Hybrid Algorithms for
Rank of Sparse Matrices

Supported by NSF grants 0098284 and 0112807
A. Duran, D. Saunders, and Z. Wan

1 Introduction

In this study we compare two distinct methods for solving basic linear algebra
problems for sparse matrices over the integers and over finite fields. Here we focus
on the problem of rank. One method is GSLU, an adaptation of the SuperLU
method [3] and is fundamentally Gaussian elimination. The second method, called
here BB for “black box”, is a variant of Wiedemann’s algorithm [15] and is a Krylov
space method. The methods may be applied to other problems such as determinant,
system solving, and Smith normal form. The observations made here apply quite
directly to those problems.

The results of the computations are exact but are Monte Carlo, as discussed
below. Exact methods are of interest when the matrix entries represent structural
properties of some system rather than measured quantities. Frequently the matrices
are incidence matrices of some kind. A 1 in the 4,j position represents a relation
of row object i to col object j. Blackbox methods benefit from special handling of
zero-one matrices.

Our experiments provide a basis for hybrid algorithms and we present and
evaluate two hybrids for use in our library LinBox[4], which may be found on the
web at linalg.org. This library emphasizes the black box algorithms, but also
uses elimination where appropriate. We have not pursued a comparison involving
other elimination methods, but see [6]. It is clear that there is more to be gained
by working with a variety of elimination techniques.

Portions of this work of this paper were presented at ECCAD ’03[10] Specif-
ically, the initial measurements of finite field arithmetic and basic performance of
BB and GSLU algorithms.

2003 /4/2
page
—

2 The algorthms

The black box method for rank computation that we use is Wiedemann’s method
[15] with the preconditioning strategy of Eberly-Kaltofen [11], see also [1]. For a
given matrix integer matrix A, a word size prime p is chosen and random vectore
vectors u,v € Z, are used. The sequence s; = uT A'v, is computed. The Berlekamp-
Massey algorithm is used to determine the minimal polynomial of the sequence.
With high probability this is the minimal polynomial of the matrix and, because of
the preconditioning, the rank is directly determined from the degree of the minpoly
and its constant term. See the above mentioned papers for details. If the trace of
the preconditioned matrix is less than the prime and equals the second coefficient
of the minimal polynomial it constitutes a certificate of the rank[13]. The early
termination strategy is used so that just a few more than 2r terms of the sequence
must be computed.

The run time of this algorithm, BB, is quite reliably computed a priori. Sup-
pose the matrix has order n and nnz nonzero entries. Then matrix vector prod-
uct costs nnz additions for a zero-one matrix and nnz multiply-adds in general.
The algorithm uses Theta(r) matrix vector products with the matrix A and ©(n)
additional work per sequence element (consisting of dot products, preconditioner
(diagonal matrix) matrix-vector products, and the Belekamp-Massey step). More
precisely, the version of the algorithm we tested uses (2r + ¢) steps where r is the
rank and c¢ is a small constant, the early termination threshold. Each step uses
2 nnz + 4n arithmetic steps. On the machine used for these experiments and for
the typical prime p, the arithmetic operations cost 3.7 x 10~7 seconds. Thus a con-
servative estimate of the BB cost for computing rank is 3.7 x 1077 x (4n nnz +8n?).

GSLU (Generic SuperLU)[9] is adapted from SuperLU version 2.0 [3]. field
arithmetic is written in the LinBoxstyle, where the field object is an explicit pa-
rameter to each operation along with the the field elements involved. This allows
GSLU to be used with arbitrary fields including finite field representations from Lin-
Boxand light wrappers on traditional floating point types (float, double. complex).
The code uses C++ template parameters for the field.

SuperLU contains a set of subroutines to solve a sparse linear system AX =
B. Consider the factorization PAQT = LU of a sparse matrix A, using Sparse
Gaussian elimination with partial pivoting, where the row ordering P is selected
during factorization using standard partial pivoting and () is a column permutation
chosen with the goal of reducing fill-in. The partial pivoting is simplified slightly
for finite fields, since there is no issue of numeric stability, and in any case size
comparisons of field elements make no sense. One must select a column preordering,
@, so that the factorization remains as sparse as possible, regardless of choice of P.
The column ordering can have dramatic impact on the number of nonzeros in L and
U. SuperLU has four options for determining @, which are: (1) MMD (Multiple
elimination Minimum Degree) applied to the structure of AT A, (2) MMD applied
to the structure of A + AT, (3) COLAMD, and (4)natural (Q = I).

