
(2013) was to create a forest mask over each of study area, with respect to the Landsat
satellite image from the first year of this study which is the year 2013, without
inclusion of any clouds and/or cloud shadows .

Landsat Vegetation Continuous Field (VCF) (Sexton et a§2013) product, with criteria
of canopy cover more than 30% and forest area at least 0.5 ha was selected as a base
map for the Areas of Interest (AQOI) in this thesis. As Landsat VCF was prepared with
5 years interval (e.g. 2005, 2010, 2015) the map for 2010 was selected to be updated
for the year 2013. As Landsat images are including cloud and cloud shadows, in order
to achieve full data coverage of forest areas, all images from the begnning of this study
were used to update VCF map to achieve full data coverage of foreast areas. Initially,
with respect to VCF map of 2010, the surface reflectance images from the beginning
of study, 2013, were classified to the first canopy cover greater than 30% and then
non-forest areas by using the supervised Random Forest classifier. To meet the second

criteria, forest classes with an area less than 0.5 ha was considered as no class.

4.3 Vegetation indices

Generally, due to the complexities defining the proportion and magnitude of the single
object change in a remotely sensed image and decompose it to rccﬁnizablc
parameters, index based approaches were determined and characterized (Bannari et
al., 1995). In the context of remote sensing the irradiance and reflectance characteristic

of the surface determine the amount and proportion of light that reflect from the
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surface (Huete, 2014).Vegetation indices (VI), known as dimensionless quantitative
radiometric measurements (Asrar et al., 1984) for characterizing the physical
properties of vegetation. It should be considered that there is not a single standard
value for vegetation indices and their value can be changed according to different
research (Bannari et al., 1995). With the developments of these indices, scientists
gained the chance to more effectively interpret satellite images, in comparison with

just using individual spectral bands.

The main reason for developing plethora numbers of VlIs is the fact that there are
several numbers of variables that can affect the satellite based assessment of the light,
reflected from the ground. Especially, in respect to vegetation measurements these
factors can be listed such as, atmospheric conditions, geometric conditions, solar
radiations, soil moisture, leaf geometry, chemistry, and morphology, vegetation type,
and behavior, the density of canopy and vegetation land cover (Bannari et al., 1995;
Hewison & Kuras, 2005). Reducing the effect of such factors myriad numbers of
vegetation indices were developed to find the more robust one. These variety of Vls

depend upon the availability of spectral bands in the satellite images (Huete, 2014).

VIs utilize different range of bands (usually two or more) in Electromagnetic
Spectrum (EMS) to demonstrate different aspects of vegetation. VIs provide the
opportunity to make a comparison between different vegetation types and
simultaneously recoﬁ'ze any changes in vegetated areas. In general, healthy
vegetation indicates high reflectance in Near Infrared (NIR) and absorption in the

visible range of EMS.
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‘The Vegetation Spectrum in Detail
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Figure 4.4 : Example of EM spectral signiture of healthy vegetation with absorption
and reflectance.

There are several methods for characterizing forest dynamics with respect of time
series analysis but it is proved that us'ag spectral indices are pervaisive and indicates
effective result (Hislop et al., 2018; Roy et al., 2014), due to sensitivity of spectral
band to the forest land cover change (B DeVries, 2015). Spectral indices provide the
ability to interpret the trajectory of every single pixels through the time ﬁries by
converting the multi-spectral satellite image into a single component (Ben DeVries,
Verbesselt, et al., 2015; Schultz, Clevers, et al., 2016). Furthermore, VIs by providing
the combination of spectral bands enhances the spectral influence of green vegetation
and canopy greenness to contribute volume and heath in different vegetation types
(Hislop et al., 2018). The thematic characteristic of individual pixels of vegetation
indices with different amounts of absorption and reflectance of solar radiation in
disparate profiles with variation in canopy cover conditions has been shown in Figure

4.5.
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Profile view
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Figure 4.5 : Indication of forest canopy reflectance received by passive optical
sensors. (A) complete forest, (B)degraded forest with canopy gap, (C)
cleared forest, (D) regrowing forest. The bottom thematic of pixels
illustrates the impact of different land surface and profile reflectance on a
hypothetical vegetation index over 30-meter Landsat data pixels (B
DeVries, 2015).

In this thesis, to evaluate performance of them through BFAST analysis in detecting
deforestation a set of four vegetation indices have been selected. The detailed
explanation of priorities and features related to these VIs is provided in the forward
sections. According to the previous research in the context of using vegetation indices
in time series analysis of deforestation it is proved that combination of SWIR and NIR
in a spectral index lead to producing accurate results from BFAST analysis (Bueno et
al., 2020a; Ben Dchiesﬁerbesselt, etal., 2015; Muiioz et al., 2020; Quevedo & Gao,
2017; Schultz, Clevers, et al., 2016; Smith et al., 2019; Jan Verbesselt et al., 2012a).
In this regard, to make an accurate comparison the different VIs with different range

of wavelengths in electromagnetic spectrum were selected.

