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A bstract

THERMAL DEVELOPMENT AND REJUVENATION 

OF MARGINAL PLATEAUS ALONG 

THE TRANSTENSIONAL VOLCANIC MARGINS 

OF THE EASTERN NORWEGIAN-GREENLAND SEA

by

Nilgun Okay

Adviser: Professor Kathleen Crane

The predominance o f  large-scale paleo-shear zones in the Norwegian- 

Greenland Sea is thought to be the major cause o f asymmetric seafloor spreading in 

this region. Plate reconstructions suggest that nascent mid-ocean ridges propagated 

into these obliquely oriented shear zones causing transtension to occur. The 

asymmetric evolution o f  the northern Norwegian-Greenland Sea is evident from both 

the morphology o f the seafloor as well as its geophysical characteristics. The eastern 

passive margins o f  the northern Norwegian-Greenland Sea are punctuated by volcanic 

plateaus which have significantly higher heat flow than the western passive margins.

It is hypothesized that marginal volcanic plateaus formed originally in response to



deviatoric stress developed at nascent mid-ocean ridge/shear zone intersections along 

transtensional margins causing lava to pond upwards on the eastern flank o f  the 

intersections. In addition, not only did paleo-shear zones serve as loci for the 

extrusion o f  seafloor basalts, but the distal limbs o f these shear zones appear to be 

present-day sites for the emanation o f  heat from the seafloor thus thermally 

rejuvenating the eastern margins in the process. Heat flow analyses suggest that the 

thermal interactions between the Aegir and paleo-Mohns Ridges with the Eastern Jan 

Mayen Fracture Zone System created the Voring Plateau and rejuvenated the adjacent 

continental crust (to a thermal age o f 16 my). The subsequent northward propagation 

o f  the paleo-Mohns Ridge into/and along the paleo-Senja Shear Zone, probably 

underplated the Svalbard Platform, and thus caused a broad thermal swell in the 

region. Multiple intrusions from this northward propagating asthenosphere probably 

occurred along deep-seated faults in and adjacent to the Svalbard Platform and the 

northern Svalbard-Nordaustlandet margin. Thermal modeling results also reveal that 

a secondary detachment fault system cuts the southern Yermak Plateau and intersects 

the Spitsbergen Shear Zone and could have acted as a conduit for the upward 

propagation o f  the Knipovich Ridge-related asthenosphere. Recent northward 

propagation o f the Knipovich Ridge caused rejuvenation o f  the southern Yermak 

Plateau (35-11 mybp). SeaMARC-II, and geophysical data also suggest diffuse 

intrusion and thermal rejuvenation along the northern Svalbard-Nordaustlandet 

margin creating the Yermak Seamount, Mosby Peak and the Nordaustlandet Volcanic 

Terrain (20-37 mybp) in the process.



PREFACE

"Everything can be found at sea according to the sprit o f your quest. "
Joseph Conrad

The world's ocean is an important part o f the global environment; because o f  

its size and shape. It interacts with the earth's atmosphere and land masses so that it is 

vital to man's existence. The world's ocean resources have created a tremendous 

interest in recent years. This interest has accelerated the growth o f  the earth sciences 

and oceanography. New sea-floor mapping techniques and shipboard geophysical 

sensors have greatly improved the study o f  the world oceans in the last thirty years. 

Indeed, the first detailed seafloor maps are only thirty-five years old.

The early scientists, aboard H. M. S. Challenger, accomplished the first ocean 

wide survey. This famous expedition (1872-1876) opened the era o f  ocean 

exploration. The Challenger, with its crew and seven scientists, crossed the Atlantic, 

Pacific, and Antarctic Oceans to observe weather, currents, water chemistry, 

temperature, bottom topography, sediments, and marine life on a global scale. These 

measurements have provided the factual foundation for the science o f  oceanography.

The Norwegian North Polar Expedition into the Arctic Ice which took place a 

century ago aboard the Fram, and was lead by the Norwegian explorer Fridtjof 

Nansen between the years 1893-1896. The first detailed knowledge o f the Arctic 

Ocean’s oceanography was obtained during this expedition. Nansen (1904) defined



the bathymetry o f the Fram Strait as a deep passage for exchange o f  the deepest water 

masses between the Arctic Ocean and Norwegian-Greenland Sea. He also postulated 

the existence o f  a 1500 m-deep sill; the so called Nansen Sill at 80°-81°N,

The first results from this systematic survey were published by Louise Boyd in 

1948. Bathymetric data has continued to accumulate since then by such investigators 

as Stocks (1950), Litvin (1964), and Johnson and Eckhoff(1966). Johnson and 

Heezen (1967) described the evolution o f the region in the context o f  seafloor 

spreading. Vine and Matthews (1963) introduced the relationship o f  marine magnetic 

lineations to seafloor spreading, and Pitman and Heirtzler (1966) established the first 

magnetic time scale for the region.

Depth measurements have appeared on maps as early as 1504. Magellan 

made the first deep-sea sounding in the Pacific Ocean in possibly 1521. He used the 

technique o f tossing the lead, used to this day. An electronic sounding device, called 

an echo sounder or sonic depth finder, was developed in the 1920's. The SS Velekari 

under the leadership o f  Louise Boyd made the first systematic echo-sounding profiles 

o f  the Nordic Seas in 1937-1938 (Boyd, 1948).

Development o f  the echo-sounder has resulted in improvements including 

high resolution digital imagery and accurate bathymetry across swaths o f  ensonified 

sea-floor: the side-scanning sonar. It constantly scans the seafloor beneath and to the 

sides o f the research vessel. Sea mapping and remote characterization, carried out by 

the SeaMARC-II, sonar system combines the best abilities o f  the long-range side-



viii

looking sonar, GLORIA, and SeaBeam, the multibeam hull-mounted echo-sounding 

systems.

More than 30 years ago, shortly after the first transpolar voyage under the ice 

by the USS Nautilus, nuclear-powered submarines were first recognized as unique 

platforms for conducting Arctic Ocean research. Since the legendary Alexander the 

Great descended (in 310 b.c) into the sea in a glass berry-like bell (Thurman, 1991), 

the use o f  manned submersibles such as ALVIN has contributed significantly to new . 

discoveries in the world oceans. However, adequate surveys on the Arctic Ocean 

seafloor have not happened, and I propose that only multi-national submarines 

operating under the ice in a systematic manner can collect the quality o f  data required 

to fill in the large data gaps.
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INTRODUCTION

Substantial topographic and volcanic asymmetries evolve during the 

developm ent o f  som e passive margin pairs. This asymmetric developm ent is reflected 

in the passive m argin-m orphology (for example, deeply subsided margins vs. 

marginal plateaus), structure (generally narrower continental-oceanic transition zone 

with a structural high vs. a broad continental-oceanic transition zone), and thermal 

evolution (rapid uplift, magnetic smooth zones, high sedim entation rate, and 

unusually high heat flow vs. subsidence, well developed m agnetic anomalies, low 

sedim entation rates and normal heat flow) o f  the passive m argin (Lister et al., 1986, 

1991; Steckler, 1989; M yhre and Etdholm, 1987; Etheridge el al., 1990; Keen e ta l., 

1990; Okay and Crane, 1993; Okay, 1994). Those margins that are characterized by 

broad volcanic plateaus are often referred to as volcanic margins.

Detailed studies suggest that not all o f  the volcanic passive m argins have 

"obvious connections to hotspots during the continental thinning and extension 

phases (Coffin and Eldholm, 1994)". For example, parts o f  the US and Canadian 

east coast (Sheridan et a l., 1993), the western Svalbard-Barents Sea m argin (M yhre 

et al., 1982), and the northw estern Australian Cuvier-Exm outh m argins (H opper et 

al., 1992) have no spatial relation to "known hotspots" (Figure I). In these cases, 

volcanic passive margins may form at the oblique intersection o f  a pre-existing 

fracture zone (or paleo-shear zone) with a propagating m id-ocean ridge because 

asym m etric stress fields about the intersection create asymmetric therm al structures



Figure 1. Transform faults, associated with seaward-dipping reflectors and large 
igneous provinces along some passive margins. Modified from the work by Coffin 
and Eldholm (1994) and Gahagan el al. (1992) with additional data from Austin and 
Uchupi (1982), Bonatti and Crane (1982), Bonatti (1985), M utter et al. (1989), Keen 
and Beumont (1990), Etheridge et a l (1990). North Atlantic-Norwegian-Greenland 
Sea: 1-Spitsbergen Shear Zone and Yermak Plateau (Y) along the northern Svalbard- 
Nordaustlandet Margin; Morris Jesup Rise (MR); 2-Senja Fracture Zone (FZ) and 
Senja-Vestbanken (SJ) volcanic margin; 4-GreenIand FZ, Northeast Greenland 
margin (NEG); 4-Jan Mayen FZ, and Voring Plateau (Vo) along the Norwegian 
volcanic margin and Lofoten margin (L), More margin (Mo), Jan Mayen Ridge (JM), 
North Atlantic Volcanic Province (NAVP), Hatton Bank (H), the eastern Greenland 
margin (EG). Atlantic Ocean: 5-Labrador FZ, Southeast Greenland margin (SEG), 
Southwest Greenland margin (SWG), 6-Bight FZ, 7-Charlie Gibbs FZ, the New 
Foundland Margin (NF); 8-Pico FZ, 9-E Azores FZ, Azores (AZ), New England 
Seamounts (NW), Baltimore Canyon Trough (BL), Carolina Trough (C), Sohm 
Abyssal Plain (SO), 10-Oceanographer FZ, 11-Hayes FZ, 12-Atlantis FZ, Canary 
Islands (CAN), I3-K aneFZ; 14-Fifteen-Twenty FZ, Cape Verde Rise (CAP); 15- 
Vema FZ; 16-Sierra Leone FZ, Sierra Leone Rise (SIE), Ceara Rise (CE); 17-St. Paul 
FZ, 18-Romanche FZ, 19-Ascension FZ, Gulf o f Guinea (GF); 20-Bode Verde FZ, 
Angola Plain (AN); 21-St. Helene; 22-Hotspur FZ; 23-Martin Vaz FZ, Abutment 
Plateau (A U ),; 24-Rio de Janeiro FZ, Brazilian margin (B), 25-Rio FZ, Rio Grande 
Rise (RIO), Argentine margin (A); 26-Tristan da Cunha FZ, Walvis Ridge (WAL), 
Cape Basin (CA); 27-Falkland-Agulhas FZ, Agulhas Ridge (AG), Falkland Plateau 
(FL), Meteor Rise (MET), Georgia Rise (GE), Mozambique Basin (MO); 28-Conrad 
FZ; 29-South Sandwich FZ; 30-Islas Orcadas FZ, Islas Orcadas Rise (IS). Indian 
O cean: 31-Shaka FZ, 32-Dutoit FZ, Maud Rise (MAU); 33-Astrid FZ, Astrid Ridge 
(AST); 34-Discovery FZ, Conrad Rise (CON), 35-MelvilIe FZ, 36-Vema FZ, 37- 
Owen FZ, Kutch Basin (KUTC); Ninetyeast Ridge (N); Seychelles Bank (S); Kerala 
Basin (KE); Mascarene Plateau (MAS); 38-Red Sea FZ system, Yemen plateau 
basalts (YEM), Ethiopian Plateau basalts (ET); 39- Kerguelen FZ, Kerguelen Plateau 
(KERG); 40-Amsterdam FZ; 41-Soma FZ; 42-Investigator FZ; 43-Surya FZ; 44- 
George FZ; 45-Tasman FZ; Broken Ridge (BR), Cuvier Plateau (CU), Scott Plateau 
(SC), Naturaliste Plateau (NA); Eyre Terrace (EY); Lord Howe Rise Seamounts 
(LR); Wilkes Land (W); Gunnerus Ridge (GUN); Maud Rise (MAU); Explora Wedge 
(EXP).
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and local plate kinematics (Figure 2, Bonatti and Crane, 1982; Crane etal., 1988, 

1991; Okay and Crane, 1993; Okay etal., 1993; Okay, 1994), This type o f volcanic 

margin is classified as “transtensional” or transform margin (a combination o f  shearing 

and extension, Myhre et al., 1982; Max and Ohta, 1988; Mutter et al., 1989;

Etheridge et al., 1990; Crane et al., 1991; Lister etat,, 1991; Okay and Crane, 1993; 

Keen etal., 1993; Okay, 1994).

Transtensional margins, although they are globally significant, have been 

largely neglected in the literature. Transtensional passive margins can be found in 

almost every ocean basin (Figure I). Their importance is related to the effects o f 

changes in relative plate motion, complex- and multiple-stage shear movements, and 

the degree to which a propagating mid-ocean ridge enters into a pre-existing shear 

zone. All o f these events contribute to at least one or several episodes o f  extensive 

volcanic activity. Some transtensional margins are also characterized by thickening o f  

basaltic crust associated with seaward-dipping volcanic sequences along the line o f  

continental breakup (Keen and deVoogd, 1988; Myhre etal., 1988; Etheridge etal., 

1990; Lister etal., 1991; Lorenzo etal., 1991; Keen etal., 1993; Okay and Crane, 

1993).

The term transtensional margin is generally used to describe a continental 

margin that is aligned parallel to the direction o f relative motion at the time o f  

continental rifting. Strike-slip motion occurs along such a margin during early ocean 

formation, first between adjacent continental blocks and later between continent and 

ocean, giving a distinctive thermal evolution (Keen et al., 1990).



5
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Figure 2. Oblique impact o f propagating ridge with paleo-shear zone. Plan view 
model shows a mid-ocean ridge (MOR) propagating obliquely into a paleo-shear 
zone. An impact occurs at an oblique angle (0° <0'’ <90°) forming a transtensional 
volcanic margin. Spreading rate on the extensional side (Va) is greater than spreading 
rate on the compressional side (Vb). Due to asymmetric deviatoric stress, the mid
ocean ridge axis deflects along the paleo-shear zone. As the system matures, small 
pull-apart spreading centers and new oceanic crust form on the extensional side 
(Crane and Bonatti, 1987). Magma tends to pond vertically at the continent-oceanic 
crustal transition (on the compressional side), creating a marginal plateau in the 
process (Okay and Crane, 1993).
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Another example o f  transtensional passive margin development can be seen 

today in the northern Red Sea where the propagating Red Sea spreading center is 

impinging obliquely upon series o f parallel multiple-fault zones (the Dead Sea, 

Brothers, Shagara, and Hamish Fracture Zones in Figure 3). It has been suggested 

that these shear zones are actively breaking up into small pull-apart basins (Courtillot, 

1982; Bonatti and Crane, 1982, 1984; Crane and Bonatti, 1987). At the present, the 

western margin o f  the northern Red Sea is undergoing compression and the eastern 

margin is undergoing extension. The compressive side o f this impact is characterized 

by underplating o f  the continental crust by ultramafic assemblages (Bonatti et at., 

1984, 1986). Crane and Bonatti (1987) suggested that the compressional front at the 

tip o f  the obliquely propagating ridge could have uplifted the (underplated) 

continental crust creating ultramafic islands (Zabargad Island) in the process.