MMD is a local minimization of nonzeros in the factored matrix. It is also
a practical approximate solution to the NP-complete fill minimization problem.
Liu[12] describes the method and gives a modification of the standard algorithm.

2003 /4/2
page
—

COLAMD (Column Approximate Minimum Degree Ordering Algorithm) [2]
is based on symbolic LU factorization of the nonzero pattern of A. It is an improved
version of Matlab’s COLMMD. The former is faster and computes better orderings
in general, with fewer nonzeros in the factors of the matrix. We found it to perform
best for most of our non-symmetric examples. When it wasn’t best, the MMD
appied to AT A was. We report times for these two preorderings in our data below.
There are cases where SuperLU has a memory problem and segmentation fault
occurs. This remains true in GSLU. Also we found some cases where an erroneous
rank occurs. We eliminated these matrices from our study, believing the bug fix will
not likely affect the performance in the currently correct cases. Certainly clearing up
these problems is desired. For the rank of an integer matrix, we choose to compute
mod a word size prime. So the algorithm is Monte Carlo, with a high probability
of success.

As with all elimination methods, the run time of GSLU is quite variable. It
depends on the rate of fill-in, which in turn depends on the success of the fill-in
avoidance method used and on the zero-nonzero pattern of the matrix. For the
rank problem, elimination may stop at the r-th step. For various classes of sparse
matrix, the run time varies from ©(r) to ©(rn?). For example, if nnz = 2n and
there are exactly 2 entries per row, only ©(r) operations are necessary. On the
other hand for dense matrices and for matrix patterns in which there is rapid fill-
in. the ©(rn?) run time is experienced. Also important for practical computation
is that the overall memory requirement can vary from nnz to n? matrix entries,
depending on fill-in.

It is very difficult to guess a-priori which method will run faster. Some gener-
alities are that (1) BB is surperior for very large matrices, in particular when fill-in
causes the matrix storage to exceed machine real memory, and that (2) GSLU is
generally superior when nnz /n is very small, less than 3, say. Experience with
some very large, very sparse matrices, for instance in [7], has lead one of us, Saun-
ders, to provoke proponents of black box methods with the claim ”When the matrix
fits in real memory, throughout the LU computation, elimination beats black box.”
This is certainly not true on a sporadic basis, and this paper gives evidence that it
is systematically not true for some families of matrix.

Given this uncertainty, one solution is to race the two methods, stopping
the slower one when the faster one finishes. When two processors are available,
the faster time is achieved. When only one (timesharing) processor is available,
racing still runs in no more than twice the faster time. We implemented a general
purpose racing utility and found negligible overhead. This sets the bar for any other
attempt at a hybrid approach. Fortunately for the hybrid approach proposed in our
last section, the GSLU algorithm is “left looking” which has the consequence that
the cost of elimination steps tends to be an increasing function of step number.
This gives us a chance to recognize rapid growth of step cost and switch to the BB
method at a relatively early stage.

To start, let us benchmark the situation for dense matrices. Here nnz = n2.
Due to the non-symmetric projection used in this implementation, 2 matrix-vector
products are computed for each of the 2r s;s, for 4n? ops per s; and 4rn? ops overall.
From an observation of Dumas, it is possible to reduce this by a factor of 2, [7].

2003 /4/2
page
—

In the fully dense case, GSLU takes about (1/3)rn? field ops. Thus we expect the
ratio of BB time over GSLU time for dense matrices to be about 12.

10.000 —
9.750
9.500 —
9.250 —
9.000 -

8.750

Speedup GSLU over BB

8.500

8.250

8.000

100 200 300 400 500 600 700 800 900 1000

random dense matrix order

Figure 1. comparison of black box and GSLU algorithms for dense matrices

For random dense matrices, see figure 1, we found the actual ratio to be about
9.5. The deviation from the predicted 12 is not great and may be explained by the
net faster field arithmetic for dot products versus the element by element arithmetic
in row and col operations during elimination. We remark that the method of choice
for dense matrices is a scheme for using floating point BLAS in an exact way, see
[5]. The advantage is sufficiently great that it should also be used for sparse but
small matrices.