(4]
4.3.1 Normalized Difference Vegetation Index (NDVI)

One of the most usﬁc vegetation indices particularly to detect deforestation and forest
degradation is the Normalized Difference Vegetation Index (NDVI). The chlorophyll
in green vegetation and plants absorbs red lights during photosynthesis and scatter
near-infrared wavelengths, because of the special structure inside the leaves.
Therefore, high NDVI values indicate high-vegetated areas such as canopy closure,

leaf biomass, and leaf area. The applicability of calculating NDVI from different
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satellites, its advanced ability to monitoring vegetation, not only lead to considerable

attention to this VI, but make it convenient for interpreting vegetation.

NDVI = PNIR — PRed

4.1
Pnir t Prea @D

The index values range between -1 to +1. The higher NDVI values are associated with

healthy vegetation; inversely the lower NDVI values indicate either low vegetation or

non-vegetation land surface.

4.32 Enhanced vegetation Index (EVI)

There are several number of studies; which proved that Enhanced Vegetation Index
(EVI) is highly correlated with photosynthesis and plant transpiration. This VI not only
has been markedly demonstrated sensitivity to red band but also variation in the blue
band reflectance. While NDVI mostly responds for variation in the red band, EVI is
responsive to NIR. Moreover, NDVI in the region with dense canopy cover or a high
amount of Leaf Area Index (LAI) shows the saturation issue which is the other reason

tfor developing EVL.

(Pnir — Prea)

EVI=aG
" ((pN!R + C1 * preq — C2 % pppe + L)

) (42)

4.3.3 Normalized Difference Moisture Index (NDMI)

Normalize Difference Moisture Index (NDMI) mostly is used to defined vegetation
water content, water stress, and plant biomass changes, calculated by application of
NIR and SWIR, in this regard it is sensitive to canopy cover and absorption by leaf
moisture (Schultz, Clevers, et al., 2016), therefore it has the potential of detecting

deforestation.
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NDM] = PNIR — Pswiry 43)

Pwir T Pswirt

4.3.4. Normalized Burn Ratio (NBR)

Recently Normalized Burn Ration (NBR) and its second version (NBR2) have been
widely used in Landsat time series, due to their sensitivity to detect forest fires and
burn severity; moreover, it is proven that in the context of characterizing forest

dynamics, these spectral indices have considerable abilities for various forest areas.

NBR = PNIR — Pswir2 (44)

Pnir T Pswirz

Where:
NIR-Near-infrared (Band 5 in Landsat 8)

Red- Red band (Band 4 in Landsat &)

Blue- Blue band (Band 2 in Landsat 8)
SWIR-Short-wave infrared 1 band (Band 6 in Landsat 8)
SWIR:- Short-wave infrared 2 band (Band 7 in Landsat 8)
G — Gain factor for correction (2.5 for Landsat 8)

Cl & C2 — Coefficients of aerosol resistance term Blue (6&7.5 for Landsat 8
respectively)

4.4 Analysis Environment

Three main software has been used in this thesis, ArcGIS, Google Earth, R and
Rstudio. R is open-source software that use for statistical programming language.
Using R in combination with Rstudio is prevasive tool among researchers and data
specialists to develop statistical programing as well as analyzing data. This software
benefits from robust features such as numerous graphics and visualization tools,
debugging and code editing. There are several numbers of packages for various usage,
provided in R and being developed by different R communities such as the

Comprehensive R Archive Network (CRAN). ArcGIS in this thesis was used to
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analyze the out put from “bfastspatial’. ArcGIS is used for various purposes such as

mapping and visualization, remote sensing imagery, and spatial analysis purposes.

Google Earth is a free powerful mapping platform, developed and released by Google
in 2001. The main objective of using this p;atform in the thesis is to validate the
accuracy of the output from ‘bfastspatial’ as well as near real time assessment as there
is the time-lapse data in Google Earth which provides the ability to have access to the

high spatial resolution imagery from different years.

4.5 Analysis Framework

To initialize the system to perform ‘bfastspatial’ algorithm there are some prior
arrangements. In the first step pre-processed data, downloaded from USGS, was placed
in the directory named landsat. All folder structure related to the algorithm is indicated
in Figure 4.6. All of these directories also require to be created in R environment, to
do so function command such as landsatDir <- file.path(stepDir, 'landsat’) was used

(see Appendix A for coding).

Figure 4.6 : Folder architecture that needs to be created outside of R environment on
the computer.