Oblique paleo-shear zones and propagating ridges are also very common in 

the eastern Norwegian-Greenland Sea created by the separation o f  Norway-Svalbard 

and Greenland. These offer a unique opportunity to investigate the development o f  

transtensional volcanic margins. The asymmetric uplift, high heat flow and volcanism 

bordering the eastern margin is well known and has been cited as evidence for rifting 

and spreading across a throughgoing lithospheric detachment which dips eastwards 

underneath Svalbard (Crane et at., 1991; Okay and Crane, 1993).

A number o f  detailed studies and surveys have been carried out in the 

Norwegian-Greenland Sea and provided a great deal o f new geological and 

geophysical data (e.g., Vogt et al., 1981; Myhre etal., 1982; Mutter et al., 1982,
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Figure 3. Location o f the present-day active transtensional passive margin 
development in the northern Red Sea (Bonatti and Crane, 1982). CD: Conrad Deep. 
The propagation occurs when the rift obliquely impacts against the paleo-shear zones: 
Hamish, Shagara, Zabargad and the Brothers Fracture Zones, Uplifted islands (e.g., 
Zabargad Island) are evidence that western margin may be under compression due to 
the asymmetric stress field.
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1984; Crane et al., 1982, 1988; Jackson etal., 1984; Vogt, 1986; Eldholm etal., 

1987, 1989; Vorren et al., 1989; Mitchell etal., 1990; Sundvor and Austegard, 1990; 

Zehnder etal., 1990; Thiedee/tf/., 1990; Faleide et al., 1991; Okay et al., 1991, 

1993; Sundvor etal., 1991; Doss et al., 1991; Vogt et al., 1991, 1993; Crane and 

Solheim, 1995). The purpose o f this dissertation is to use the new data (bathymetry, 

SeaMARC-II side-looking sonar, seismic, magnetics, earthquake-seismicity, gravity, 

and the results o f  the Deep Sea Drilling Project and Ocean Drilling Program) to 

constrain thermo-mechanical models for the evolution o f  the Eastern Norwegian- 

Greenland Sea and adjacent Eastern Arctic Ocean margins, and to better understand 

the development o f transtensional volcanic margins and marginal plateaus.

The study is based on heat flow tied to geological and geophysical data.

These data from seven transtensional margin transects are tested against various 

lithospheric-extension models. In this work, I only speculate on the mechanical 

causes for asymmetric ocean basin development, but the kinematic opening models 

can give some insight into how the interaction o f a propagating rift/ridge with a paleo- 

shear zone affects the development o f  a rift/ridge and passive margin system and 

related asthenospheric underplating o f adjacent continental crust.

The dissertation consists o f seven chapters. Chapter 1 introduces 

characteristics o f volcanic passive margins based on the evidence for thick basaltic 

crust determined from various geophysical parameters. Chapter 2 discusses the 

unique role that paleo-shear zones play on the thermal mechanisms o f the rifting, 

modes o f the lithospheric extension, and development o f  passive margins. Chapter 3
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contains a brief summary of plate boundary evolution and overall geology and 

geophysics, including the morphological characteristics, seismic data, sedimentation 

history and variations of heat flow, earthquake seismicity, magnetics and gravity data 

along the plate boundaries and margins o f the Eastern Norwegian-Greenland Sea.

New observations from the SeaMARC-II (side-looking sonar) Surveys allow 

for new interpretations of morpho-tectonic/volcanic events along the Svalbard- 

Nordaustlandet Margin and are presented in Chapter 4. These allow us to test models 

for the evolution of the northern margin, Chapter 5 presents the modeling o f  heat 

flow data from marginal plateaus and margins o f the Eastern Norwegian-Greenland 

Sea. Chapter 6 discusses the development o f the region controlled by the interactions 

o f  obliquely propagating ridges and paleo-shear zones. In addition, the concept o f 

rift/ridge related "asthenospheric corridors" which may underplate broad regions o f  

continental crust adjacent to transtensional volcanic margins, creating large-scale 

thermal rejuvenation is introduced. Chapter 7 summarizes the development o f 

transtensional volcanic margins and surroundings interacting with paleo-shear zones 

and related pre-existing continental weakness zones.
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C hapter 1

CH A R A C TE R ISTIC S O F VOLCANIC PA SSIV E M A RG IN S

A. MAGMATISM ALONG VOLCANIC PASSIVE MARGINS

I. T h ic k  B a s a l t i c  C r u s t

The recognition o f thick, seaward-dipping volcanic sequences in some passive 

margins has recently led to reconsideration o f passive margin development (e.g., Hinz 

and Weber, 1976; Mutter et al., 1982, 1984, 1988; Coffin and Eldholm, 1991).

These margins are distinct from margins where magmatic activity is limited (or absent) 

prior to the development o f  oceanic crust (Figure 1-1, Mutter et al., 1988). For 

example, volcanic passive margins have thick seaward-dipping volcanic sequences 

(Hinz and Weber, 1976; Hinz, 1981; Myhre etal., 1982; Mutter etal., 1982, 1984, 

1989; Skogseid and Eldholm, 1987; Larsen and Jakobsdottir, 1988; Keen et al.,

1988; Coffin and Eldholm, 1994) which may also form marginal plateaus (Eldholm et 

al., 1989; M utter et al., 1989; Lister et al., 1986, 1991; Lorenzo et al., 1990; Okay 

and Crane, 1993) whereas non-volcanic margins are characterized by rapid initial 

subsidence, prominent block-faulting, and little- or no-volcanism during continental 

breakup (e.g., LePichon and Sibuet, 1981; Austin and Uchupi, 1982;

Dunbar and Sawyer, 1989). In addition, non-volcanic passive margins generally have
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Figure 1-1. Passive margin classification. A diagrammatic summary o f  observations 
from passive margin structures compares the structural elements o f  (a) a volcanic 
passive margin, (b) a non-volcanic passive margin. An abrupt continent-oceanic 
crustal transition (COT) is illustrated by volcanic margin with seaward-dipping 
reflector sequences (SDRS), and plateau formation. The non-volcanic margin 
exhibits commonly a broader COT and no-structural high. The figure is modified 
from Mutter et al. (1988).
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a broader continent-oceanic crustal transition zone than the volcanic ones.

Even though this classification has led to a better understanding o f  the 

variability o f continental margins, each margin has some special characteristics that 

make it almost unique (Mutter, 1993). There are some individual margins which may 

lie along a continuum between the two groups: volcanic and non-volcanic (Figure 1- 

1). For example, M utter et al. (1988) described the seaward-dipping reflectors from 

the Wilkes Land margin, off Antarctica, as intermediate in the type between volcanic 

and non-volcanic "end-members". Another example is the broad passive margin o f 

the US east coast which has been considered as a non-volcanic margin (Mutter,

1993). However, recently seismic studies along this margin have revealed seaward- 

dipping reflectors and a high velocity deep layer casting doubt on the nature o f  its 

origin (Mutter, 1993), Also, a non-volcanic passive margin may not be necessarily 

broad (Figure 1-1). In contrast, parts o f the SE Australian margins are quite narrow 

(Lister et al., 1986, 1991; Etheridge et al., 1990). Therefore, a wide range o f  data 

(including deep seismic-reflection profiles, seismic-refraction profiles, gravity, heat 

flow, uplift/subsidence histories) is necessary for the complete reconstruction o f  a 

passive margin.

Previous studies have already pointed out that thick igneous units formed in 

the immediate vicinity o f  the continent-ocean transition along the Norwegian- 

Greenland Sea (Hinz, 1981; Mutter et at., 1988; Coffin and Eldholm, 1994; Eldholm 

and Grue, 1994). In this location, volcanism is generally observed as (but not limited 

to) seaward-dipping reflector sequences that volumetrically exceed the volcanism in
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most continental rifts. In addition to the Norwegian-Greenland Sea, Hinz (1981) 

noted their presence off Argentina and Antarctica, Austin and Uchupi (1982) 

documented their presence off southwest Africa, and Mutter et al. (1989), Lister et al. 

(1986, 1991), and Lorenzo etal. (1990) proposed their presence offN W  Australia. 

Similar features are also known in the NE Atlantic off the Hatton Margin (Roberts et 

al., 1984; Roberts and Ginzburg, 1984) and in its conjugate margin off Eastern 

Greenland (Larsen and Jakobsdottir, 1988; Zehnder, 1990).

M utter and Zehnder (1988) showed that very thick oceanic crust at the 

continent-oceanic crustal transition (large thicknesses o f intrusive and extrusive 

magmatic rocks) is associated with seaward-dipping reflectors (Figure 1-2). Hinz 

(1981) suggested that seaward-dipping reflector series (volcanic units) resulted from 

seaward tilting and foundering o f  an intra-continental rift system that had been 

strongly affected by magmatic activity, placing the seaward-dipping units on 

continental crust. Mutter et al. (1982, 1988), Eldholm etal. (1989), and Eldholm and 

Grue (1994) suggested that these units formed during a period o f  seafloor spreading 

in the first few million years o f  opening, whereby, in the initial stage the oceanic crust 

was very thick thining to its normal thickness 10-15 Ma after the initiation o f  seafloor 

spreading.

Evidence for early Tertiary magmatism in the Northern Atlantic Ocean is well 

documented in the form o f extensive exposed flood basalts, buried volcanic sequences 

on the inner continental margin and unusually thick igneous crustal sections
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Figure 1-2. Variations in the thickness o f oceanic crust during its evolution based on 
seismic data (after Mutter and Zehnder, 1988). In the initial stage the oceanic crust is 
very thick and returns to the normal thickness 10-15 Ma after the initiation o f seafloor 
spreading. Thinning o f  oceanic crust occurs primarily by the reduction in thickness o f 
the intrusive and plutonic components and secondarily by a reduction in thickness o f 
extrusive sequences.
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at the continent-oceanic crustal transition which includes, as its’ uppermost unit, an 

extrusive sequence that is recognized as distinctive seaward dipping reflectors in 

seismic reflector profiles (Larsen et al,, 1989). In addition, Larsen and Jakobsdottir 

(1988) suggested that the Eastern Greenland Margin is characterized by distinctive 

seaward-dipping reflectors which indicate thick basaltic crust at the continent-oceanic 

crustal transition. Observations also show that the formation o f the continental 

margins o f  Norway and eastern Greenland was characterized by early Tertiary 

breakup accompanied by intense magmatism, continuing to the present as the 

Icelandic hotspot (Talwani and Eldholm, 1977; Eldholm etal., 1989; Larsen etal., 

1989; Eldholm and Grue, 1994). The primary physical evidence for such magmatism 

is the eruption o f massive volumes o f basaltic lavas over an area o f  several thousand 

square kilometers. Well-focused hotspot magmatism at the axis o f seafloor spreading 

clearly influences processes o f  crustal accretion in Iceland even today (Roberts et al., 

1984; Larsen and Jakobsdottir, 1988; White and McKenzie, 1989). However, it is 

not fully understood to what extent this mantle-upwelling has influenced the more 

distant volcanic margins within the northeastern Atlantic and the northern Norwegian- 

Greenland Sea during the initiation o f seafloor spreading.

Three models to account for the magmatism and thick basaltic crust along 

volcanic passive margins have been proposed: "active (mantle-activated rifting)" and 

"passive (lithosphere-activated rifting)" mantle plume models, and a third "secondary 

convection" model, in which asthenospheric mantle convectively overturns close to 

the conjugate trailing edges o f  pre-existing thick and cold lithosphere (Storey et al..
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1991; Kent et al., 1992). The active and passive mantle plume models are mutually 

exclusive, but secondary convection could contribute additional magmatism to either 

(White and McKenzie, 1989).

White and McKenzie (1989) suggested that the development o f  a volcanic passive 

margin is a result o f  a "timely" interaction between an evolving active-mantle plume 

(hotspot) and an intra-continental rift. They also suggest that the voluminous magmatism 

results from decompressional melting of the mantle in the presence o f  elevated mantle 

temperatures associated with the hotspot. The enchanced melt volume is derived from 

increased mantle temperatures reflecting thermal upwelling from deep in the mantle 

(perhaps even the mantle-core boundary). White and McKenzie (1989) proposed that 

hotter mantle begins to melt at a greater depth in the Earth than cooler mantle would, thus 

resulting in a greater volume o f melt. In this case, mantle-induced convective melting 

(focused in a narrow zone) produces a uniform pure-shear extension (McKenzie, 1978) 

across the region that characterizes the evolution o f a symmetric rifted volcanic margin 

(McKenzie, 1985; White and McKenzie, 1989).

For the lithosphere-activated rifting model, M utter et al. (1988) suggested that 

large horizontal-temperature gradients resulted from rapid lithospheric extension and 

asthenospheric upwelling at a nascent spreading center. They proposed that small- 

scale convection could account for the excess-melt production during the earliest 

phase o f  seafloor spreading, and the convection increases the melt production by 

circulating a greater volume of mantle through the solidus. Buck (1986) and Keen 

(1987) have evaluated extensional models which incorporate small-scale convection,
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and showed that the convective thinning (from below) could become the dominant 

process in the continental breakup, and could provide stretching to create the 

necessary conditions to trigger the flow. They suggested that it is not necessary to 

invoke the active involvement o f  high-temperature convective mantle plumes 

impinging at the base o f  the lithosphere (§engor and Burke, 1978; Bonatti, 1987), 

although lithospheric doming above a mantle plume could result in extension and 

provide the link between active- and passive-rifling mechanisms (Houseman and 

England, 1986).

Zehnder et al. (1990) suggested, based on seismic and geochemical studies 

(M utter and Zehnder, 1988; Klein and Langmuir, 1989) that the emplacement o f  

thick basaltic crust at the passive margin is caused by moderate partial melting through 

rift-induced small-scale convection (Keen and deVoogd, 1988). After the initiation o f 

seafloor spreading, the convection cells will become broader and the rate o f  material 

circulation should be much less. Mutter and Zehnder (1988) and Zehnder et al.