All timings in this paper were taken on a Sun sparc running solaris, specifically
a SUN4U/750 Sun-Fire V880 with 32GB main memory, SunOS 5.8.

3 The matrices chosen for experiments

Experimental measurements were done with several families of matrices and a few
sporadic examples, mostly taken from the matrix market. Their properties are
sketched here. Most are 0, 1-matrices, but a few have a wider range of integers
among the non-zero entries. For example the dense matrices used above had random
entries in [1..100] so that full rank would result.

e The matrix Tref [n] is n X n with the first n primes on the diagonal and 1’s
wherever |i — j| is a power of 2. Tref20000 was the subject of one of Nick
Trefethen’s “Hundred dollar, hundred digit challenge” problems[14], and was
the basis for a study of BB methods for determinant and system solving|[8].

e The TF [n] matrices have the nonzero entres distributed near diagonal and are

of almost full rank. http://www-1mc.imag.fr/Imc-mosaic/Jean-Guillaume.

Dumas/Matrices/Forest

e The rnd[n] random with exact order, n, number of non-zero, nnz, and
approximate target rank, r. This was done by adding a sum r rank k& matrices
each with k2 nonzero entries, for very small k.

2003 /4/2
page
—

e The matrices Besstk29, f855_mat9, Saylr3, Saylr4, and tols4000 were extracted
from the MCS/NASTRAN or Boeing ATLAS structural engineering programs
by Randy Cigel, Roger Grimes, John Lewis, and Ed Meyer. These are five very
large problems encountered in detailed modeling of structures. http://math.

nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruch/besstrucs.html

Although they are numeric, we used their patterns to make 0, 1-matrices for
our study with properties emerging from real applications. The bibd_81_3
is the incidence matrix of a balanced incomplete block design. It has 85320
columns, but just a few hundred non-zero rows, a fact not indicated in figure
8. This accounts for the greater success of GSLU over BB on this matrix. .

Figure 8 summarizes their key parameters together with our main group of
timing results. But first we study the field representation issues and then the
algorithm behaviour on some of the families.

Figure 2. Picture of trefethen and TF class matrices

4 Field representation issues

Linbox contains several representations of finite fields, particularly of prime fields
for word sized primes, i.e. primes less than 232. The fastest field arithmetic is
achieved for word sized primes, so such primes are chosen in algorithms on integer
matrices which use computations over modular images, i.e. over a Z/Zp, for some
p. The results are then lifted and/or combined by the Chinese remainder algorithm
to achieve the integer solutions. For multiplication of prime field elements z,y, the
result is generally normalized to r, where r is the remainder in integer division,
zy = gp + r. In this section we compare the performance of three prime field
representations. It is the reduction modulo p, not the multiplication itself, which is

2003 /4/2
page
—

the dominant cost for these representations. The first is that of the NTL package by
Victor Shoup. It’s dominant performance enhancement is a fast modular reduction
using a floating point representation of 1/p with suitable adjustment to achieve an
exact result. In linbox this representation is wrapped in the field class NTL-zz_p.
The second is that of the Givaro package by the Apache group. It’s dominant
performance enhancement is to avoid almost all modular reductions in dot products
by summing products, detecting 32 bit integer overflow, and adjusting when it
occurs. For this a prime less than 2'% must be used. In linbox this is wrapped in
Givaro-zpz. The third is a Modular<uint32> implemented directly in LinBoxitself.
It uses summation of dot product terms in a 64 bit value with a reduction modulo
the prime only when in danger of overflow. The prime must be less than 232.

The latter two are more effective for the BB algorithms which heavily de-
pend on dot products. The NTL implementation is generally faster for the GSLU
algorithms which are dominated by vector axpy and do not involve long sums of
products.

Figure 3 shows that the NTL field representation performs better than the
Modular field on GSLU. The bar heights are Modular field time over NTL field time
for primes of 3 sizes and for 4 matrices (described more fully later). The speedups
are slightly better when the COLAMD preordering is used. This presumably
reflects less time in the preordering stage in which there is no field arithmetic. The
tols4000 matrix has a very fast run time (also shown later) and the preordering
stage dominates so there is little difference due to field arithmetic. The Givaro
representation performs better that the others when primes less than 2'6 are used[6].
In our experiments with the prime 65521 the time was about 2/3 that of the NTL
arithmetic.