Then the “processLandsatBatch” function which is part of ‘bfastspatial’ package, was
used to calculate the vegetation indices from Landsat images. This function includes
set of tools that meet the requirements of different projects. As an example “pixel_ga”
is the tool to perform cloud masking of the images, “extent” tool is used to be sure all
of the images have the same ectend according to the study area, and also “vi” tool

enable defining the type of VI that will be calculated. The VI images produced by this
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tool where stored in separate folders and then were used to create brick object types
by utilizing the “timeStack” function, which is another function inside “bfastspatial”
package. Each of the raster brick contains layers and these layers are the VI images
from 2013 to 2020. These images stacked together to built a VI time series which was
served as inputs for “bfmSpatial”. Before running the “bfmSpatial” model the
“bfmpixel” tool was applied to make sure that there is a break inside the raster brick
of V1. Once the break is detected then VI raster brick can be run through “bfmSpatial™.
There are several parameters inside this function that should be considered. After
getting Landsat scene ID, the sensor information is defined. The internal function of
“bfmSpatial” is the “bfastmonitor” which iteratively runs over each pixel of the raster

brick. The parameters of the function:

data= time-series raster brick

start= start of monitoring period, which is in this thesis 2015
formula= response ~ harmonic

order=1

history= 2013 in this thesis

type = “OLS-MOSUM”

h=0.25

end=10

level=0.05

According to the previous reseﬁh by B DeVries,(2015) and Verbesseltet al., (2012a)
it is demonstrated that using first-order harmonic model with an h value of 0.25
provided the most accurate result. The h=0.25 means that a 4-year window of data is
conadered in computing of “OLS-MOSUM” statistics. In other words, by this amount

of “h-value” only one break could be detected in every 4 years.

The other parameter of “bfmSpatial” is a user-defined parameter named “monitoring
period”, which is the period that the user anticipate to detect break. In this thesis,
period of 2015-2020 is considered as monitoring period. Additional parameters that

should be defined to ensure the the model run, are listed below:

X = time-series raster brick
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dates = NULL (set internally within bfastSpatial)
pptype = ’irregular’ (temporal resolution of images)

mc.cores = 5 (optional parameter in parallel processing it is defined the number of

cores of your system to be included for processing the “bfmSpatial’)

sensor = ¢(“OLI") — (it is the sesor, included in the study could also be “ETM+ SLC-
on”, “ETM+ SLC-off” for Landsat 7 ETM+)

After finishing the process éll over the pixels of the images the output of
“bfastmonitor” is produced as a raster brick object with three different layers, named
breakpoint, magnitua, and error respectively. The breakpoint layer is essentially the
time of breaks that detected for each pixel, while the magnitude, defines the median
of the residuals through monitoring period, and error layer provides the value of ““1”
for pixels when the error has been detected or “NA” when the method triumphed (Jan

Verbesselt et al., 2015).

Having better manipulation of output layers, there is a function, named
“changeMonth” for separation of breakpoints by year and month, also to create a map

to just representing the magnitude of breaking points.

For the sake of this research by using pﬁ function different type of outputs from
the layer could be produced. In addition in order to assess the accuracy of the break
points detected by this algorithm the outputs layers converted to the GeoTif files by
using “writeRaster” function in R. After getting outputs there is a possibility to define
the threshold og changes, so just the negative values would be remained, indicated the
deforested areas. The workflow of this thesis is shown in Figure 4.8 which all of this

steps is indicated.
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Figure 4.7 : Methodology diagram, a.pplied to detect breakpoints in time series of
fndsat  vegetation indices from 2015-2020 monitoring period.
BFASTSpatial generates a map with the location of breakpoints labeled by
date; a map of brgikpoints per year labeled by a map of breakpoints per
year labeled by month and a map of breakpoints labeled by change
magnitude
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4.6 Reference data and Accuracy Assessment

The main method of evaluating ﬂé BFAST to detect small-scale deforestation over
both study areas was according to Congalton (1991) and Olofsson et al (2014), which
broadly used in the concept of map validation in scientific studies. In this thesis the
error matrix was used to compare map values, associated with the breakpoint
magnitude from the BFAST, demonstrating of theﬁforestatiﬂn, with the true ground
data, provided from reference data, according to very high spatial resolution (VHR)

satellite imagery by using Google Earth Pro software.

Using the eﬁ)r matrix there is the feasibility to calculate several mtrics of accuracy,
including “Overall Accuracy (OA)”, “Producer’s Accuracy (PA)”, “User’s Accuracy
(UA)”, and “Bias”. The OA is computed by the division of total number&corrcctly
classified pixels by the total number of pixels in the error matrix. The PA refers to the
ratio of total number of correct pixels in the category to the total number of pixels in
that category based on the reference dataset. In fact, this accuracy is the prgbability of
the number of reference data that are correctlyclassified, which also named as omission
error. The UA is defined as the number of correctly classified pixels in a category
divided to the total classified pixels in that category., known as commission error.
Indeed, it is represented the probabiliity that a pixel that is classified in the image or
map truly demonstrates that category in the ground. The “Bias™ is measured by

differencing between UA and PA.