(1990) suggested that after seafloor spreading commences, convection slows, and 

crustal thickness is expected to diminish, however, the amount o f  partial melting o f  

the source does not change dramatically. As the plate boundary moves further from 

the continental crust, the horizontal-temperature gradients will decrease and the 

convection will abate. As the spreading continues the volcanic margin will subside 

and the continent-oceanic crustal transition will remain shallow (M utter et al., 1988). 

Buck (1986) and Steckler (1985) have also shown how this phenomenon can account 

for anomalous uplift o f  rift flanks (for example, the Gulf o f  Suez).
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2. M a g m a t ic  U n d e r p l a t in g  a n d  M a r g in a l  P l a t e a u s

Volcanic rocks associated with large igneous provinces, flood basalts, seaward 

dipping reflector sequences, and multiple intrusion zones (within adjacent continental 

crust) probably represent only a small part o f the total melt production along the 

passive margin (Mutter et al., 1982, 1984; Eldholm, 1989), A large percentage o f the 

melt generated on passive margins is probably underplated in the lower crust adjacent 

to continental crust where it can be identified by its high seismic velocity, thermal 

swell uplift and thermal rejuvenation (McKenzie, 1985; McKenzie and Bickle, 1988; 

McNutt, 1984; M utter and Zehnder, 1988; Okay, 1994). Magmatism may lead to the 

underplating o f  the adjacent continental crust by asthenospheric mafic melts (e.g., 

Yoder, 1976; Michael and Bonatti, 1985; White et al., 1987; Okay, 1994). Keen and 

deVoogd (1988) noted that the process o f magmatic underplating, which creates a 

pile o f  mafic (and ultramafic ?) rocks whose thickness approaches that o f  oceanic 

crust, may have produced "oceanic" layers, and these "oceanic" rocks may in some 

cases strongly resemble ophiolite suites.

White et al. (1987) and Keen (1987) suggested that partial melting in the 

mantle generates deep-seated magmatic injections creating thick basaltic crust along 

the volcanic passive margins (for example, margins o f the Northeastern Atlantic 

Ocean and Norwegian-Greenland Sea). However, they did not explain why thick 

basaltic marginal plateaus occur where they do. Mutter et al. (1989), Lorenzo et al.

(1991), and Okay and Crane (1993) proposed that the development o f  the volcanic
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marginal plateaus (for example, Exmouth Plateau, southern Yermak Plateau) is 

governed by simple-shear lithospheric extension mechanisms along a major 

detachment fault. Okay and Crane (1993) recently proposed that mid-ocean ridge 

related magmatic injections may propagate within/along paleo-shear zones 

contributing to the vertical ponding o f  basalts on the compressional side o f  the 

propagating mid-ocean ridge and paleo-shear zone intersection (Figure 2), In this 

manner, over time, a marginal plateau may be created. The thermal effects from this 

preferential magmatic intrusion should be observed at considerable distance from the 

mid-ocean ridge, but only in regions cut by pre-existing fault zones. In addition, 

asymmetric simple-shear lithospheric extension across a shear zone may be 

responsible for emplacement o f  thick basaltic crust, plateau formation along the 

continent-oceanic crustal transition o f  the passive margin (Okay and Crane, 1993) and 

underplating the adjacent continental crust (Okay, 1994, 1995).

B. GEOPHYSICAL CHARACTERISTICS OF TRANSTENSIONAL VOLCANIC 

MARGINS

1. S e is m ic  Re f l e c t io n  a n d  R e f r a c t io n

In the past fifteen years studies o f  passive margin structure that use mostly 

multichannel seismic-reflection and -refraction data have yielded important new 

observations, which considerably advanced our understanding o f events during the
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early rifting and divergent phases o f passive margin formation (DGP Report, 1991; 

Mutter, 1993; Coffin and Eldholm, 1994). Eldholm and Grue (1994) compiled 

multichannel seismic reflection, wide-angle reflection, and refraction profiles to show 

that the offshore igneous rocks emplaced during the transient breakup event o f  the 

Norwegian-Greenland Sea were voluminous extrusive complexes creating thick initial 

oceanic crust, commonly with a lower crustal high-velocity (7.2-7.7 km/s) body 

beneath the extrusives, and intrusives within pre-Eocene continental crust (along the 

margins o f eastern Greenland and ofFNorway).

Reflection profiles at many passive margins exhibit sequences o f  reflectors that 

roughly describe a wedge-shaped pattern with upwardly curved (seaward-dipping) 

shapes (Hinz, 1981). These seaward-dipping reflectors were first recognized in 

marine geophysical surveys o f the Voring Plateau off Norway (Figure 1-3, Hinz and 

Weber, 1976; Hinz, 1981). The magmatic origin proposed for the seaward-dipping 

reflectors was verified during the Deep Sea Drilling Project-Leg 38 (Talwani et al., 

1976) and the Ocean Drilling Program-Leg 104 o f the Voring Plateau (Eldholm et 

al., 1987). In this location, the top o f  the extrusives, a smooth, opaque acoustic 

basement-horizon, develops above intra-basement reflectors o f  variable character. In 

some areas, the basement is seismically indistinct and unstructured; in other areas, it 

comprises thick wedges o f seaward dipping reflectors. Eldholm and Grue (1994) also 

observed features typical for the continent-oceanic crustal transition on the 

Norwegian volcanic margin where the upper crust consists o f extrusive (sub-aerial ?) 

basaltic lavas and interbedded sediments o f variable thickness.
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Figure 1-3. Seismic profile across the dipping reflector wedge and ODP Site 642 on 
Uthern V0r'ng PJateau showing the seaward termination against a basement high 

(Eldholm, 1990). OC= oceanic crust, SDW= seaward-dipping reflectors, K= 
basalt/dacite boundary, EE= top lowermost Eocene lava flows, A= lower Miocene 
M M - middle Miocene, UP= upper Pliocene, VPE= Voring Plateau Escarpment.



Some seaward-dipping wedges are approximately 6 km-thick and the velocity 

increases from 3.5-4 km/s (at the top) to 6-6.5 km/s (in the deepest parts). The 

maximum velocity-gradient occurs in the uppermost lava unit. Upper crustal velocity- 

gradients decrease moderately, but distinctly, between the main dipping wedge and its 

innermost part. Local high-velocity zones also exist below the thick basaltic unit. 

Eldholm and Grue (1994) interpret these lateral changes as varying crustal properties 

across the continental-oceanic crustal transition. This transition is underlain by thick 

lower crustal bodies above an 8+ km/s mantle, which lies within the continental crust 

and magnetic anomaly 23 (Eldholm et al., 1989). The isovelocity sections show that 

the deep crustal structure o f these margins change dramatically near the margin 

escarpments (Mutter and Zehnder, 1988); although total crustal thickness remains 

about the same as that o f  the continental basins, crustal velocities are significantly 

lower than either continental or oceanic structures proximal to the marginal 

escarpment (Figure 1-2).

Along the Newfoundland margin it was found that seaward-dipping reflectors 

show the seaward rise o f  Moho toward the continental-oceanic crustal transition 

associated with a shear zone (cutting the crust and mantle) along which lithospheric 

extension was accommodated (Keen and deVoogd, 1988). The location o f  the shear 

zone inferred from the seismic data between the edge o f  the shelf and the oceanic 

crust is shown in Figure 1-4, This shear zone was probably formed during the 

continent-continent shearing and transtensional opening o f  Africa and North America. 

In this case, motion along the shear zone probably proceeded to the point
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Figure 1-4. Deep structure o f the Newfoundland margin (Keen and deVoogd, 1988).
(a) Location o f  the transtensional margin indicated by the heavy bar in the inset. 
M ajor sedimentary basins in the region are stippled. NS: Nova Scotia, NFLD: 
Newfoundland. Dense stippling shows sediment, and open stippling shows inferred 
extent o f  pre-existing continental crust,
(b) Upper: Free-air gravity and magnetic anomaly profiles along line 87-5. Lower: 
Interpreted line drawing. Solid lines are shown for Moho and basement. The 
reflectors come from a westward dipping shear zone that may be part o f a major 
detachment along which extension was accommodated during rifting (Lister et al., 
1986; Keen et al., 1988), in a manner similar to that proposed by Wernicke (1985). 
The line drawing interpretation o f the seismic reflection data is in general agreement 
with the reflection, gravity and magnetic observations. The location o f a crustal shear 
zone between the edge o f  the shelf and oceanic crust is inferred from the seismic data. 
Continental crustal velocities o f about 6.3 km/s were measured out to the COB (Keen 
et al., 1990). This is related to transform motion along the margin. The shear zone 
extends seaward to the COB, where shearing must have occurred also during the 
migration o f  the mid-ocean ridge along the margin. This boundary may have formed 
along one o f  the faults which was created during the earlier phase oftranspression. 
Volcanism has also been active, and a buried seamount (large open circles) lies just 
seaward o f  the COB.
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where upper mantle became exposed. Seismic refraction results also show that the 

crustal transition from continental to oceanic occurs across a narrow zone probably a 

paleo-transform fault (about 50 km-wide under the outer continental shelf and slope; 

Keen and Roest, 1990). Keen (1987) reported that the oceanic crust in this region 

has a velocity o f 7.4 km/s; and the oceanic crust adjacent to the transform fault is 

anomalous in that no oceanic layer 3 is present, yet the total thickness o f  oceanic crust 

is within normal limits (7-9 km).

Seismic refraction measurements give estimates o f the velocity structure o f the 

deep crust in regions that are typically difficult to image by reflection. Seismic 

refraction studies along the Norwegian-Greenland-Barents Sea margins indicate a 

heterogeneous crustal structure (Talwani and Hldholm, 1973). The seismic refraction 

velocities from the crust strongly show the existence o f  high-density crustal bodies at 

the ocean-continent transition zone. Beneath the dipping wedges, the distinct layer is 

often found with a seismic velocity o f  around 7.2 km/s (not present in either the 

adjacent continental or the oceanic crust (Figure 1-2).

The velocity o f the lower crustal body is not characteristic o f  normal oceanic 

or continental crust, although it occurs in some other continental settings (Meissner, 

1986) and in thickened crust on volcanic margins (Coffin and Eldholm, 1992).

M utter and Zehnder (1988) interpreted these high-velocity (5-7 km/s) layers to be 

igneous rocks that intruded (and/or underplated) the cold, old continental crust 

adjacent to the passive margin. Similar velocities are also found under actively rifting
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areas such as Afar in East Africa where they are usually interpreted as hot, low 

velocity mantle.

Some lower crustal bodies have been explained as ponding or magmatic 

underplating by accumulation o f  mantle-derived material (mafic magma) at the base 

o f  the continental crust (McNutt, 1984; LASE Study Group, 1986; White el al.,

1987; Coffin and Eldholm, 1994; Okay, 1994). The low velocity crust might 

represent serpentinized mafic intrusive rocks incorporating continental fragments at 

depth, overlain by sediments and basalts nearer the surface. Mafic magma ponded or 

underplated at the base o f  continental crust depends on the density contrast between 

the old crust and the melt (Furlong and Fountain, 1986). Decompressional melting o f  

hot asthenospheric mantle would produce 7.1 to 7.2 km/s velocities in ponded basaltic 

melt because o f increasing MgO content (White and McKenzie, 1989). It is also 

questionable w hether magmatic underplating takes place when the continental crust is 

highly attenuated (e.g., during the late rift stage) because crustal strength rapidly 

becomes negligible due to conductive heat transfer whereas massive mafic upweiling 

reaches the brittle crust (Dixon el al., 1989).

Thus underplating should only occur beneath continental crust (Eldholm and 

Grue, 1994), o ff the US East Coast (LASE Study Group, 1986), and the Cape Verde 

Rise-West Coast o f  Africa (McNutt, 1988), and the southern Yermak Plateau and 

northern Svalbard margin (Bonatti and Michael, 1989; Okay and Crane, 1993).

Drilling at site 642 o f  ODP Leg-104 (the Voring Plateau o ff Norway; Eldholm el al., 

1986) and site 918 o f  the Ocean Drilling Project Leg-152 (the eastern Greenland
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margin; Larsen etal., 1994) revealed that extrusive flows formed the seaward-dipping 

events. The thinning o f oceanic crust away from the margin is thought to reflect a 

diminishing magma budget (Figure 1-2; Mutter and Zehnder, 1988).

The Cuvier margin, part o f the western Australia, occurs on the outer flank o f  

the Exmouth sub-basin’s bounding structural high, where the development o f  

seaward-dipping reflectors are observed (Figure 1-5, M utter et al., 1988). The 

western Australian margin is assumed to be the boundary between upper- and lower- 

crustal velocities (between approximately 6.0 and 7.2 km/s from Talwani et al.,

1979). The Cuvier margin can thus be interpreted as a truncated equivalent o f  the 

extremely broad Exmouth Plateau margin to the north, where no dipping units are 

present (M utter et al., 1988).

2 . G r a v it y

In some places gravity anomalies occur on the continental shelf edge (in the 

much younger ocean basins) or within the continent-oceanic crustal transition where 

lower (mafic) crustal bodies coexist with the continental crust. This transition is 

sometimes associated with a depth discontinuity (Cochran, 1982) and with a steep 

gravity gradient (Talwani and Eldholm, 1973; Rabinowitz and LaBrecque, 1977).

These marginal isostatic gravity highs may indicate oceanic crust injected during the 

initial spreading between continents (Rabinowitz and LaBrecque, 1977). They imply 

that as the ocean basin matures, the elevated crust which is preserved as partly
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Figure 1-5. Plan view and cross sections o f the Cuvier margin (part Of the West 
Australian passive margin) where the branches o f the Diamantina Fracture Zone 
system (dashed lines, DFZS) presumably cuts the passive margin (after M utter et al., 
1988). (a) Major structural elements in the passive margin o ff Western Australia. 
Abbreviations are SP: Scott Plateau, EP: Exmouth Plateau, WP: Wallaby Plateau, NP: 
Naturaliste Plateau, KS: Kangaroo Syncline, RT: Rankin Trend, EsB: Exmouth sub
basin, DsB: Dampier sub-basin, BB: Browse Basin, (b) The Cuvier margin shows 
evidence for the development o f  seaward-dipping reflectors that are shown in an 
example reflection profile in box-C. Dense stipple shows oceanic crust, and crosses 
show inferred extent o f  pre-existing continental crust.
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uncompensated basement highs, causes gravity maxima. In most cases, such as over 

the Grand Banks, Newfoundland (Figure 1-4) the anomalies are strongly positive, 

with maxima o f 40-60 mGal, while over the oceanic region the anomalies are 

generally negative (because o f  the edge effect created by the continental margin).