7.000
6.000
5.000 I
o
=
@ 4.000 [p=65521, A*A
=3 Il P=65521, COLAMD
(%2] - v
1 3.000 — I P=1048573, A*A
= [[1P=1048573, COLAMD
= Il P=1073741789, A*A
2.0007 [P=1073741789, COLAMD
1.000 ——
0.000

TF13 Tref500 SaylIr3 tols4000
Matrices

Figure 3. Speedup of NTL field representation over Modular field for
GSLU matriz rank computation with primes of three sizes and with COLAMD
and AT A preordering.

Next we look at the BB algorithm where dot products dominate. We consider
5 primes ranging in size from 16 bits to 32 bits. The NTL representation is not

2003 /4/2
page
—

sensitive to the size of the prime in this range. The points plotted in figure 4 are
times divided by the NTL time thus are speedup relative to the NTL performance.
We see that the speedup is highest for the smallest prime and degrades from there.
This is consistent with being able to take longer sums of terms in dot products
before the necessity of reduction modulo the prime.

2.75 ‘.“\\./-
2.5

m 65521

® 1048573

"\ 16777259
A 268435459
> 1073741789
< NTL:zz_p

speedup

0.75

0.5 T T T T
bcsstk33 bcsstk29 bcsstk30 bcsstk31 bcsstk32

Matrices

Figure 4. speedup of Modular field representation relative to NTL field for
black box matrixz rank computation. As modulus increases, performance decreases.

5 Matrix representation issues

For the GSLU computation, the matrix is initally stored in “comp col” format in
which an arrays of nnz non-zero values, nnz row indices, and n+ 1 indexes which
indicate where the columns begin. The algorithm then modifies the storage scheme
for the final L, and U, using the “SuperMatrix” form for one of them. This storage
scheme is not altered for the implementation over finite fields.

For the BB algorithm, LinBox provides a several sparse matrix representations.
Each stores at least one index along with each nonzero entry. The 0,1-matrix is a
common phenomenon in exact linear algebra, so we created a format, ZeroOne,
which consists merely of a list of row,col pairs for the one’s. They are stored as
a pair of arrays of length nnz , one for row index, one for col. A “comp col” or
“comp row” format could have been used as well, but this wasn’t done. The result
is substantially faster than the standard sparse matrix formats, taking about 2/3 of
the time. We compared using the fastest field representation for each case, which
turned out to be NTL for the ZeroOne class and Modular for the SparseMatrix.

6 Experimental results

Two sparse families, Tref and TF, showed particularly fast fill-in in GSLU. For
these the crossover between the two methods occurs at order about 500 and 1000

2003 /4/2
page
—

respectively, as shown in figure 5 and figure 6. The number of non-zero entries is
O(logn) for these families.

225 o

-] [Fe
4 » GSLU
1.75 = BB 20
® GSLU - s
1.5

15
1.25

speedup
speedup

125
10 o

1
0.75
7.5 o
0.5
5 -
0.25 1

25 -

o T T T T T T T T T T
100 200 300 400 500 600 700 800 900 n 1000

1000 5000 10000

matrix order matrix order

Figure 5. Trefethen’s banded matriz family. Speedup of BB over GSLU.
Crossover is at order 500.

50.000
41 4

5.000 = BB
40.000 * GSLU
35.000

30.000
25.000

speedup

20.000
15.000 -
10.000 -

5.000 -

0.000 # T T T T T T
107 236 552 1302 3160 7742 19321

matrix order

Figure 6. TF family. Crossover is near order 1000.

Similarly, the randomly generated matrices tend to fill-in rapidly and thwart
preordering strategies, so that there again the crossover is low, provided the average
number of non-zero entries per row, nnz /n, is large enough. Even for small ratio,
eventually there will be show stopping fill-in for elimination methods. We studied
the case of small ratio, nnz /n = 3 and found the crossover occurring at about
n = 10000. For the random matrices with more entries per row than that, and of
all sizes measured the BB performed better. For the one random matrix, rnd6_14,
with average per row less than 3, GSLU was strikingly better (30 times better).
Indeed this was also evident in the assorted group of matrices. GSLU performed
best on those with nnz /n <= 3, with two exceptions where it performed within a
factor of two of best.