For assessing the accuracy of the BFAST in the first stage by using ArcGIS stratified
random points selecting according to the breakpoint magnitude of vegetation indices
for each study area. For this purpose, 500 points for study area A and 700 points for
study area B were selected. In the second stage these ground truth data were labeled
according to whether they are representing of deforestation (D) or stable (S) land
cover/ land use (Ben DeVries, Verbesselt, et al., 2015, Grogan et al., 2016; Murillo-
Sandoval et al., 2017; Schultz, Clevers, et al,_2016; Smith et al., 2019). This
information was extracted from multi-temporal very high spatial resolution (VHR)
imagery by comparing the image of 2013 and end of 2020 through Google Earth
platform. This platform provides Rapid Eye/ World View images with less than 5
meter spatial resolution for both test sites. During the monitoring period there were

some regrowth areas, recognized from VHR by sufficient biomass. These areas were
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picked up by BFAST as deforested areas (D). However, for validation purposes these

areas are collected as stable (S) spots.

According to the previous studies B DeVries, (2015); Ben DeVries, Decuyper, et al.,

(2015) and Murillo-Sandoval et al. (2017) the threshold of change magnitudes <-0.05
for moderate to negative magnitude of “bfastspatial” for VIs was selected. The
accuracy assessment was performed for all VIs (NDVI, NDMI, NBR, and EVI) and

the accuracy ranks gained from them were compared together.
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5. RESULT AND DISCUSSION

2
In this thesis, the accuracy of BFAST method in detecting small-scale deforestation in

two different types of forests located in Turkey were evaluated. The important concern
about this method was the availability of data as Landsat temporal resolution is every
16 days. Moreover, clouds and cloud shadows reduced the number of observed pixels

in study areas due to masking them from images by image quality mask.

Overall, the “bfatspatial” algorithm indicated the great performance of processing time
and accuracy results. Generally, the size of downloaded images for study area A was
14 GB and study area B about 23 GB. All of the processing was done on a computer
system with windows 10, i7 core, 4GHz (8CPUs), 32GB RAM.

Time series raster brick creation was efficient and took a time about 5 minutes or less.
However, running “bfmspatial” was the most time-consuming part of the process, with
about 30-45 minutes to produce the output breakpoints, magnitude, error, and other
supplementary outputs, which were around 23 MB for study area A and 153 MB for

study area B.

5.1 Breakpoints and Magnitude

The distribution map of breakpoints during 2015-2020 for each site, is given in
Figures 6.1 and 6.2 In these maps the breakpoints are labeled according to their
magnitude values using a red > yellow > green color gradient scheme. Red color
corresamds to slight to extreme negative breakpoint magnitudes, while yellow and
green correspond to slight to moderate positive breakpoint magnitudes. In the study
area A there is a higher amounts of breakpoints in comparison with site B. In the site
A, the larger area of deforestation occured during the monitoring period which is from
2015-2020 belongs to the construction of the new airport in Istanbul. It is indicated
that BFAST algorithm provides efficient results in detecting deforestation in this study
area. In table 6.1 the percentage of breakpoints pixels which are detected by using

BFAST algorithm, for each VI is shown. According to this table, around 13% of total
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forest pixels of study area A, is detected as breakpoints by NDMI, while this varied to
almost 22%, by utilizing EVI in the model. The map of magnitude of breakpoints in t
site B, indicated in Figure 6.2. Conversely, in site B the percentage of pixels that is
labeled as breakpoints according to Table 6.2 is changed from almost 3% by EVI to
7.4% by both NDVI and NBR.
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Figure 5.1 : Magnitude values for all detected breakpoints in study area A.

Table 5.1 : Pixel percentages of Vls for the study area A.

Vegetation Index NDVI NDMI NBR EVI

Breakpoint Pixels 45195 35515 49510 61679
Total Pixels 275913 275913 275913 275913
Percentage 16.38% 12.87% 1794%  22.35%
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Figure 5.2 : Magnitude values for all detected breakpoints in study area B.

Table 5.2 : Pixel percentages of Vls for the study area B.

Vegetation Index NDVI NDMI NBR EVI

Breakpoint Pixels 24537 14243 34921 13239
Total Pixels 471281 471281 471281 471281
Percentage 5.20% 3.02% 740% 2.80%

Breakpoints magnitude was the most significant estimator of deforestation event with
the most negative values, correlated most to the deforestation. The magnitude values
was interestingly various in both different study areas and vegetation indices. In site

A it is broadly change from extreme negative to extreme positive associate with EVI

39




from -1.02 to 0.55 while in site B extreme values change from -0.68 to 0.28 associated

with NDVIL.
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Figure 5.3 : Time series of break detection for all VIs over study area A according
to“bfmpixel” function.