In the young northern Red Sea (Figure 1-6), the central rift o f the nascent 

spreading center is characterized by both a gravity minimum and a heat flow high. In 

contrast, over the flanks o f the spreading center (the continental margins o f  the Red 

Sea) the gravity anomalies are a maximum (Pout etal., 1986; Cochran etal., 1986, 

1991; Martinez and Cochran, 1988, 1989).

3 . M a g n e t ic s

Although some continental margins exhibit prominent magnetic anomalies 

near continent-oceanic crustal transitions, they are often characterized by a "magnetic 

smooth zone" with extremely low-amplitude (or moderate) magnetic anomalies. The 

crust beneath the magnetic smooth zone has been interpreted as a unique 

"inhomogeneous amalgamation o f  different crustal types" or "rift-zone crust" (Talwani 

etal., 1979).

Along the southern Australian margin (Eyre Terrace and western Tasmanian 

margin, Figure 1-7) a broad (150 km-wide) magnetic smooth zone is cut by two main 

half-grabens and associated smaller fault blocks which comprise the Eyre sub-basin 

(Lister et al., 1991). The basin consists o f rotational normal faults that trend
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Figure 1-7. Eyre Sub-basin o f the southern Australia, (a) Map o f the southern 
margin o f  Australia (Lister et al., 1991). Location o f seismic profile X-X' interpreted 
in (b); M T is the axis o f  the magnetic trough which defines the landward edge o f the 
magnetic smooth zone. Numbered lines on the oceanward side o f  the magnetic 
smooth zone are magnetic anomaly traces interpreted by Cande and Mutter (1982), 
and previous interpretation by Weissel and Hayes (1972) are shown in parentheses,
(b) Line drawing from seismic-reflection profile X-X1 across the Eyre Terrace and 
out onto the continental rise o f  the southern Australian margin showing the ages o f 
sequences.
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east-northeast and transfer faults that trend northwest. The outer (seaward) boundary 

o f  the magnetic smooth zone coincides with this anomalously shallow, complex 

basement structure, and represents the sharp boundary with anomalously shallow 

basement topography with obvious oceanic crust produced at the southeast Indian 

Ridge (Lister et al., 1991).

Another example is the northern Red Sea region where the magnetic field is 

very flat (Cochran, 1982). The magnetic anomalies in this region are characterized by 

smooth low-amplitude (less than 100 y) anomalies. Many o f the magnetic anomalies 

are associated with gravity anomalies suggesting that they are due to complex 

basement structure or to intrusion o f  dense highly magnetic rock (Figure 1-6). The 

relationship between the gravity and magnetic anomalies in the northern Red Sea is 

typical for the early development o f  passive margins and suggests that when 

continental rifting was initiated by the plate motion o f Arabia respect to Africa, the 

lithosphere was still thick and cold, and thus extension therefore appears to occur 

diffusely across an area o f the order o f  100 km-wide rather than at a single “spreading 

center” (Bonatti and Crane, 1982). However, along transtensional margins, such as in 

the Norwegian-Greenland Sea, magnetic lineations are unclear or absent (Vogt,

1986),
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4 . H e a t  F l o w

According to Sclater etal. (1980) the newly-formed oceanic lithosphere 

progressively cools as it moves away from the mid-ocean ridge yielding heat flow 

which falls off at a decreasing rate from the ridge crest towards the oldest oceanic 

crust near the continental margins where it is often characterized by below average 

and relatively uniform values (about 40 mW/m2 for the ages o f  >50 Ma). However, 

unusual scatter may occur in the plot o f heat flow versus oceanic crustal age, which 

may be the result o f  the sedimentation effect or o f  the thermal structure o f the margin 

(Hutchison, 1985).

Some marginal plateaus are thermally uplifted and reheated. For example, 

high heat flow from the margins o f  the Northern Red Sea (Buck et at., 1988; 

Martinez and Cochran, 1989), along the southern and western margins o f  Australia 

(Cull and Denham, 1979), the eastern margins o f the Norwegian-Greenland Sea 

(Langseth and Zielinski, 1974; Crane et at., 1982; 1988; 1991; Okay and Crane,

1993) and eastern Arctic Ocean may suggest a volcanic build-up related to seafloor- 

spreading, perhaps due to interaction between marginal fracture zones and obliquely 

propagating mid-ocean ridges. Corresponding changes in a continent-ocean 

transition, seaward dipping volcanic sequences, oceanic basalt chemistry, positive 

free-air gravity anomalies as well as a magnetic smooth zone are all characteristic o f  a 

volcanic margin.
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Chapter 2

THE THERMO-MECHANICAL DEVELOPMENT OF 

TRANSTENSIONAL VOLCANIC MARGINS

A. SHEAR ZONES AND TRANSTENSIONAL VOLCANIC MARGINS

I . ' S t r u c t u r a l  D e v e l o p m e n t  o f  T r a n s t e n s io n a l  V o l c a n ic  M a r g i n s

Lithospheric structures, such as fracture zones can control the rifting process 

and distribution o f volcanism originating in the asthenosphere (Dewey and §engor, 

1979; McNutt, 1984). Newly forming plate boundaries interacting with pre-existing 

continental fracture (or paleo-shear) zones may control the initial break between 

continents (Atwater and Macdonald, 1977; Crane and Bonatti, 1987).and the 

development o f  passive margins (Courtillot, 1982; Bonatti and Crane, 1984; Bonatti,

1994). According to Courtillot (1982) and Bonatti and Crane (1984) paleo-shear 

zones can be thought o f  as “locked zones” that are resistant to opening by 

propagating ridges. These fractures are caused either by shallow mantle convection 

controlled by episodic mid-plate stresses or pre-existed in the crust prior to seafloor 

spreading.

In contrast to most oceanic fracture zones, which evolve at right angles to the 

direction o f  the mid-ocean ridge axis, paleo-shear zones tend to maintain their original 

orientation in the crust millions o f years after the initiation o f  new episodes o f  seafloor
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spreading. As new plate motions evolve, these pale-shear zones tend to remain 

oriented obliquely to present-day plate movement directions (Menard and Atwater, 

1968; Atwater and Macdonald, 1977; Crane and Bonatti, 1987), When a mid-ocean 

ridge propagates into a paleo-shear zone, the angle o f  impact (0°, Figure 1) o f  the 

propagating ridge and paleo-shear zone may control the state o f  stress across the 

newly forming volcanic margin (Crane, 1976; Kastens et al., 1979; Crane and 

Bonatti, 1987). Analyses o f bathymetry and magnetics suggest that ridges and paleo- 

shear zones readjust themselves to a nearly right-angled configuration (VanAndel et 

al., 1969; Crane, 1976; Atwater and Macdonald, 1977). The stress field surrounding 

a ridge-shear zone oblique intersection (depending on the angle o f  impact) must be 

asymmetric creating compression and transtension across the shear zone. In addition, 

during adjustment o f  the pre-existing structure to the new stress regime, extensional 

and compressional stresses must change in magnitude across the paleo-shear zone 

(VanAndel etal., 1969; Crane, 1976; Kastens etal., 1979; Crane and Bonatti, 1987; 

Crane et al., 1982). Thus, it is expected that asymmetric crustal structures and 

volcanism evolve as oceanic crust is created (Crane et al., 1991; Okay et al., 1993; 

Okay and Crane, 1993).

The asymmetric stress across the ridge-shear zone intersection may create 

passive margins under compression on the acute angle side o f  impact (Figure I). The 

compressional margin at the intersection should also be the site where magma 

accumulates vertically and dips seaward (Bonatti and Crane, 1982, 1984; Crane et al., 

1988; Okay and Crane, 1993). Through time, due to deviatoric stress around the
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ridge-shear zone intersection, forward propagation o f  the ridge ceases and it is 

deflected along the paleo-shear zone creating small zones o f  extension (pull-apart 

basins) in the process (Figure 2). The "punctiform" style o f  propagation along the 

shear zone allows the most rapid adjustment o f the ridge and paleo-shear zone to its 

ideal orthogonal shape (Bonatti and Crane, 1982; Bonatti, 1994). Besides 

compressional and extensional stresses, there may be combined dynamic effects o f  

forward-push force and lateral-spreading force acting on the newly forming margin.

The paleo-shear zone may be constructed o f deep-seated faults that act as 

strike-slip (shear) planes (Crane etal., 1988), accommodation zones (Rosendahl, 

1987), or detachment faults (Figure 2-1; Wernicke, 1985; Lister t?/a/., 1986, 1991; 

Buck et al., 1988; Etheridge et a l, 1990; Crane et a l, 1991; Torske and Prestvik, 

1991; Okay and Crane, 1993). In the extreme case, rifting along a detachment fault 

generates asymmetric extension that forces the spreading center to remain on one side 

o f  the newly forming ocean basin (Buck et al., 1988; Martinez and Cochran, 1988; 

Crane et a l, 1991; Okay and Crane, 1993). This case will be discussed later in the 

text.

2 . T h e r m a l  E v o l u t io n  o f  T r a n s t e n s io n a l  V o l c a n ic  M a r g i n s

Paleo-shear zones may evolve into volcanic passive margins if the 

temperature-structure at the intersection o f  a propagating ridge and a paleo-shear 

zone is characterized by large lateral thermal gradients. Several studies (England,
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1983; Houseman and England, 1986; Sender and England, 1989; Buck, 1991) show 

that lithospheric extension along a newly forming plate boundary can be considered as 

the deformation o f a thin-viscous sheet with a temperature-dependent rheology. 

According to the thin-sheet model, crustal rheologic variations at the transition zone 

produce lateral pressure gradients that cause the hot, weak, lower crust to flow (Buck, 

1991). The lower-crustal flow produced at the transition zone is analogous to the 

flow o f  mantle under a mid-ocean ridge (Buck, 1991). The rate o f  lower crustal flow 

also depends on crustal rheologic variations such as crustal viscosity, density, heat 

flux, thickness, and the rift width. The strain rate dependence o f  viscosity also plays 

an important role in the flow rate. For example, high stress decreases the effective 

viscosity, and increases the lower crustal-flow rate (Buck, 1991),

Along the nascent transtensional volcanic margin, the geometry o f  the 

obliquely propagating ridge and paleo-shear zone interaction produces asymmetric 

deviatoric stress that should increase the rate o f  the lower crustal-flow. The resulting 

thermal gradients should cause density instabilities that can induce small-scale 

convection in the upper mantle creating isotherms which form asymmetrically across 

the transtensional plate boundary. In this case, mantle material passively upwells to a 

depth where partial melting occurs (Verhoogen, 1954; Ahem and Turcotte, 1979; 

Foucher et al,, 1982) inducing a great volume o f  melting (M utter et al., 1988;

Pedersen and Skogseid, 1989; Zehnder etal., 1990; Keen et al., 1994). This type o f  

convection is enhanced by the temperature structure o f  the lithosphere that in turn



39

changes the temperature o f  the lithosphere by thermal expansion and causes a 

dynamic crustal uplift at the surface (Keen, 1987; Buck, 1986).

Along transtensional volcanic margins, the deviatoric stress fields surrounding 

the intersection o f  a propagating ridge and a paleo-shear zone may cause shallow 

magma bodies to erupt from the shear zone. However, the deeper asthenosphere may 

continue to propagate in its original direction perhaps in response to far-field state o f 

stress (Okay, 1994). I f  the paleo-shear zone only cuts through the shallow crust, then 

its likely that this propagating asthenospheric corridor will proceed underneath the 

paleo-shear zone intersecting other neighboring deep-seated pre-existing continental 

faults. These deep-seated faults could act as vertical thermo-mechanical boundaries 

(conduits) which promote the intrusion by dikes and in some cases the extrusion o f  

magma. In this manner, continental crust is thinned and underplated by mantle 

material (Bonatti, 1985, 1994), and the uplifting and thermal rejuvenation o f  the 

passive margin and adjacent continental crust will follow in the process (Okay and 

Crane, 1993; Okay, 1994).

Data suggesting asthenospheric underplating o f  adjacent continental crust 

might be the following:

1. a broad thermal sweil and uplift on the continental crust ahead o f the propagating 

mid-ocean ridge,

2. regions o f  off-axial high heat flow on and adjacent to the continental margin,

3. apparently younger crust on the compressional side o f the ridge and paleo-shear 

zone intersection.
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4. low free-air gravity anomalies and low seismic refraction velocities that are 

indicative o f hot, low-velocity mantle,

5. a magnetic smooth zone,

6. a seismically active region ahead o f  the propagating ridge tip or on the 

compressional side o f  the intersection indicating an asymmetric stress field,

7. large erosion and high sedimentation rates indicating rapid thermal uplift in the 

neighboring continental crust, and

8. oceanic-type mantle rocks lying at shallow levels on the edge o f  a transtensional 

volcanic margin (seaward-dipping igneous sequences), and "multiple zones o f 

intrusions" on the adjacent continental crust suggesting a propagating lateral heat 

source.

3 . T h e  E f f e c t s  o f  R ift  W id t h  o n  t h e  D e v e l o p m e n t  o f  T r a n s t e n s io n a l  

V o l c a n ic  M a r g in

Observations show, that thermal development o f some volcanic margins is 

controlled by asymmetric convection depending on the rift width (o f lithospheric 

extension; Turcotte et al., 1973; England, 1983; Buck, 1986; M utter et al., 1988; 

Martinez and Cochran, 1989). For example, a wide rift would take longer to develop 

than a narrow rift. Melt produced across a wide rift would be distributed over a much 

greater area than across a narrow rift. As an example, the northern Blake Plateau 

from the Carolinas to the Canadian Maritime provinces, has a width o f  transition
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which varies but is relatively narrow ranging from 15 to 20 km beneath the Baltimore 

Canyon Trough (Austin and Uchupi, 1982) to 70 km southeast o f  Nova Scotia (Keen 

and Keen, 1974). On the eastern side o f  the North Atlantic, faulted-thinned 

continental crust has a sharp contact with oceanic crust o ff Norway (Talwani and 

Eldholm, 1973), in the Bay o f  Biscay, and off northwestern Spain (Boillot etal.,

1980). Lake Tanganyika and Lake Malawi (and other) segments o f Africa rift system 

(Rosendahl, 1987), segments o f the North Anatolian Fault System ($engor et al., 

1985), and the southern part o f the Western Australian margin (Marshall and Lee,

1987) are also characterized by sharp continental transitions.