In spite of the extremes of relative performance between GSLU and BB and
the unpredictable nature of fill-in, we were able to design a hybrid algorithm that
spots rising elimination cost early enough to switch to BB efficiently in almost all
cases. The hybrid algorithm compares, at each few elimination steps, an estimate

2003 /4/2
page
—

of the cost of continuing with elimination versus the cost of BB, starting over from
scratch. The formula used to estimate cost of continuing was based simply on the
assumption that per step cost would not decrease for the rest of the computation.
The current the per step cost is multiplied by the number of remaining steps and
this is compared to the prediction of BB cost. If BB looks cheaper, we switch. No
attempt is made to predict an increase in per-step cost in future elimination steps.

Interestingly, in our examinations of per-step costs we found examples where per

step cost rose as would be expected in a left looking method applied to a dense

matrix but we also found many examples where after an initial rise in cost, step
costs remained relatively constant. Fortunately, it proved unnecessary to try to
estimate continued increase in per-step cost.

Figure 7 shows the effectiveness of our hybrid strategy, labeled A3. For these
measurements the COLAMD preordering was used. The switching method was

similarly effective when other preordering strategies were applied.. It is put it in
comparison to the GSLU method, the BB method, and the racing method. The
figure shows performance of each method in terms of efficiency relative to the best
of GSLU and BB for the given matrix. Higher is better. The matrices are in order
of increasing size from left to right. We also see graphically demonstrated that
size alone is not a good predictor of the relative performance of the GSLU and BB
methods. The racing method is labeled A4 and the race is conducted via timsharing
on one processor, so that it’s efficiency is 50%. Of course the racing method achieves
the best time when a second processor is available. Also, because of the inherent
memory efficiency of the BB approach, the memory needs on the second processor
are lower.

115

14 B0 — 10— 1 — B o B
’ / S | 7
| \ L] - |
0 %] \ / it [
0 \ | \ / \ [|m bestiad)
= 08 \ | X \ |
| \ / \ |
g \\ | . / \ // \ best/(21(Ad))
07 4 \ [\
) \ N A \ ¥ best(COLAMD)
8 \ \ N/ \ \ /
i 05 \ \ / \ / | / A best(BB)
b \ [\ | \ / \ /
0y " s e " ’ et " v o @ 0
0 \\ \\] 1 “\‘
; 04 - \\ \ ’ ‘\\
\ \ \
LI \ / \ ! \
0 \ \ / \
\ / |
oo \ / \ "o
\\‘ \\ v v \\ ““ v
\ |
01 i \ [| v v v v
\ / v
i
0 I I I I I I I I I I I =T I I I I
Tref500 TF2 Rand600 165_10 Saylr3 Tref1000 TFI3 F8% Rnd3_15 Rnd3 45

Rnd3_30 TF4 tols4000 TrefS000 Rad6 30 Rnd6 45 5 Treft0000 16515

Matrices ordered by size

Figure 7. Hybrid and racing algorithms compared to the best of
GSLU(COLAMD preordering) and BB

2003 /4/2
page
—

Matrices
besstk29
Bibd_81_3
f855_mat9
SaylIr3
TF10
TF11
TF12
TF13
TF14
TF15
TF16
tols4000
Rnd3000
Rnd6000
Rnd12000
Rnd18000
Rnd6_18
Rnd12_36
Rnd18_54
Rnd3_15
Rnd3_30
Rnd3_45
Rnd6_14
Rnd6_30
Rnd6_45
Tref200
Tref300
Tref400
Tref500
Tref600
Tref1000
Tref5000

Tref10000

n

13992

85320

2511

1000

107

236

5562

1302

3160

7742

19321

4000

3000

6000

12000

18000

6000

12000

18000

3000

3000

3000

6000

6000

6000

200

300

400

500

600

1000

5000

10000

nnz

619488

255960

171214

3750

622

1607

4231

11185

29862

80057

216173

8784

9000

18000

36000

54000

18000

36000

54000

15000

30000

45000

14004

30000

45000

2890

4678

6578

8478

10554

18954

118618

257234

Rank
10006
3240
2456
998
99
216
488
1121
2644
6334
15437
3999
2789
5564
11144
16658