The time series of historical period and monitoring per@ according to the breakpoints

for study area A and B with “bfmpixel” function is d%onstrated in Figure 6.3 and

Figure 6.4 respectively. The func&n “bfmpixel” was used to detect the break in the

timeStack of vegetation indices from Landsat images. Time series of study area A

represented the break in day 137 of the year 2015, while study area B demonstrated

the break in day 32 of the year 2015. It is worth to mention that in site B the amount

of variation in seasonalities due to the small areas of deforestation is shallow. While

in site A seasonalty of time series is deeper because of large area of deforestation.
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Figure 5.4 : Time series of break detection for all VIs over study area B according to
“bfmpixel” function.

B DeVries, (2015) and Schultz, Clevers, et al., (2016) demonstrated that moderate to
extreme negative values are associated with the decrease in forest cover. It is because
the significant negative values only occures when there is the conversion in land cover
from vegetated area to the other types of land cover. The yellow to green values
represented extreme positive values of breaks, which considered the sudden increase
in the values of the vegetated areas. One idea behind this could be increase in the
amount of precipitation in the area which results in slight increment at VIs such as
NBR and NDMI. In this thesis, the focus was on the moderate to extreme negative

values, indicated deforestation in the study areas.

5.2 Accuracy Assessment

The overall accuracies of vegetation indices across study area A, proved that all
vegetation indices (NDVI, NDMI, NBR, and EVI) indicated high accuracy by using
BFAST method. However, the NDMI and NDVI provide comparatively lower
accuracy in deforestation demonstration with OA around 85%. In general, overall
accuracies of VIs for study area B were slightly higher than the accuracies for study

area A, but interestingly in study area B, the NDMI and NDVI demonstrated the
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highest accuracies by 88% and 89% rﬁectively. For better visualization of accuracy
assessment results, overall accuracies, user’s accuracies, and producer’s accuracies are

represented in tables 6.3 to 6.10 for study areas A and B.

Table 5.3 : The accuracy assessment of NDVI for site A.

NDVI D S Total UA
D 101 14 115  87.82%
S 62 323 385 83.89%
Total 163 337 500

PA 61.96% 9584% OA= B848%

Table 54 : The accuracy assessment of NDMI for site A.

NDMI D S Total UA
D 99 13 115 B86.08%
S 64 324 385 B84.15%
Total 163 337 500

PA  60.73% 96.14% OA= 84.6%

Table 5.5 : The accuracy assessment of NBR for site A.

NBR D S Total UA
D 103 19 122 84.42%
S 60 318 378 84.12%
Total 163 337 500

PA 63.19% 9436% OA= 842%

Table 5.6 : The accuracy assessment of EVI for site A.

EVI D S Total UA
D 101 44 142 71.12%
S 62 293 355 82.53%
Total 163 337 500

PA 61.96% 8694% OA= 78.8%

Table 5.7 : The accuracy assessment of NDVI for site B.

D S Total UA
D 126 10 136 92.64%
S 71 493 564 87.41%
Total 197 503 700

PA 63.95% 9801% OA= 88.42%
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Table 5.8 : The accuracy assessment of NDMI for site B.

D S Total UA
D 119 1 120 99.16%
S 78 502 580 86.55%
Total 197 503 700

PA 60.40% 9980% OA= 88.71%

Table 5.9 : The accuracy assessment of NBR for site B.

D S Total UA
D 131 23 154 85.06%
S 66 480 546 8791%
Total 197 503 700

PA 66.49% 9542% OA= 87.28%

Table 5.10 : The accuracy assessment of EVI for site B.

D S Total UA
D 118 4 122 96.72%
S 79 499 578 86.33%
Total 197 503 700

PA~ 59.89% 99.20% OA= 88.14%

The values of producer’s accuracies that represent the omision error for site A for all
are approximately the same with about 1% difference for all VIs. In this site NDVI
and NBR provided higher values of producer’s accuracies with 62% and 63%
respectively. Furthermore, in site B same as site A, NDVI and NBR provided higher
accuracies with 64% and 66% . The user’s accuracy represented the higher values for
site B in comparison with site A as a result of the lower deforestation areas. This
amount change from 70% to 88% in site A and 85% to 99% in site B.

To summarize, in this BFAST based deforestation analysis the NBR and NDMI
provided more accurate results in comparison with EVI and NDVI especially for site
A. It is proved that the vegetation indices which take advantage of SWIR and NIR
bands are considerably more sensitive to the canopy moisture, thus provide more
accurate deforestation detection espesifically in deforestation patches. On the other
hand, the VIs that calculated with use of Red and NIR bands, demonstrated slightly
less performance in comparison with NDMI and NBR. However, these differences are
insignificant.