Buck (1991) recently proposed three extension modes observed in continental 

lithosphere: the narrow mode, the wide mode, and the core complex mode. Geologic 

conditions and observable differences o f the three modes o f extension are illustrated in 

Figure 2-2.

a. The Narrow Rift Mode:

Localized crustal thinning results in a narrower initial zone o f  lithospheric 

extension. Continued crustal thinning leads to narrow rifting. If  the lower crustal 

rheology is weak compared to the mantle rheology, narrow rifting occurs at a high 

strain rate. In this case, mantle lithosphere controls the weak lower crust to produce a 

narrow extension (Sawyer, 1985; Buck, 1991). For example in Figure 2-2a
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Figure 2-2. Three modes o f continental lithospheric extension (after Buck, 1991). 
Arrows represent directions o f strain.
(a) Characteristics o f  the narrow rift mode: concentrated upper crustal, lower crustal 
and mantle lithospheric extension. The rate o f induced mantle flow will be greater 
and faster for the narrow margin where more partial melting occurs.
(b) Characteristics o f the wide rift mode: uniform upper and lower crustal thinning 
over a width greater than the lithospheric thickness. The amount o f  produced melt 
remains the same but, because o f the wide extension zone, convection slows.
(c) Characteristics o f  the core complex mode: concentrated upper crustal extension 
with lower crustal thinning over a broad area.
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a narrow rift forms with an observed heat flow o f around 60 mW/m2 at the rift valley 

(o f  a continental rift), and the estimated crustal thickness at the time o f rifting is 

greater than 80 km (Buck, 1991). Along the passive margin, the extension o f  the 

lithosphere continues as a narrow rift until an ocean basin forms and the locus o f 

extension becomes a mid-ocean ridge (Rosendahl, 1987; Buck et al., 1988; Buck, 

1991).

b. The Wide Rift Mode:

The wide rift mode occurs when an upper- and lower-crust thins 

homogeneously over a wide area that is greater than its lithospheric thickness (Figure 

2-2b). Examples o f  this type o f  rifting are similar to the Basin and Range and Aegean 

regions. In the Basin and Range the average heat flow is about 90 mW/m2 

(Lachenbruch and Sass, 1978) and the crustal thickness is 25-35 km (Eaton, 1963). 

The Aegean Sea region extends with an average extension rate o f  3-10 cm/yr 

(McKenzie, 1978), and is without any extrusive volcanic imprints (Dewey and 

$engor, 1979). The heat flow in the Aegean region is greater than 90 mW/m2 

(Jongsma, 1974), and crustal thickness is about 30-35 km (Makris, 1982).

c. The Core Complex Mode:

Core complexes are areas where high-grade metamorphic rocks have surfaced 

from the lower crust (Davis, 1988). Core complexes occur when the upper crust is
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extended locally in association with a detachment fault or a shear zone (Wernicke, 

1985; Lister el al., 1986; Buck etal., 1988; Block and Royden, 1990; Buck, 1991).

The transtensional volcanic margin geometry may produce a core complex 

formation if  it forms at the intersection o f  a propagating ridge with a shear zone. In 

this case, the newly forming crustal transition zone causes crustal differences that 

produce horizontal-thermal gradients and lower-crustal flow. With increasing 

deviatoric stress the lower-crustal flow causes the lithosphere to be hotter or thinner 

than normal. This crustal rheology could produce core complexes at a region, where 

broad underplating occurs identifiable by a thermal swell and uplifting o f  the 

continental crust.

The lower crustal flow has the effect o f  thinning the crust over a broad area 

(Figure 2-2c, less than 100 km; Buck, 1991). When the lower crust cannot flow fast 

enough then the mode o f extension depends on the lithospheric strength. For 

example, the Northern Red Sea (a narrow rift) and the Basin and Range (a wide rift) 

have experienced and are presently experiencing similar extension rates (Buck, 1991). 

This indicates that these regions were subjected to different initial thermal parameters 

depending on their crustal rheologies. A narrow rift forms when the lower-crustal 

rheology is weak or the lithospheric rheology is strong (if the lithosphere is initially 

cold). A wide rift forms when the crustal rheology is strong or lithospheric strength is 

weak ( if  the lithosphere is initially warm). A core complex forms when the 

lithosphere is hotter or thinner than normal. Then the Iower-crust can flow rapidly to
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form core complexes. This may be produced by a broad underplating o f cold 

lithosphere and lateral heating.

Heat flow versus crustal thicknesses for all three modes from several locations 

are compared in Figure 2-3. The crust is considered to be thick at the time o f  core 

complex extension in the Altiplano, in the Andes, and the Tibetan Plateau (Hamilton,

1987). Both the Altiplano and Tibetan Plateau have a crustal thickness o f  around 60 

km and their heat flow values average 90 mW/m2 (Henry and Pollack, 1988). It is 

thought that a good example o f a core complex formation is found in the Basin and 

Range Province (Buck, 1988, 1991). Buck (1991) suggests that the southern Basin 

and Range passed through all three modes o f extension. Rifting started with the core 

complex formation followed by a wide rift mode, which is characterized by high angle 

normal faults and distributed upper crustal extension. He suggests that the last phase 

has now begun with the propagation o f  narrow rifting in the western and eastern sides 

o f  the region.

B. MECHANICAL MODES OF LITHOSPHERIC EXTENSION

Extension thins the continental crust and heats the lithosphere by upwelling or 

propagation o f  asthenospheric material. The role o f lithospheric extension models: 

pure-shear and simple-shear on the development o f various types o f continental 

margins are described in the following sections. Model formulations and parameters 

for various types o f lithospheric extension models are presented in Appendix A-3.
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l . P u r e - S h e a r  L it h o s p h e r ic  E x t e n s io n  M o d e l

a. Symmetric Pure-Shear Lithospheric Extension Model:

Pure-shear lithospheric extension can be produced by mantle-activated rifting 

that is a result o f upwelling asthenosphere or a vertically rising mantle plume from the 

core-mantle boundary (LePichon and Sibuet, 1981; White and McKenzie, 1989; Latin 

and White, 1990; Kent et al., 1992). In this case, rifting extends upper crust over 

uniformly- thinned lower crust (McKenzie, 1978). This type o f  extension mechanism 

thins the upper-brittle crust above the lower-ductile crust (Figure 2-4). The depth to 

M oho moves symmetrically into the region where the maximum thinning occurs, 

Melting is centered under the region o f  maximum crustal thinning. Upwelling o f  

asthenospheric material produces a rapid symmetric extension and uplifting. The 

extension and melt production depend on the changing width o f the extension over 

time. M ore partial melt can be produced with a large extension rate or with a narrow 

width o f  extension (Buck et al., 1988). Slow extension rates (<1 cm/yr) or zones o f  

wider extension cannot produce the conditions approaching the mantle solidus 

anywhere in the lithosphere (Buck etal., 1988; Martinez and Cochran, 1989).

The amount o f  uplift depends on the amount o f  heat transported by 

convection and the anisotropy o f viscosities in the lithosphere (Artyushkov, 1973; 

Bhattacharji and Koide, 1978; Bott, 1982). Mantle-activated rifting is triggered by 

the strength o f  the lithosphere to respond to vertical movement o f the anomalously 

Iow-density mantle below it. If  the plates bounding the region prevent the rifting 

apart at a rate that forms oceanic crust, then a hotspot will result.
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P u re  S h e a r  L i th o s p h e r ic  E x te n s io n
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Figure 2-4. Pure-Shear Lithospheric Extension Model. The first diagram is a 
geologic model o f  pure-shear lithospheric extension. A series o f  diagrams illustrates 
the lithosphere and asthenosphere during the pure-shear lithospheric extension (from 
time= 0 to time= 2). The model produces melting centered under the region o f 
maximum crustal thinning. Wo, initial width o f extending zone; Wpr, width o f 
extending zone; Wr, width after extension (Buck et a i,  1988).
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b. Asymmetric Pure-Shear Lithospheric Extension Model:

The asymmetric pure-shear lithospheric extension model is a migrating pure- 

shear extension (Figure 2-5). The lithospheric plates on either side o f the extension 

move with different extension rates in opposite directions. Asymmetric extension 

occurs when one flank o f  a spreading center extends more than the other flank. 

Mantle-activated rifting may produce asymmetric pure-shear extension that in turn 

produces asymmetric topography, heat flow and crustal thickness (Crane et al., 1991; 

Okay and Crane, 1993). In addition, asymmetric deviatoric stress across the 

intersection o f  a propagating rift and shear zone may produce asymmetric pure-shear 

extension o f the lithosphere (Crane e/al., 1991). In this model, it is assumed that the 

horizontal gradient o f the horizontal extension is constant across the extending region 

and is equal to the vertical gradient o f vertical extension.

c. Ridge Shift (Jump) Model:

The ridge shift model presents a rifting scenario where one active rift dies and 

a new rift opens up at some distance from the previous rift. This mechanism is 

illustrated in Figure 2-5 (Crane et al., 1991). Episodic behaviors o f  mantle-activated 

rifting may regenerate or relocate the convective melting and ridge axis. Conjugate 

aseismic ridges may also develop during this process (LaBrecque and Hayes, 1979; 

M utter et al., 1988). There is no direct evidence how this relocation occurs although 

one hypothesis proposes that the rifting shifts in response to the state o f  deviatoric 

stress about the plate boundary.
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Figure 2-5. Geologic models o f  various lithospheric extensions. Schematic diagrams 
o f lithosphere and asthenosphere during and after extension (Crane et al., 1991).
(a) Asymmetric Pure-Shear Lithospheric Extension produces an asymmetric cross- 
section o f  the deformed brittle-upper layer o f  the lithosphere over a ductile-lower 
layer. Difference in extension velocities (U ^/ and U ^ )  produces asymmetry. W0, 
initial width o f  extending zone.
(b) Simple-shear lithospheric extension occurs along a low angle (0°) detachment 
fault. The detachment fault divides the lithosphere into an upper plate (hanging-wall) 
and lower plate (foot-wall). Thinning o f  the lower lithosphere is offset from the 
thinning o f  the upper lithosphere producing an asymmetric lithospheric cross-section 
along the detachment fault. Wss, width o f  the extending zone under simple shear.
(c) The ridge jump (shift) model produces a shift in the ridge center. This mechanism 
results in asymmetric pure-shear lithospheric extension o f  the continental lithosphere.
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When the ridge-axis shifts into an older region o f an oceanic basin, vigorous 

short-lived convective flow generates a newly forming thick oceanic crust (M utter et 

al., 1988). Detailed studies indicate that shifting occurs almost instantaneously 

(LaBrecque and Hayes, 1979; Cande et al., 1982). During ridge propagation there 

may be one or more shifts o f the ridge axis towards a particular direction. The ridge 

shift model generates a net strain that is created by at least two episodes o f  symmetric 

spreading.displaced laterally from one another (Mutter et al., 1988). This type o f  

extension produces asymmetric topography, heat flow and crustal thickness (Figure 2- 

5; Crane et al., 1991).

d. Examples o f Pure-Shear Lithospheric Extension:

Pure-shear extension is thought to be the most common type o f extension 

associated with seafloor spreading. In fact, most o f  the quantitative extension models 

depicting the formation o f  extensiona! plate boundaries were based upon the concept 

o f  pure shear extension (e.g., the Mid-Atlantic Ridge and the East Pacific Rise).

Examples o f  ridge-shift extension are more commonly found in the Pacific 

where plate boundaries are thought to be more mobile and have faster spreading rates 

(>1 cm/yr). Cases such as the Galapagos Rise, and the Mathematicians Seamounts 

characterize once active extensiona! plate boundaries that were deactivated and 

abandoned by ridge shifting during the incremental formation o f  the presently active 

East Pacific Rise.
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2. S im p l e - S h e a r  L it h o s p h e r ic  E x t e n s io n  M o d e l

a. Asymmetric Simple-Shear Lithospheric Extension:

Some young continental and oceanic rifts (with slow spreading rates) are 

thought to open by simple-shear lithospheric extension (produced across a 

detachment fault or shear zone surface), in an environment where propagating rift- 

magma enters into the previously fractured crust characterized by obliquely dipping 

faults (Wernicke, 1985; Lister et al., 1986, 1991; M utter et al., 1989; Etheridge et al., 

1990; Crane etal., 1991). Detachment faults are thought to extend from the upper 

crust through the Moho and into the lower crust (Figure 2-5). During extension, 

lower crust and upper mantle lithosphere is thought to be dragged from under the 

upper crust along the detachment fault surface. The result is the substitution o f  mantle 

material for lower crustal rocks and the asymmetric uplift o f  the continental crust. 

However, at no point is the advected lithosphere near the mantle solidus (Buck et al.,

1988), Since simple shear extrusion is always less effective than pure shear in 

including partial melting (Buck et al., 1988), a relatively steep detachment is required.

Symmetric pure-shear models assume that the detachment fault represents the 

brittle-ductile transition and is characterized by rotated tilt blocks, over a  more 

uniformly stretched ductile lower crust. However, Wernicke (1985) suggested that 

some detachment faults represent !ow-angle normal-faults that cut through the entire 

lithosphere (Figure 2-1). An alternative extension geometry may involve 

delamination o f  the lithosphere suggested by Lister et al. (1986), where the 

detachment zone runs horizontally below the brittle-ductile transition, steepens, and
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then again runs horizontally at the crust-mantle boundary. Lister et al. (1986) also 

emphasize that detachment faults may be merely upper crustal manifestations o f major 

ductile shear zones at depth (Davis et al., 1986). Lister et al. (1986) also predicted 

that there may be two broad classes o f passive margins: upper- and lower-plate 

margins. Upper-plate margins comprise rocks originally above the detachment fault 

and lower-plate margins comprise the deeper crystalline rocks o f the lower plate, 

Upper-plate and lower-plate margins will differ in their rift-stage structure and their 

uplift/subsidence characteristics. Their character may suggest the location of: the 

continent-ocean transition zone, the nature o f complex detachment-fault geometries, 

and the role o f transfer faults in the creation o f asymmetric margins (Lister et al.,

1986, 1991).

Simple-shear lithospheric extension produces asymmetries in crustal thinning, 

uplift, and heat flow (Buck et a l,  1988; Crane et al., 1991; Okay and Crane, 1993). 