2718
2876
2973
5010
5419
5847
200
300
400
500
600
1000
5000

10000

nnz/n
44.27
3
68.19
3.75
5.81
6.81
7.66
8.59
9.45
10.34
11.19

2.2

10
15
2.33
5
7.5
14.45
15.59
16.45
16.96
17.59
18.95
23.72

25.72

t(GSLU)
1164.77

97.82

2.16
25.41
438.49
5495.14
117664
0.04
16.35
139.72
1217.55
415451
0.04
0.07
0.11
180.90
743.69
1409.22
6.50
1502.21
4526.92
0.41
1.48
3.38
5.67
12.12
40.15
7192.09

65698.30

t(BB)
4077.71
3154.60
273.22
27.37
0.12
0.57
3.20
18.92
114.77
723.64
2395.59
410.95
59.79
239.71
1005.38
2288.45
0.70

1.41

75.28
126.46
178.72
192.08
301.54
423.05

0.78

3.49
5.62
8.38
24.14
736.57

3255.86

BB/GSLU
3.50
32.25
39.30
228.05
7.67
4.74
1.48
0.74
0.26
0.13
0.02
10273.65
3.66
1.72
0.83
0.55
18.97
21.32
17.40
0.42
0.17
0.13
29.55
0.20
0.09
1.89
1.24
1.03
0.99
0.69
0.60
0.10

0.05

Matrices
tols4000
SaylIr3
f855_mat9
Bibd_81_3
Rnd6_14
Rnd12_36
Rnd6_18
Rnd18_54
TF10
TF11
Rnd3000
bcsstk29
Tref200
Rnd6000
TF12
Tref300
Tref400
Tref500
Rnd12000
TF13
Tref600
Tref1000
Rnd18000
Rnd3_15
TF14
Rnd6_30
Rnd3_30
TF15
Rnd3_45
Tref5000
Rnd6_45
Tref10000

TF16

4000

1000

2511

85320

6000

12000

6000

18000

107

236

3000

13992

200

6000

5562

300

400

500

12000

1302

600

1000

18000

3000

3160

6000

3000

7742

3000

5000

6000

10000

19321

nnz/n

2.2

44.27

14.45

7.66
15.59
16.45

16.96

17.59

18.95

9.45

10
10.34
15
23.72
7.5
25.72

11.19

BB/GSLU
10273.650
228.050
39.295
32.251
29.547
21.318
18.973
17.402
7.667
4.744
3.657
3.501
1.895
1.716
1.484
1.241
1.031
0.990
0.826
0.744
0.692
0.601
0.551
0.416
0.262
0.201
0.170
0.132
0.127
0.102
0.093
0.050

0.020

Figure 8. a table organized by matrixz family and o table sorted by perfor-

mance ratio: BB time over GSLU time. Less than 1 means BB better, greater than
one means GSLU better.

2003 /4/2
page

BRo

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

Bibliography

L. CHEN, W. EBERLY, E. KALTOFEN, W. J. TURNER, B. D. SAUNDERS,
G. VILLARD, Efficient Matriz Preconditioners for Black Box Linear Algebra,
LAA 343-344, 2002, pp. 119-146.

T. A. Davis, J. R. GILBERT, S. I. LARIMORE, AND E. NG, A column ap-
proximate minimum degree ordering algorithm, Technical Report, CISCE, Uni-
versity of Florida. Oct. 2000.

J. W. DEMMEL, J. R. GILBERT AND X. S. LI, SuperLU User’s Guide
download: http://www.nersc.gov/ xiaoye/SuperLU/

DumaAs, GAUTIER, GIESBRECHT, GIORGI, HOVINEN, KALTOFEN, SAUNDERS,
TURNER, AND VILLARD, Linbox: A Generic Library for Ezact Linear Algebra,
ICMS 2002, the International Congress of Mathematical Software, 2002, World
Scientific, to appear.

J-G. Dumas, T. GAUTIER, AND C. PERNET, Finite Field Linear Algebra
Subroutines, In Proc. 2002 Internat. Symp. Symbolic Algebraic Comput. (IS-
SAC’02), ACM Press, pp. 63-74.

J-G. DumMas, G. VILLARD, Computing the rank of large sparse matrices over
finite fields, CASC’2002 : Computer Algebra in Scientific Computing.