J. Verbesselt et al., (2006), proved that NDMI, demonstrated accurate result in

herbaceous biomass in savanna ecosystems in fire risk detection due to SWIR
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sensitivity to the water in plant tissue. In the other earlier studies such as Wilson &
Sader (2002), the performance of NDVI and NDMI related to forest harvest type
detection with use of Landsat imagery were investigated. They used the old method of
comparing 2 images from different intervals. Their results showed that the NDMI in
all intervals is considerbly outperforming NDVI in detecting clearcuts more
specifically in small-scale harvested areas. In this thesis, iéas been found that the
vegetation indices related to water absorption portions of the electromagnetic spectrum
such as NDMI and NBR are more sensitive to the changes of forest canopy compared
to vegetation indices associated with the chlorophyll absorption, thus calculated with
the Red and NIR bands such as NDVI and EVI. Sims and Gamon (2003), revealed that
the abila of remote sensors to acquire information of a forest canopy is directly
related to the strong absorption of wavelengths. In this regard, the vegetation indices
such as NDVI, which has not the ability to deeply penetrate the forest canopy due to
the absorption of chlorophyll especially throughout the leaves of the canopy, faces
information loss.

Schultz et al. (2013) indicated that commission errors occured due to the uncorrected
atmospheric effects, which in the context of BFAST is related to the cloud shadow and
cloud cover. Bias is related to differences between omission and commission errors. If
bias has the positive values it indicates that the errors from overestimation is higher
than the errors from underestimation in evaluation while for negative values of bias
the opposite would be true. In this thesis the amount of bias related to each VIs and for
each study area represented in Figure 6.5. It is obvious from this figure that bias has a
arised with the positive values, overestimation error has been occured. Overall, site A
indicated lower bias than site B. More specifically in site A, EVI had the lowest
amount with 9.6% of bias. Schultz, Clevers, et al (2016) proved that fusion of
vegetation indices is the efficient method to reduce bias. In their study they tested each
feasible combination of data fusion among VIs this is not in the context of this thesis

but could be considered for a future investigation related to deforestation detection.

5.3 The Source of Error in Implementation of BFAST

There are several source of errors related to the BFAST algorithm, which were
investigated by Schultz et al. (2013). In this thesis the primary source of CIE was lack
of data due to the cloud shadow and cloud cover. Cloud cover is known as a significant

source of error in the investigation of time series analysis with BFAST algorithm. This
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effect was more significant in study area A the total number of pixels for the 48 images
from 2013-2020 after forest masking were almost 18,195,552 and 13,243,824 of them

remained after cloud masking, which means almost 27% of the input pixels were

flagged as NA (Not Applicable).
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Figure 5.5 : the percentage of bias against percentage of overall accuracy for site A
and B. The positive values of bias represent that overestimation error was higher than
underestimation.

T
620000

4545000 4555000 4565000 4575000

Figure 5.6 :

T
640000

T T
660000 680000

12.01.2016 dated image of study area A from EVIStack, showing lack

of data.

45




5.4 Discussion

Forest resources play prominent role not only in supplying facilities and food for
human being but also for survival of embryos and animals. Implementation and
progress of such a technology to address the deforestation and forest degradation more
specifically in the areas with scarce resources would be vitally important. With the use
of BFAST algorithm and proper magnitude map from proper data, there is a feasibility
to acquire probable deforestation, correlated to the lowest amount of magnitude class.
Produced-probable deforestation map could be used as a reference to further
investigation on the probable areas with several technologies such as drone monitoring
or Terrestrial Laser Scanning (TLS) to prohibit of deforestation. Although the
implementation of this map would require high-power computer systems, availability
of data, stable internet connection, which means an increase for the need for financial
support and sufficient budget. As a result it would not feasible without the
collaboration of governments, stakeholders, universities, and organizations around the

world.
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6. CONCLUSION

Recently, the increasing rate of deforestation due to climate change and human-
induced reasons performing investigating research that indicates methods and
algorithms with high level of precisions and accuracies, play a prominent role to
address this problem. Turkey includes different forest types with various species in
them. Thus, it is essential to determine the method that works efficiently across
different forest types and could help stakeholders and environmentalists to acquire
information about the source of deforestation and statistical information related to this
issue. As a result, this thesis investigated the performance of the BFAST set of
algorithms in detecting deforested areas in two different sites of Marmara region in
Turkey. This algorithm showed promising results in deforestation detection of tropical
forest region and savanas in previous studies and in this study it is demonstrated that
BFAST has the ability to detect deforestation in deciduous and conifer forests not only
in large-scale deforested regions but also for small-scale deforested regions. More
specifically in this thesis, it is validated that the parameters of BFAST defined in
previous research can bgused for different regions with high accuracy. Moreover, this
thesis showed that the vegetation indices, which are more sensitive to the water in
canopy forests with utilizing SWIR provided more accurate results in two study areas.
It is worth to mention that in this thesis the most important source of error in
implementing the BFAST algorithm was cloud covers, although Landsat images with
less than 10% cloud covers were selected for this research. The impact of cloud cover
is more essential when it is the reason for elimination of the pixels in the image whether
it is included in historical period or monitoring period of BFAST algorithm, which is
led to decreasing in the accuracy of the results. Overall, the BFAST set of algorithms
represented promising and accurate results related to detecting deforestation by using