The degree o f  asymmetry is controlled by the rate o f  extension, width o f  the shear 

zone and dip angle o f the detachment fault (0° in Figure 2-5), because these have an 

effect on the lateral heat input from the propagating asthenosphere into the fractured 

continental lithosphere.

b. Examples o f  Simple-Shear/Detachment Fault Extension:

Detachment style-lithospheric extension has been suggested for regions in the 

US Basin and Range Province, the northern Aegean Sea, Western Anatolia, the 

northern Red Sea, regions along the Mid-Atlantic Ridge, the NW  Australian Margin,
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and in the Norwegian-Greenland Sea. Also, examples o f  such rotated high-angle 

normal faults have been observed from the Bay o f  Biscay, the Galicia margin, Grand 

Banks o f  eastern Canada, and outer continental slope o f  the Otway Basin o ff the 

northwestern Tasmanian margin (Figure 3).

The concept o f detachment fault-extension was first applied by Wernicke 

(1981, 1985) to the Basin and Range Province, a region where lithospheric extension 

could be accommodated by a zone penetrating the lithosphere along a low-angle 

normal fault (<30°). This fault is associated with the formation o f  the metamorphic 

core complexes and/or (mylonitic) detachment terranes that consist o f a brittle upper 

plate overlying ductilely deformed igneous and metamorphic rocks. The upper plate 

is truncated at its base by low-angle faults (Lister et al., 1986),

The detachment fault-extension in the Aegean Sea and Western Anatolia are 

presently characterized by a number o f normal faults (listric faults) which have steep 

dips at the surface in the E-W and N-NE trending grabens (McKenzie, 1978; Dewey 

and §engor, 1979). Earthquake fault plane solutions show that the dips decrease with 

depth (McKenzie, 1978) suggesting that these faults are detachment surfaces. 

Structural and paleomagnetic data show that large fault rotations (>20°) occurred. 

Similar listric faults have been proposed for the Rhinegraben ($engor e ta l ., 1978; 

lilies, 1979).

In the Red Sea, simple-shear lithospheric extension is thought to produce 

significant melting depending on the rate o f extension and the dip o f the detachment 

fault (Buck etal., 1988). In the northern Red Sea a simple shear-lithospheric
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extension model (with an extension rate o f  1 cm/yr and a fault dip o f  30°) predicts 

that the asthenosphere moves slowly (or the lower crust flows) into the base o f the 

attenuated lithosphere during the rifting process.

Mutter et al. (1989) and Lorenzo etal. (1991) proposed that initial 

deformation o f  the northwest Australian passive margin was caused by simple-shear 

extension along low-angle detachment fault planes. As the asymmetric extension 

continued, partial melting resulted from the decompression o f  propagating 

asthenosphere underplating the continental crust in the region. In the process, 

convective heating induced thermal uplift o f the continental crust creating the 

Naturaliste, Wallaby, Cuvier, Exmouth and Scott Plateaus in the process (Lister et 

al., 1986, 1991; M utter et al., 1988, 1989; Etheridge et a ! . ,1990; Lorenzo etal., 

1991). Later, simple shear extension passed laterally into pure-shear extension 

characterized by high-angle normal faults and more volcanism. The region thus 

became the locus o f continental break-up and seafloor spreading (M utter et al., 1989; 

Lorenzo et al., 1991),

M ore recently, Crane et al. (1991) and Okay and Crane (1993) proposed 

detachment fault-extension scenarios for the evolution o f  the plate boundary in the 

Norwegian-Greenland Sea. A full description o f  the evolution o f  this plate boundary 

and the eastern margin forming the boundary between the northern Norwegian- 

Greenland Sea and western Barents Sea are the focus o f  this thesis.
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3 . D if f e r e n t ia t in g  L it h o s p h e r ic  E x t e n s io n  M o d e l s

Pure- and simple-shear lithospheric extension models have been widely used 

to explain the morpho-volcano-tectonic variations o f passive margins (Lister et al.,

1986, 1991; Buck etal., 1988; Mutter et al., 1989; Etheridge et al., 1990; Lorenzo et 

al., 1991; Crane et al., 1991; Okay and Crane, 1993). For the past 12 years, there 

has been considerable controversy concerning the nature o f  lithospheric extension. In 

1978, McKenzie proposed the uniform stretching model, which stated that the 

lithosphere deforms by bulk-pure shear during extension (Figure 2-4). On the basis o f 

field mapping, seismic experiments, and considerations o f the asymmetric distribution, 

magmatism and topography in the Basin and Range Province, Wernicke (1981, 1985) 

argued that lithospheric extension could be accommodated by slip along a low-angle 

(10°-30°) normal fault that penetrates the entire lithosphere (Figure 2-5).

In many cases, topographic asymmetries are also observed across conjugate 

margins. The observations in these regions indicate that normal faults which extend 

through the lithosphere act as ductile-shear zones, or detachment faults (Wernicke, 

1985; Sawyer, 1985; Lister etal., 1986; Buck, 1988), which can not be predicted by 

symmetric pure shear-lithospheric extension models. In this case, a low-angle 

detachment fault is thought to form along deep-seated faults rooted orthogonally to 

the lithosphere, in which all these faults control the development o f half-graben 

complexes (Wernicke, 1985). Lister et al. (1986) proposed that, the asymmetry o f  an 

evolving ocean-margin is determined by the direction the detachment fault dips:
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toward the mid-ocean ridge or away from it. In this case, conjugate passive margins 

are described as either upper- or lower- plate in character, depending on their 

particular geometries. However, following McKenzie and Bickle (1988), Latin and 

White (1990) argued that on the basis o f  seismological data from areas o f  active 

extension, such as the Aegean, Basin and Range, Yunnan (China), East Africa, Suez, 

and the North Sea, active normal faults do not have dips o f  <30°. These authors 

favor a pure shear rather than simple-shear mechanism for magma generation 

resulting from adiabatic upwelling o f  the asthenosphere during extension. Like others 

(Buck et al., 1988), Latin and White (1990) propose that only very small amounts o f  

melt are likely to be produced by simple shear lithospheric extension mechanism.

In contrast, some authors have proposed that detachment faults are thought to 

control both the structural and thermal development o f  volcanic passive margins and 

continental-oceanic crustal transition zones. The investigations o f  Buck etal. (1988), 

Crane etal. (1991), and Okay and Crane (1993) suggest that once intruded by a 

propagating ridge, new basaltic crust may intrude up along the detachment surface.

As extension continues, oceanic crust should develop asymmetrically towards the 

ocean side o f  the detachment fault. Mantle lithosphere is then dragged along the 

detachment fault from the lower crust. If  extension continues for a sufficient time, 

then marginal plateaus and new oceanic crust develops asymmetrically on either side 

o f  the detachment surface (Okay and Crane, 1993).

Lister et al. (1986) and Okay and Crane (1993) advanced this model further, 

stating that more than one detachment fault can be involved in continental lithospheric
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extension. When a shear zone related detachment fault cuts another detachment fault 

with opposite dip, movement across one zone deactivates the other, creating low- 

standing plateaus along the transtensional volcanic passive margin. Entrapment o f  

asthenospheric material may occur within any o f  the deep-seated faults cutting the 

detachment surface. I f  a rift propagates into one or more o f  these faults, then magma 

may erupt along the surface o f the fault, while the deep-seated asthenosphere may 

continue to propagate in its original direction. In this way, multiple zones o f  

intrusions could occur as one fault at a time is crossed by moving asthenosphere. The 

net effect on the surface would be the appearance o f  multiple zones o f extrusion 

creating a broad-diffuse plate boundary.

Since pure- and simple-shear lithospheric extension mechanisms produce 

different geological and geophysical patterns within an extending region, volcanic 

passive margins formed by the pure shear extension process (a rifled volcanic margin) 

should exhibit:

1. symmetric bathymetry created by the subsidence o f  cooled continental and oceanic 

crust.

2. relatively low and uniform heat flow (averaging 40 m W /m') predicted by 

subsidence models for age-dependent cooling o f  oceanic crust,

3. prominent magnetic anomalies that allow determination o f  crustal ages along the 

margin,

4. marginal isostatic gravity highs, indicating oceanic crust injected during the initial 

spreading between continents.
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5. broadly spaced, listric faults interspersed by dipping reflector sequences suggesting 

the extrusion o f  ponded lavas through these faults.

In contrast, a volcanic margin formed by simple-shear lithospheric extension 

(transtensional volcanic margin) should exhibit:

1. a relatively narrow structural transition from continental to oceanic crust 

dominated by one or a few closely spaced deep-seated faults interspersed with shallow 

marginal plateaus,

2. asymmetric bathymetry created by compressional and volcanic uplift and marginal 

plateau formation on one margin vs. low lying broad extensional-type relief on the 

opposing margin,

3. regions o f high heat flow along the margin,

4. large erosion and high sedimentation rates indicative o f  rapid uplift,

5. a "magnetic smooth zone" indicating a broad intrusion/extension o f  volcanic 

material near and overlapping the continent-oceanic crust transition,

6. an asymmetric distribution o f earthquakes indicating an asymmetric stress field,

7. oceanic-type mantle rocks at shallow levels on the edge o f  the margin, and

8. "Seaward-dipping igneous sequences" similar to "core complexes" in the 

continental lithosphere, and "multiple-zones o f  intrusions" on the continental crust.
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Chapter 3

THE NORWEGIAN-GREENLAND SEAFLOOR

A. CHARACTERISTICS OF THE PLATE BOUNDARIES

I . P r e s e n t - D a y  P la te  B o u n d a r ie s

The Mid-Atlantic Ridge can be traced as the Knipovich Ridge into the 

northern Norwegian-Greenland Sea and divides it asymmetrically (Figure 3-1). The 

ultra-slow spreading Knipovich Ridge (1.5-2.3 mm/yr half rate on the eastern flank 

and 1.9-3.1 mm/yr on the western flank at 78°N; Crane et al., 1988; 1991) lies close 

(less than 100 km) to the western Svalbard Margin. The Knipovich Ridge is 

characterized by a partially buried rift valley covered by sediment (3200-3700 m deep 

its northern terminus; Crane et al., 1990, 1991). The current spreading half-rates 

vary from 1.1 cm/yr in the southern Norwegian-Greenland Sea to 0.3 cm/yr in the 

eastern Eurasia Basin within the Norwegian-Greenland Sea (Eldholm etal., 1987). 

The present-day structural geometry also supports the hypothesis o f  complicating 

ridge propagation (Crane et al., 1991).

Off-axial bathymetric highs trend obliquely away from the Knipovich Ridge 

(roughly parallel the NVV-SE relative plate direction, Crane et al., 1988, 1990, 1991), 

Close to the intersection with the Molloy Transform the Knipovich Ridge bends
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Figure 3-1. Location map o f  the study area (within the frame) and present piate 
boundaries in the Norwegian-Greenland Sea and eastern Arctic Ocean. Bathymetry 
contours every I km (Perry d a !., 1980). Abbreviations, from south to north: JMFZ: 
the Jan Mayen Fracture Zone, JMR: the Jan Mayen Ridge, HF: Hornsund fault, VPE: 
Voring Plateau escarpment, SFZ: the Senja Fracture Zone, GFZ: the Greenland 
Fracture Zone, KR: the Knipovich Ridge, MTF; the MoIIoy Transform Fault, SSZ: 
the Spitsbergen Shear Zone, YP: the Yermak Plateau, NR: the Nansen Ridge. 1: the 
Norwegian Margin, 2: the Senja Margin, 3: the Western Svalbard Margin, 4: the 
Northern Svalbard-Nordaustlandet Margin.
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westward (Crane et al., 1990; Okay etal., 1993). The Molloy Ridge and Molloy 

Transform Fault represent small pull-apart basins which have grown into tiny mid

ocean ridge segments offset by transform faults (Crane et al., 1982, 1991; Okay et al., 

1993). A fossil transform fault-ridge (the Hovgard Ridge) is comprised o f  a 

seamount-like peak on its eastern part (Crane et al., 1991) and an elongated (fossil) 

ridge on its western part (Myhre and Eldholm, 1988) in the northern Boreas Basin 

(78.4°N, 1°E). The Molloy Ridge, a pull-apart basin within the Spitsbergen Fracture 

Zone is a small section o f newly forming oceanic crust (Crane et al., 1982, 1990, 

1991). The Molloy Deep (79.2°N, 2.80E), a nodal basin (exceeding 5000 m) lies at 

the intersection o f  the Molloy Ridge with the Molloy Transform (Thiede etal., 1990).

The current plate boundary is believed to continue into the Arctic Ocean along 

a deep trough that was once called the Spitsbergen Shear or Fracture Zone (Crane et 

al., 1982, 1991), and its detailed structure is still not well-known (Talwani and 

Eldholm, 1977; Sundvor etal., 1977; Vogt, 1986; Thiede et al., 1990). Crane etal. 

(1982) suggested that sections of the northern Spitsbergen Shear Zone had been 

invaded by rift propagation southward from the Nansen Ridge.

The northern terminus o f  the Spitsbergen Transform Fault continues into the 

elongate Lena Trough (81°N, 3°W; the most northerly section o f  the obliquely 

opening mid-oceanic ridge; Crane etal., 1991). Detailed morphology o f the Lena 

Trough is not available as it lies under year-long ice cover. It is perceived to be a 

leaky-transtensional zone oriented subparallel to the Knipovich Ridge. Further to the
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NW, the Lena Trough intersects with the Nansen Ridge at the northern terminus o f 

the Fram Strait (Thiede et al., 1990).

2 . P l a t e  B o u n d a r y  E v o l u t io n

Prior to the Cenozoic, the area between Norway and Greenland was a part o f 

a large epicontinental sea extending into the North Sea and Barents Sea (Birkenmajer,

1981). From Chron 25/24 to 13 the plate boundaries o f the North American, 

Greenland and Eurasian plates met a triple junction, called the North Atlantic Triple 

Junction (Figure 3-2, Kristoffersen and Talwani, 1978; Srivastava, 1978; Reksnes and 

Vagnes, 1985).