J-G. Dumas, B. D. SAUNDERS, AND G. VILLARD, Integer Smith Form via
the Valence: FExperience with Large Sparse Matrices from Homology, In Proc.
2000 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’00), ACM Press,
pp- 95-105.

J-G. Duwmas, W. TURNER, AND Z. WAN, Ezact solu-
tion to large sparse integer linear systems, ECCAD 2002,
http://www.cis.udel.edu/"wan/publication/eccad2002_abstract.ps

A. DURAN AND D. SAUNDERS, GenBLAS: Basic Lin-
ear Algebra Subroutines mn C++ over Any Fields,
http://www.cis.udel.edu/~duran/GenBLAS.pdf, (GenBLAS version 1
download: http://www.cis.udel.edu/"duran/GenBLAS.tar.gz).

2003 /4/2
page
—

[10] A. DURAN, D. SAUNDERS AND Z. WAN,
Rank of Sparse {0,1}-Matrices, ECCAD 2003,
http://www.cis.udel.edu/"saunders/papers/eccad03/durana.pdf,

[11] W. EBERLY AND E. KALTOFEN, On randomized Lanczos algorithms, In Proc.
1997 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’97), pp. 176-183.

[12] J. W. H. LIU, Modification of the minimum-degree algorithm by multiple elim-
ination. ACM Trans. Math. Software, 1:141-153, 1985.

[13] D. SAUNDERS, A. STORJOHANN, AND G. VILLARD, Matrix Rank Certifica-
tion, ELA accepted, 2001.

[14] L. TREFETHEN The Hundred Dollar, Hundred Digit Challenge, STAM News,
15, No. 6, July/August 2002.

[15] D. WIEDEMANN, Solving sparse linear equations over finite fields, IEEE Transf.
Inform. Theory , IT-32:54-62, 1986.

2003 /4/2
page
—

I Posta : Gelen Kutusu ference on Applied | X LIV IEUEIERINGN § Ahmet Duran - Google Akader: X | =+ -

C ® © & https//archive siam.org/meetings/la03/proceedings/ B e w Arama v IN D ©® =

‘ Custome ‘ ~

SIAM
Journal

About ‘ Membe Confere| - Books

SIAM

Service

Linear Algebra Proceedings

Wednesday, July 16

MS?7: Linear Algebra in Computational Biomedicine

Random matrices in Magnetic Resonance signal processing
Piero Barone, Istituto per le Applicazioni del Calcolo "Mauro Picone", Italy

CP1

Computing Smallest Singular Triplets with Implicitly Restarted Lanczos Bidiagonalization
Constantine Bekas, Efstratios Gallopoulos, and Effrosyni Kokiopoulou, University of Patras, Greece

CP2

On the Skeel Condition Number, Growth Factors and Pivoting Strategies for Gaussian Elimination
Juan M. Pena, Universidad de Zaragoza, Spain

Preconditioning Parallel Sparse Iterative Solvers for Circuit Simulation
Achim Basermann, Uwe Jaekel, and Koutaro Hachiya, NEC Europe Ltd, Germany

CP3

Lrreducible Powerful Ray Patterns
Han H. Cho, Jongsam Jeon, and Hwakyung Kim, Seoul National University, Korea

857

£ Aramak icin buraya yazin 1.08.2020

I Posta : Gelen Kutusu X | sam SIAM Conference on Applied | X [larJSINVERSYEIRCEBEREUEIERIPN §° Ahmet Duran - Google Akader X = =+ -

C ® © & https//archive siam.org/meetings/la03/proceedings/ a -- i Arama Yy IN D ©® =

Friday, July 18

CP9

Limits of the Recursively Defined Matrix Sequences Using Nonlinear Matrix Equations
Xiquan Shi, Fengshan Liu, Hanson Umoh, and Frank Gibson, Delaware State University

Rank of Sparse Integer Matrices
Benjamin D. Saunders, Ahmet Duran, and Zhendong Wan, University of Delaware

CP10

Utilizing the Quadruple-Precision Floating-Point Arithmetic Operation for the Krylov Subspace Methods
Hidehiko Hasegawa, University of Library and Information Science, Japan

Characteristic Polynomials and Pseudospectra
Laurence Grammont, Universite de Saint-etienne, France

Transfer Functions and Path Following for Computing Pseudospectra
Efstratios Gallopoulos and Constantine Bekas, University of Patras, Greece; Valeria Simoncini, Universita' di Bologna, Italy and IMATI, CNR, Pavia