Landsat image time series.
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APPENDICES

APPENDIX A: BFAST code implementation in RStudio

Note: it is recommended that before starting check out correct version of “bfastspatial”
from https://github.com/loicdtx/bfastSpatial. For more information and step by step
tutorial about BFAST refer to http://changemonitor- wur.github.io/talks/bfastSpatial-
2016/bfastSpatial_Peru.html#(1), http://www.loicdutrieux.net/bfastSpatial/ , and
http://changemonitor-wur.github.io/deforestationmonitoring/ .

# install developer’s version of bfastSpatial, unless it has been updated to
accommodate the new Landsat collection 1 data naming convention then no need for
ref = ‘develop” devtools::install github(‘loicdtx/bfastSpatial’, ref = ‘develop”).

€%t of libraries, required for performing BFAST
library(raster)
library(rastervis)
library(sp)
library(usethis)
library(zoo)
library(xts)
library(forecast)
library(seas)
library(bfast)
library(devtools)
library(bfastSpatial)
library(lubridate)
library(ggplot2)
library(snow)
library(stringr)
library(parallel)

#set directory path
path <-'to-your-study-site-directory’

# load bfastSpatial and set tmpdir
tmpDir <- rasterOptions()$tmpdir

# set the path to the location of script
inDir <- file path(path, 'data’)

# stepDir is where intermediary outputs are stored
stepDir <- file.path(inDir, 'datastep’)
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# directory for Landsat data landsatDir
landsatDir <- file path(stepDir, 'landsat’)

# where individual VI layers are stored prior to being stacked; ndviDir, eviDir, etc.
are subdirectories of stepDir

ndviDir <- file path(stepDir, 'ndvi'")
ndmiDir <- file path(stepDir, 'ndmi')
eviDir <- file path(stepDir, 'evi')
nbrDir <- file path(stepDir, 'nbr')
outDir <- file.path(inDir, 'out’)

#to check out if your directories created successfully, if your directories created the
for loop fuction would excecute TRUE in RStudio.

for (i in c(stepDir, ndviDir, outDir, landsatDir)) {
print(dir.exists(i))

¥

#define each vegetation indices

.ndvi <- function() {
ind <- ¢('band4','band5")
fun <- function(x1, x2) {
ndvi <- 10000 * (x2 - x1)/(x2 +x1)
return(ndvi)
¥
return(list(ind=ind,
fun=fun))
}

.evi <- function() {
ind <- ¢('band?2'/band4' 'band5")
fun <- function(x1, x3, x4){
evi <- 10000 * 2.5 * (x4/10000 - x3/10000)/(x4/10000 + 6 * x3/10000 - 7.5 *
x1/10000 + 1)
return(evi)
3
return(list(ind=ind,
fun=fun))

}

.nbr <- function() {
ind <- c¢('band5'/band7")
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fun <- function(x1, x2) {
nbr <- 10000 * (x1 - x2)/(x1 + x2)
return(ndvi)
¥
return(list(ind=ind,
fun=fun))

}

.ndmi <- function() {
ind <- ¢('band5',/band6")
fun <- function(x1, x2) {
ndmi <- 10000 * (x1 - x2)/(x1 + x2)
return(ndvi)
}
return(list(ind=ind,
fun=fun))

# processLandsatBatch is variable due to the change in USGS ESPA file naming
convention. If using developers version of bfastSpatial use the following to apply the
cloud mask: keep = c(322, 386) applies to Landsat 8 data. Change to: keep = c(66,
130) for Landsat 5-7 data. Also, the purpose extent of the image shoul be defined as
e in this process.

# processLandsatBatch, as an example for ndvi.

processLandsatBatch(x = landsatDir, outdir = ndviDir, delete = TRUE, overwrite =
TRUE, mask = 'pixel_qa’, vi = 'ndvi', keep = ¢(322, 386), e= extent(Xmin, Xmax, Ymin,
y"wx))

# before making temporal ndvi stack it is important to make a list of the layers.
ndviList <- list files(outDir, pattern=glob2rx('ndvi* grd'), full.names = FALSE)

#make temporal ndvi stack
ndviStack <- timeStack(x= ndviDir, pattern = glob2rx('*.grd"), filename =
tile.path(inDir, 'ndvi_stack grd'), datatype ='INT2S', overwrite=TRUE)

#in this section of code if it is matter to make a mask just from the forest area, first
forest mask is defined as raster brick then x represented as multiple of ndviStack and
the forest mask.