During several extensional phases in the Mesozoic and the late-Paleocene, the 

crust between Norway and Greenland was thinned without a crustal break-up 

(Talwani and Eldholm, 1977). Seafloor spreading was initiated between Chron 25 

and 24 (LaBrecque et al., 1979). According to Talwani and Eldholm (1977),

Reksnes and Vagnes (1985), Max and Ohta (1988), and Crane et al. (1991) since the 

inception o f  seafloor spreading, the plate boundaries between Greenland, Norway, 

and Svalbard have been controlled first by shearing and then transtension (Figure 3- 

3). Prominent fault lineations and sedimentary basins off Norway and the North Sea 

resulted from a widespread, nearly synchronous rifting episode during the late Jurassic 

and early Cretaceous (Ziegler, 1978).
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C h r o n  24

Figure 3-2, Evolution o f three plate movements. Simplified model showing the 
tectonic evolution o f the region adjacent to the Norwegian-Greenland Sea (NGS) and 
Arctic Ocean (AO). The movement o f three plates (anomaly 24), GR: Greenland,
NA: North America, EU: Eurasian plates. Bathymetry is indicated by 2000 m contour 
(after Jackson et al., 1984).
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Figure 3-3. Initial seafloor opening o f the Norwegian-Greenland Sea. Simplified 
model shows the principal events by Muller and Spielhagen (1990). The motion 
between Greenland and Eurasia between Chron 33 (80 Ma) and 13 (36 Ma) is 
calculated by Srivastava and Roest (1989).
(a, b) During Chron 33: In the Lower Paleocene the plate boundary jum ped eastward 
to the Hornsund fault Zone. A drastic counterclockwise change in spreading 
direction in the Labrador Sea caused between Chrons 25 (59 Ma) and 24 (56 Ma) 
caused transpression between Greenland and Svalbard.
(c) Strike-slip dominated transpression characterized the period from Chron 24 to 2 1 .
(d) During Chron 23: initial seafloor opening o f  the Norwegian-Greenland Sea (the 
Aegir and Mohns Ridges), simplified model by Reksnes and Vagnes (1988), HF: 
Hornsund Fault, SM: Senja Margin, MR; Mohns Ridge, JMFZ: Jan Mayen Fracture 
Zone, AR: Aegir Ridge, VP: Vering Plateau.
(e) During Chron 21: giving rise to 160 km ofdextral strike-slip and 15-20 km of 
shortening determined using finite reconstruction poles for Eurasia relative to 
Greenland from Srivastava and Roest (1989).
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The Jan Mayen Fracture Zone System may have originated as a zone o f  

structural weakness in the late Paleozoic and may have been active during the rifting 

events in the Mesozoic (Bukovics and Ziegler, 1985; Mutter et al., 1984; Skogseid 

and Eldholm, 1987; Eldholm et al., 1984; Torske and Prestvik, 1991). The paleo-Jan 

Mayen and Senja-Greenland Fracture Zones were oriented in such a way that the 

early episode o f  rifting propagated obliquely into these features (Figure 3-3). The 

Voring Plateau was formed, in the region, during the initial opening o f the southern 

Norwegian-Greenland Sea by a voluminous volcanic pulse at the oblique intersection 

o f  the Aegir Ridge with the Jan Mayen Fracture Zone (M utter et al., 1984; Hinz et 

a/., 1987; Skogseid and Eldholm, 1987; Eldholm, 1991; Eldholm and Grue, 1994).

It is generally believed that the Jan Mayen Ridge is o f  continental origin and 

that it was separated from Greenland (25 mybp) by the formation o f a new spreading 

center: the Kolbeinsey Ridge (Figure 3-1; Skogseid and Eldholm, 1987). During this 

separation, the Jan Mayen block was faulted and its configuration o f  en-echelon 

rifting was the result o f shearing o f the Jan Mayen blocks (Nunns, 1982, 1983;

Nielsen, 1983). On the eastern side, faults occurred during episodic extension in the 

Paleocene. Spreading in the new location (between Greenland and the Jan Mayen 

Ridge) continued until it centralized about the Kolbeinsey Ridge axis during the last 

10 mybp (Vogt, 1986). After the spreading axis shifted from the Aegir Ridge to the 

Kolbeinsey Ridge, the Jan Mayen Ridge was left as a remnant on the seafloor.

The Senja Margin was formed from a megashear zone during the Eocene. 

Between Chron 25 and 24 the plate boundary was offset between the incipient
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Lofoten-Greenland and Eurasia Basins by a regional shear zone probably along the 

Senja Fracture Zone (Trolle Land Fault Zone) lineament (Figure 3-3). The plate 

boundary along the Senja Margin propagated to the northeast between Chron 21 and 

13. About 50 Ma ago the separating axis shifted to the northwest forming the passive 

margin between Bjorneya and 76.5°N creating a deep basin north of the Senja- 

Greenland Fracture Zone. The early-Paleocene reactivation o f the Kimmerian 

Wrench system along the Senja-Western Svalbard Margin coincides with the dextral 

shear motion along the Trolle Land Fault Zone (Max and Ohta, 1988).

The northern part o f the Senja Margin evolved during the major 

reorganization o f relative plate motion at 36 Ma. During this period, the plate 

configuration caused transpression between northern Greenland and Svalbard, 

creating local transpression and transtension across the Tertiary Wrench Regime in 

the region (Steel et at., 1985; Reksnes and Vagnes, 1985; Muller and Spielhagen, 

1990). Along Bjorneya and the Western Svalbard Margin, pre-existing faults were 

repeatedly reactivated during the mid-Jurassic and late-Cretaceous (Birkenmajer, 

1981). Also, during this time, dextral transpression controlled the wrench movement 

o f  the Hornsund Fault Zone (Sundvor and Eldholm, 1979; Vogt, 1986; Max and 

Ohta, 1988). At Chron 13 the Hornsund Fault Zone became the plate boundary 

(Figure 3-4). This shift in relative plate motion to the northwest along the paleo- 

Spitsbergen Shear Zone, caused crustal thinning and later sea-floor spreading in the 

northern Norwegian-Greenland Sea.
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Because o f  increasing deviatoric stress around and near the Spitsbergen Shear 

Zone, seafloor spreading could have caused the Mohns Ridge to propagate northward 

and into the shear around 50 mybp forming the Knipovich Ridge in the process 

(Figure 3-4). The oblique intersection between the Mohns Ridge and the Spitsbergen 

Shear Zone could have generated complex regions o f extension and compression 

along and across the former shear zone. Continuing readjustment o f the plate 

boundaries throughout the transtensiona! shear zone could have resulted in the 

slivering o f  the Western Svalbard Margin and the transportation o f these slivers to the 

northwest along the coast o f Svalbard. For instance, the Hovgard Fracture Zone is 

thought to be a remanent piece o f  continental crust rafted away from the Senja 

Margin (Myhre ei al., 1982).

According to Crane etal. (1988, 1991) the latest episode o f  rift propagation 

along the Knipovich Ridge occurred between 12 and 16 mybp, and was marked by 

new episodes o f volcanism on Svalbard. As the spreading was slow and confined to a 

narrow region, magma ponded upwards perhaps creating or thermally rejuvenating 

pre-existing plateaus in the process (Crane et al., 1991; Okay and Crane, 1993).

One o f  these, the southern Yermak Plateau was probably thermally reactivated 

between 16-10 mybp (Crane etal., 1982). During Chron 13 to 7, Birkenmajer 

(1981) suggests that this region underwent extension as well as shear and 

compression. The southern plateau could be the result o f  a thinned and stretched 

continental crust created as ridge and transform systems migrated across the region.

In addition, underplating o f Spitsbergen by a propagating asthenospheric front may
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Figure 3-4. The relative motion between Greenland and Svalbard at Chron 13 with 
the present coordinate grids and the present magnetic anomaly amplitudes (Vogt, 
1986). Strike-slip movement dominated the region until 35.9 mybp, subsequently 
followed by seafloor spreading (Muller and Spielhagen, 1990). Using the pole o f 
rotation for the Eurasian plate (EU) relative to Greenland plate (GR) (after Srivastava 
and Roest, 1989). Hatched area indicates gaps (dominated by extension) between 
continental margins (dashed lines are pre-existing continental weaknesses); stippled 
area indicates overlaps; dark area indicates compression (transpression). The opening 
o f  the Norwegian-Greenland Sea (along the Knipovich Ridge) and the Eurasian Basin 
along the Nansen Ridge (NR) started along the Senja-Westem Svalbard Margin, 
giving rise to an extensional tectonic regime. The location o f  Svalbard relative to the 
Yermak Plateau (Y), across the Nansen Ridge is a similar feature, the Morris Jesup 
Rise (M). NW-SE trending faults are shown in dashed lines; HF: the Hornsund Fault 
Zone.
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have caused injection o f basalt into pre-existing shear zone related faults on Svalbard 

(Okay, 1990; Okay and Crane, 1993; Okay et al., 1991, 1993). The southern section 

o f  the Yermak Plateau may have been created in response to a broad and rapid 

injection o f  basalt along the continental margin (Okay and Crane, 1993). Thus, the 

present Spitsbergen Transform should be a post-Chron 5 (ca. 10 Ma) feature, and 

only a small remnant o f  the once immense Spitsbergen Shear Zone.

According to Skjelkvale etal. (1989) during Chron 5 either the Yermak 

Hotspot was regenerated and formed the Quaternary volcanic centers in the area 

(Prestvik, 1978), or magma erupted in response to the now close proximity o f  the 

northward propagating Knipovich Ridge as suggested by Crane et al. (1988, 1991). 

On the other hand, rejuvenated volcanism on the southern Yermak Plateau and 

Svalbard could have coincided with either increased volcanic activity on the Nansen 

Ridge o r the southern propagation o f the Nansen spreading axis into the Spitsbergen 

Shear Zone as suggested by Feden etal. (1979) and Crane etal. (1982).

3. V o l c a n ic  E v e n t s

A major pulse o f  short-lived voluminous magmatism accompanying early 

seafloor spreading has been suggested for the formation o f  the Norwegian-Greenland 

Sea ocean basin (Eldholm, 19 9 1). Continuous volcanism in the region is marked by 

the Iceland-Faeroe and the Greenland-Iceland Ridges that lead from the margins to 

Iceland. The early Tertiary break-up o f the North Atlantic Ocean and the Norwegian-
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Greenland Sea was associated with short-lived but voluminous magmatic activity in 

the North Atlantic and eastern Arctic Ocean (Figure 3-5). According to White et al. 

(1987), most igneous accumulations in the North Atlantic and the Norwegian- 

Greenland Sea are coincident with the early-Tertiary hotspot event centered at the 

presently active island o f  Iceland. Composition o f the lava on Iceland is typically 

andesite although more silicic lavas (such as dacite) may be emitted early in an 

explosive eruption, and later lavas may approach the composition o f  alkali basalt.

This event is documented as the North Atlantic Volcanic Province along the volcanic 

passive margins and characterized by seaward-dipping seismic reflector sequences 

(Figure 3-5, Hinz and Weber, 1976; Mutter et al., 1982; Roberts et al., 1984; 

Skogseidand Eldholm, 1987; Larsen and Jakobsdottir, 1988; Eldholm et al., 1989a). 

Vogt (1986) suggested that the frequency o f  activity or the volume o f eruptions (or 

both) decrease away from Iceland, being generally highest on the Kolbeinsey Ridge 

and lowest along the Knipovich and Molloy Ridges, where spreading is slow, oblique 

and the axis is exceptionally deep, or some combination o f  these.

The Voring Plateau on the Norwegian Margin to the NE o f  Iceland, is 

underlain by volcanic accumulations at the continent-ocean boundary. The drilling 

results from Leg 104 o f the Ocean Drilling Program (Sites 642 and 643 in Figure 3-5) 

indicate two distinct lava flows o f  a lower-series o f dacitic flows (dated 54 Ma) and an 

upper-series o f  subaerial MOR-type tholeiitic flows (dated 57.8 Ma, Eldholm et al., 

1989b; Eldholm, 1991).



Figure 3-5. Igneous units in the Norwegian-Greenland Sea (modified from Coffin 
and Eldholm, 1991). The volcanic margins are indicated by seaward dipping reflector 
wedges (Roberts et al., 1984; Hinz etal., 1987; Skogseid and Eldholm, 1987; 
Sundvor and Austegard, 1990). Bathymetry is indicated by 1 and 2 km contours. 
JMFZ: Jan Mayen Fracture Zone, VPE: the Voring Plateau Escarpment; LFZ: 
Lofoten, SFZ: Senja, and GFZ: Greenland Fracture Zones, KR: Knipovich Ridge, S: 
Svalbard, YP: Yermak Plateau, MR: Morris Jesup Rise.
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Jan Mayen, an active volcanic island in the southern Norwegian-Greenland 

Sea, is not located on the present-day plate boundary. Although Jan Mayen was 

thought to have existed since late middle Tertiary on the basis o f  glacial morphology 

or since early Pliocene on the basis o f  tephra chronology studies performed by 

Sylvester (1975) on Deep Sea Drilling Project-Leg 38 (Sites 342 and 343 in Figure 3- 

5), K-Ar dates show that the oldest lavas are only o f  late Pleistocene in age.

Two occurrences o f alkalic volcanic rocks (adjacent to and in the southern 

Norwegian-Greenland Sea) are situated in continental fault zones along the Kaiser 

Franz Josephs Fjord in East Greenland and along the pateo-Eastem Jan Mayen 

Fracture Zone off Norway (Figure 3-5). Torske and Prestvik (1991) suggested that 

the Greenland rocks are K-Ar dated at 56 Ma and the Norwegian rocks at 55.7 Ma. 

These volcanics erupted close to the time o f  initial breakup prior to seafloor 

spreading.

In north Greenland, along the Arctic coast in northern Peary Land rhyolitic 

volcanics called Kap Washington Group (83.3°N, 37.45°W) were dated about 63-64 

Ma (Feden et al., 1979). This largely subaerial tholeiitic-type volcanic activity 

associated with the Morris Jesup Rise occurred between Chron 24 and 13 (60-38 Ma, 

Hakonsson and Schack-Pedersen, 1982). This is in contrast to Svalbard which has 

been shown to be more recently active (10-12 Ma, Prestvik, 1978).