CrP11

Usage of Fuzzy a Priori Information for Modeling Systems with Variated Parameters
Arnold Korkhin

Minimal Sets of Bi-Product Equalities Characterize Separable Pure Quantum States
Philippe Jorrand and Mehdi Mhalla, CNRS, France

Importance of Linear Algebra in Engineering Design Methodology
Mysore Narayanan, Miami University

CP 12

14:02
A Aramak icin buraya yazin

1.08.2020

10.08.2020 SIAM Conference on Applied Linear Algebra

About the / 0
; ea
arga
Cornrnittee
Conference
TF
rf
Speakers
Deadline
Da
Hi 0
Participate
Sponsored by SIAM Activity Group on Linear Algebra (SIAG/LA).

Hole In cooperation with the International Linear Algebra Society (ILAS)

m @The Conference will be held in the University
: Center Building 86 on THIS MAP.
Audio-lisual
L 1
Shoricourses Are now available HERE!!

meetings(@siam.org

{4 / SIAM Cenference on
- Applied Linear Algebra
= luly15-19, 2003

The College of
William & Mary
Qlliumsburg. VA

https://archive.siam.org/meetings/la03/

m

https://archive.siam.org/meetings/la03/body.htm#About
https://archive.siam.org/meetings/la03/body.htm#organizers
https://archive.siam.org/meetings/la03/body.htm#themes
https://archive.siam.org/meetings/la03/body.htm#invited
https://archive.siam.org/meetings/la03/body.htm#Deadlines
https://archive.siam.org/meetings/la03/body.htm#participate
https://archive.siam.org/meetings/la03/body.htm#proceedings
https://archive.siam.org/meetings/la03/reginfo.htm
https://archive.siam.org/meetings/la03/body.htm#geninfo
https://archive.siam.org/meetings/la03/htlinfo.htm
https://archive.siam.org/meetings/la03/program.htm
https://archive.siam.org/meetings/la03/body.htm#av
https://archive.siam.org/meetings/la03/body.htm#work
mailto:meetings@siam.org
https://archive.siam.org/siags/siagla.htm
http://www.math.temple.edu/~szyld/iic/ILAS.html
http://www.wm.edu/admission/downloads/wmmap.pdf
https://archive.siam.org/meetings/la03/proceedings/

10.08.2020

https://archive.siam.org/meetings/la03/

Indefinite
inner
products
Matrix
inequalities
Kronecker
products
Symbolic
computations
Graphs and
matrices

Meeting themes include, but are not limited to:

Large-scale
eigenvalue
problems
Optimization
Polynomial
eigenvalue
problems
Foundations
of
computational
mathematics
Lattice QCD
calculations

Roy Mathias, The College of William and Mary (Co-chair)
Hugo Woerdeman, The College of William and Mary (Co-chair)

Raymond Chan, Chinese University of Hong Kong
John Gilbert, Massachusetts Institute of Technology and University of
California, Santa Barbara
Per Christian Hansen, Technical University of Denmark
Nicholas Higham, University of Manchester

I1se Ipsen, North Carolina State University

meetin,)siam.org Horst Simon, NERSC, Berkeley

: Paul Van Dooren, Université Catholique de Louvain

SIAM Conference on Applied Linear Algebra

Information
retrieval
Computatior
biomedicine
Dynamical
systems
Quantum
information
Systems and
control
Image
processing

m

https://archive.siam.org/meetings/la03/body.htm#About
https://archive.siam.org/meetings/la03/body.htm#organizers
https://archive.siam.org/meetings/la03/body.htm#themes
https://archive.siam.org/meetings/la03/body.htm#invited
https://archive.siam.org/meetings/la03/body.htm#Deadlines
https://archive.siam.org/meetings/la03/body.htm#participate
https://archive.siam.org/meetings/la03/body.htm#proceedings
https://archive.siam.org/meetings/la03/reginfo.htm
https://archive.siam.org/meetings/la03/body.htm#geninfo
https://archive.siam.org/meetings/la03/htlinfo.htm
https://archive.siam.org/meetings/la03/program.htm
https://archive.siam.org/meetings/la03/body.htm#av
https://archive.siam.org/meetings/la03/body.htm#work
mailto:meetings@siam.org