Forestmask<-brick (“the-forest-mask™)

#function set names is selected to be sure that layers name of ndviStack would not
change after raster calculation.

x<-setnames (Forestmask*ndviStack, names (ndviStack))

# run bfmPixel() in interactive mode with a monitoring period
#bfmpixel would test to be sure there is a brek in monitoring period
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library(snow)
bfm <- bfmPixel(x, start=c(monitoring period), interactive=TRUE, plot=TRUE)
#Click on a pixel in the plot.

#Plot the results
plot(bfm$bfm)

# run bfmSpatial on x/ndviStack with same parameters used in this research
2
# By default, 3 layers are returned: (1) breakpoint: timing of breakpoints detected for
each pixel; (2) magnitude: the median of the residuals within the monitoring period,
(3) error: a value of 1 for pixels where an error was encountered by the algorithm and
NA where the method was successfully run.
bfm <- bfmSpatial( x, pptype = 'irregular’, start =c(monitoring period), history =
c(history period), type = "OLS-MOSUM", formula = response~harmon, order = 1,
h=0.25, sensor= 'OLI', mc.cores = number of PC core wish to be used, filename =
file.path(outDir, 'bfm_ndvi_harmon.grd")...)
# optional: reformat sensor if needed
# prepare for subsetting
sensor <- ¢(sensor, "ETM+ SLC-on", "ETM+ SLC-off", “OLI")
s <- getSceneinfo(names(x))
s <- s[which(s$sensor %in% sensor), ]
# median values for all layers
if (!file.exists(fn <- file path(outDir, 'medianV1.grd")))
med VI <- summaryBrick(ndviStack, fun=median, narm=TRUE,
filename = fn) else {
medVI <- brick(fn)
b
plot(medV1/10000)

op<-par()
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#post processing of bfm output
#load the bfm
bfm<- brick(“directory to the bfm result”)

#extract change raster
change <- raster(bfm, 1)

#convert breakpoint values to change months
months <- changeMonth(change)

# set up labels arfFolourmap for months

mOnthlﬂbS <_ C(Fljanlll, "feb",, Ilmarll, “apr“,, Ilmayll, n
|Iju1II., IlaugII, "Sep", 'Ioct", IInOVII, Ildecil)

cols <- rainbow(12)

plot(months, col=cols, breaks=c(1:12), legend=FALSE)

jl].l'l".,

# insert custom legend
legend("bottomright", legend=monthlabs, cex=0.5, fill=cols, ncol=2)

# extract magn raster
magn <- raster(bfm, 2)

# make a version showing only breakpoing pixels
magn_bkp <- magn

magn_bkp[is.na(change)] <- NA

op <- par(mfrow=c(1, 2))

plot{(magn_bkp, main="Magnitude: breakpoints")
plot(magn, main="Magnitude: all pixels")

opar <- par(mfrow=c(1, 2))

# Write breakpoint, yearly break month product, and breakpoint magnitude raster
layers to GeoTifT files as well as the raster brick to a .grd filf)

writeRaster(out[[1]], filename = "Sitel_NDVI_breaks.tif", format = "GTift",
overwrite = TRUE)

writeRaster(months$changeMonth2015, filename = "Site]_NDVI_breaksmos15.tif",
format = "GTift", overwrite = TRUE)
writeRaster(months$changeMonth2016, filename = "Site|_NDVI_breaksmos16.tif",
format = "GTiff", overwrite = TRUE)

writeRaster(months$changeMonth2017, filename = "Site]_NDVI_breaksmos 17.tif",
format = "GTift", overwrite = TRUE)
writeRaster(months$changeMonth2018, filename = "Site]_NDVI_breaksmos18.tif",
format = "GTiff", overwrite = TRUE)

writeRaster(months$changeMonth2019, filename = "Site |_NDVI_breaksmos19.tif",
format = "GTift", overwrite = TRUE) [10]
writeRaster(months$changeMonth2020, filename = "Site]_NDVI_breaksmos20.tif",
format = "GTiff", overwrite = TRUE)

writeRaster(magn_bkp, filename = "Site] _NDVI_magbreaks.tif", format = "GTiff",
overwrite = TRUE) writeRaster(out, filename = "data/out/out_NDVI.grd", overwrite
=TRUE)
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#Test breakpoints

plot(ndviStack[[80]], col = grey.colors(255), legend = F)
plot(out[[1]], add=TRUE)

#Test months product

plot(months, col=cols, breaks=c(1:12), legend=FALSE)
legend("bottomright", legend=monthlabs, cex=0.5, fill=cols, ncol=2)
#Test magnitudes plot(magn_bkp, main="Magnitude of a breakpoint")
plot(magn, main="Magnitude: all pixels")
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