Some volcanic activity and a few dykes (related to steeply-dipping deep-seated 

faults trending north-south) occur in the Devonian Graben o f  Spitsbergen (Max and 

Ohta, 1988). Amundsen et al. (1987) show several Tertiary and Quaternary (60 and
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11 Ma) volcanic centers aligned along the northwestern margin o f the Tertiary Basin 

(Hjeile and Lauritzen, 1984). Quaternary volcanic centers: Sverrefjell, Sigurdfjell and 

Halvdanpiggen (Figure 3-6), are found in the Woodfjorden and Bockfjorden, (Hoel 

and Holtedahl, 1911; Gjelsvik, 1963; Prestvik, 1978; Skjelvalee/a/., 1989). The 

Sverrefjell stratovolcano consists o f interbedded pillow lavas and pahoehoe lava flows 

(few to several hundreds o f meters) containing a wide variety o f xenoliths (Skjelvale 

et al., 1989). Thermal springs, Jotunkjeldane and Trollkjeldane are located 2 km 

north and 5 km south respectively of the uneroded Sverrefjell volcanic cone. Sellevoll 

et al. (1991) show that a 3 km thick transitional Moho Zone occurs under the Central 

Spitsbergen Tertiary Basin that is characteristic o f mobilized lower crust or igneous 

underplating. The northern prolongation o f deep-seated faults, in the middle o f the 

Yermak Plateau, is coincident with a positive magnetic anomaly that suggests 

submarine volcanics. Bonatti and Michael (1989) also suggest that fresh peridotites 

might be found in this area indicative o f  oceanic rather than continental mantle 

material.

Further to the northeast, dolerites and some lavas o f  Mesozoic ages (145 and 

105 Ma, Figure 3-6) occur on both sides o f  Hinlopenstretet (Johnson and Rich,

1986). Lower Cretaceous doleritic flows (120 Ma) are common on Spitsbergen, 

Nordaustlandet, Barentsoya, Edgeoya, (Harland, 1971; Prestvik, 1978; Birkenmajer,

1981; Campsie et al., 1988), Kong Karls Land, and in Franz Josef Land, (Campsie et 

al., 1988). Further east, Siberian plateau basalts are dated as late-Permian/Mesozoic 

(256 Ma) in Siberia (Green etal., 1984; Johnson and Rich, 1986).



Northern Svalbard-Nordaustlandet Margin

FRANZ JOSEF 
LAND

Figure 3-6. Locations o f  igneous units along the northern Svalbard-Nordaustlandet 
and eastern Arctic Ocean Margins. Bathymetry contours are in meters. Magnetic 
anomalies are from Vogt et al. (1979). Lower Cretaceous doleritic rocks (120 Ma) 
from the Franz Josef Land Archipelago (Campsie et al., 1988). 1: Quaternary 
volcanic centers in Svalbard ( 1 1 Ma), 2 : Tertiary plateau basalts in Svalbard (60 Ma), 
3: Mesozoic rocks (dolerites, 145-105 Ma) from Nordaustlandet, Hinlopenstretet (H), 
Kong Karls Land (KKL) and Edgeoya (E).
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4 . H e a t  Fl o w

In the Norwegian-Greenland Sea, the average heat flow (113 mW/m2, 

Langseth and Zielinski, 1974) is higher than in oceans o f comparable age (Figure 3- 

7). However, a relationship exists between decreasing heat flow and increasing age o f 

the oceanic crust or distance from the active spreading axis (Figure 3-8). Heat flow 

falls o ff at a decreasing rate from the mid-oceanic ridge towards the oldest oceanic 

crust at the margins, but this pattern is interrupted by the occurrence o f high values on 

the margins. In general, the Norwegian-Greenland Sea can be subdivided into two 

main heat flow provinces: ( 1) active plate boundaries, by high average heat flow, and 

(2) passive margins characterized by above average and scattered values averaging 

about 100 mW/m2 The rough basement topography and thin sediments in the rise 

axis area (approximately within 100 km o f the spreading axis) plus volcanic and 

structural segmentation o f  the mid-ocean ridge probably cause spatial variability in the 

heat flow along and across the mid-ocean ridge (Langseth and Zielinski, 1974; Crane, 

1985; Crane et al., 1982, 1988, 1991). In chapter 5, heat flow data will be discussed 

in detail and thermally derived crustal ages are compared to magnetic ages along the 

eastern margins o f  the slow-spreading Norwegian-Greenland Sea.

Heat flow reaches 257 mW/m2 over the Kolbeinsey Ridge and 75 mW /m2 

over the deactivated Aegir Ridge whereas heat flow on the M ohns Ridge reaches up 

to 143-268 mW/m2. Although there are not many data points along the ridges, heat 

flow values do show a good relationship to age correlated with a well-developed
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Figure 3-7. Heat flow in the Norwegian-Greenland Sea (I HFU equals to 41,8 
mW /m2). Additional data near Svalbard are presented later in the text. Stations north 
o f  79°N are from Crane etal. (1982) and Jackson et al. (1984). This figure is revised 
from Vogt ct al. (1981) and Langseth and Zielinski (1974). Boxes indicate where 
new heat flow data exist. These additional data are discussed in detail in Chapter 5.
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Figure 3-8. Heat flow in relation to crustal age. Summary plot o f  heat flow values as 
a function o f  crustal age where the age o f  oceanic crust in the Norwegian-Greenland 
Sea is known from magnetic chronology. Crustal ages are represented in terms o f the 
DNAG Time Scale (Vogt, 1986). This figure is revised from Langseth and Zielinski 
(1974) and Vogt (1986). Iceland area and the Norwegian-Greenland Sea 
approximately fit the PS-cooling curve. However, heat flow increases towards the 
eastern margins (average 124 mW/m") o f  the Norwegian-Greenland Sea. MR:
M ohns Ridge, KR: Knipovich Ridge, ENGSM: Eastern Norwegian-Greenland Sea 
Margin. The dashed line is an interpolation o f  the mean heat flow-versus-age data o f  
Sclater and Francheteau (1970) for the North Pacific. North Pacific curve is below 
the PS-cooling curve because o f hydrothermal heat lost (Lin and Parmentier, 1989).
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magnetic anomaly pattern adjacent to the Mohns and Kolbeinsey Ridges (Langseth 

and Zielinski, 1974).

Heat flow measurements from the southern Knipovich Ridge is in excess o f  

461 mW/m2 and reaches 371 mW/m2 over the northern section (Crane et al., 1982, 

1988, 1991), At the intersection o f the northern Knipovich Ridge with the Molloy 

Transform Fault along the Western Svalbard Margin, heat flow reaches 197 mW/m2 

In this location the plate boundary is often covered by sediment allowing one to 

gather heat flow data more efficiently at the actual center o f  spreading (Figure 3-9). 

At the Molloy Ridge, heat flow reaches 285 mW/m2 and 229 mW/m2 near the Lena 

Trough in the northern Norwegian-Greenland Sea. Exceptionally high heat flow 

values on the Nansen Ridge (>l 164 mW/m2) were reported by Sundvor and Torp 

(1987).

5. Seismic  Activity

Earthquake seismicity data have been collected by using local networks and 

individual stations in the Svalbard Archipelago, and the Norwegian-Greenland Sea 

and eastern Arctic Ocean (Sykes, 1965, 1967; Huseybe et al., 1975; Bungum et al., 

1982; Chan et al., 1985; Mitchell et al., 1990). Most epicenters are located in a 

narrow continuous belt at the center o f the mid-ocean ridge axes where earthquake 

clustering is an expression o f  the stepwise orientation o f the present-day plate 

boundary in the Norwegian-Greenland Sea (Figure 3-10; Myhre and Eldholm, 1988;
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Figure 3-9. Heat flow in the northeastern Norwegian-Greenland Sea. Adjacent to 
Svalbard, the Knipovich Ridge (418 mW/m2), the Molloy Ridge and the Yermak 
Plateau (>138 mW/m2) are relatively high heat flow provinces (YMER-80; 
FLUNORGE-83; Sundvor, 1986; Crane etal., 1988, 1991).
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Figure 3-10. Distribution o f  earthquakes in the Norwegian-Greenland Sea. Locations 
o f  earthquakes (revised from Vogt, 1986) and large focal spheres indicate fault-plane 
solutions obtained from Savostin and Karasik (1981) and Mitchell et al. (1990). 
Bathymetric contours (at 400 m and every 1000 m) are from Perry et al. (1985). 
Earthquake epicenters concentrate along the plate boundaries. Seismicity appears 
concentrated along the shelf edge from south-central Norway and the western Barents 
Sea to the northern Svalbard and Nordaustlandet Margins.
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Vogt, 1986). The changes from one seismic province to the next are abrupt. Fault 

plane solutions indicate that the motion along the Mohns, Knipovich, Molloy and 

Nansen Ridges is normal (Huseybe etal., 1975; Savostin and Karasik, 1981), and 

along fracture zones (the Jan Mayen and Spitsbergen Fracture Zones) is strike-slip 

(Sykes, 1967; Savostin and Karasik, 1981). The Mohns Ridge is the most seismically 

active ridge segment in the Norwegian-Greenland Sea.

Boundaries occur at the Jan Mayen Fracture Zone and the area where the 

Mohns-Knipovich Ridge system bends. Left-lateral shearing appears in a roughly E- 

W direction along the Jan Mayen Fracture Zone (Burr and Solomon, 1978). Along 

the Knipovich Ridge the seismicity has an asymmetric pattern centered over the 

eastern flanks o f  the rift valley. Fault plane solutions on the Spitsbergen Shear Zone 

show right lateral strike-slip movement (Savostin and Karasik, 1981). North o f about 

77°N, the level o f  seismic activity decreases on the Knipovich Ridge (Mitchell et al., 

1990).

6 . M a g n e t ic  A n o m a l ie s

Magnetic lineations in the Norwegian-Greenland Sea consist o f irregularly 

spaced, low-amplitude anomalies (Figure 3-11). Along some areas o f the plate 

boundaries, as well as volcanic margins, and marginal plateaus magnetic lineations are 

either not clear or are absent. Several studies (Vogt et al., 1979a, 1979b; Am, 1975; 

Phillips et al., 1982; Kovacs and Vogt, 1982; Kovacs et al., 1982) interpreted
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Figure 3-11, Magnetic anomalies in the Norwegian-Greenland Sea (from Vogt et a/., 
1981). Principal anomaly identifications, simplified sediment isopachs (Eldholm and 
Windisch, 1974) and tectonic features are superimposed. MR; Morris Jesup Rise, YP: 
Yermak Plateau.
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those areas (for example, the northern Voring Plateau, Senja Margin, northern 

Knipovich Ridge and southern Yermak Plateau) as "magnetic smooth zones" (Figure 

3-12).

Thermal blanketing effect by sediments in the rift valley, slow and oblique 

spreading, fragmentation due to the shift o f  the ridge axis, and short lived fracture 

zones (fossil ridges), are several factors that can modify the nature o f magnetic 

anomalies, and make them difficult to interpret. A rapid decrease in depth to the 

magnetic basement could influence the character o f the seafloor spreading-type 

magnetic anomalies. In general, the depth to magnetic basement is thought to be less 

than I km for the entire Norwegian-Greenland Sea region (Zielinski, 1979; Kovacs 

and Vogt, 1982). Eldholm et al. (1979) suggests that an exceptionally high rate o f  

basalt accumulations (a wider than normal zone o f injection) formed either during the 

initial phase o f seafloor spreading or during an abrupt change in the magnetic 

susceptibility adjacent to the magnetic smooth zone.

The plate boundary around the Spitsbergen Shear Zone is not well-defined 

because most magnetic anomalies are absent, and the central anomalies are 

ambiguous. Along the rift valley o f  the Knipovich Ridge no clear seafloor spreading- 

type magnetic anomalies are observed (Vogt et al., 1981). They either do not exist 

(magnetic smooth zones) or have very small amplitudes (Eldholm et al., 1987). 

However, relatively "punctiform-shaped" high-amplitude magnetic signatures are 

observed along the Knipovich Ridge presumably associated with major localized 

volcanic events. Geli et al. (1994) observed three high anomaly amplitudes, in excess
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Figure 3-12. Magnetic lineations and smooth zones in the Norwegian-Greenland Sea 
(from Vogt et al., 1981). FSE: Faeroe-Shetland Escarpment, VPE: Voring Plateau 
Escarpment, and GE: Greenland Fracture Escarpment, YP: Yermak Plateau.



9 2

o f  1200 nT, and interpreted them as lava injection centers. A bathymetric high just to 

the east o f  the Hovgard Fracture Zone/Ridge is characterized by a high-amplitude 

magnetic signature suggesting that the feature is an off-axial volcanic feature.

7. G r a v it y

In general, at a slow-spreading mid-ocean ridge, the free-air gravity anomaly 

signal is mostly dominated by the variations in the seafloor relief. In addition, over 

the rift valley inner floor, gravity lows are centered on the bathymetric lows. Figure 

3-13 shows the distribution o f free-air gravity anomalies in the Norwegian-Greenland 

Sea. Observations have shown that the Mohns Ridge has a well-defined free-air 

gravity anomaly pattern characterized along the rift valley by a belt o f  minimum 

values. Paralleling the rift valley on both sides, two approximately 80-100 km wide 

belts o f  maximum gravity lie in excess o f  50 mGal (Talwani and Eldholm, 1977; 

Gronlie and Talwani, 1982). Outside the rift valley, very high anomaly values are 

found, up to 110 mGal on the northwestern shoulder, and up to 80 mGal on the 

southeastern shoulder. Within the ridge axis an en-echelon pattern is present, and the 

rift valley is defined by the 30 mGal contours (Gronlie and Talwani, 1978, 1982).

The Knipovich Rjdge is associated with low gravity anomalies (20 mGal). 

Gronlie and Talwani (1982) suggest that these low anomalies along the rift valley 

might be caused by partially melted low density basalts derived from the upper mantle. 

By contrast, the gravity anomaly on the Hovgard Fracture Zone is broken



Figure 3-13. Free-air gravity o f  the Norwegian-Greenland Sea and eastern Arctic 
Ocean regions (Faleide etal., 1984). Red indicates >100 mGal.



|wegian-Green)and Sea and eastern Arctic 
Ed indicates > 100 mGal.
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into two isolated peaks o f 173 and 131 mGal indicating high density crust beneath it 

(Myhre and Eldholm, 1988).

B. CHARACTERISTICS OF THE EASTERN MARGINS

I . M o r p h o -T e c t o n ic  T r a n s e c t s  o f  t h e  E a s t e r n  M a r g i n s

The continental shelves and margins bordering the Norwegian-Greenland Sea 

are deep and morphologically irregular. Glacial valleys stretch from the land, through 

fjords, onto the continental shelves as evidence o f  the ice load since the last ice age 

(V ogt et al., 1981, 1993). The eastern margins o f  the Norwegian-Greenland Sea can 

be divided into three morpho-tectonically distinct regions: The Norwegian Margin, 

the Senja-Westem Svalbard Margin, and the northern Svalbard-Nordaustlandet 

Margin.

a. Norwegian Margin:

The Norwegian Margin is dominated by the Eastern Jan Mayen Fracture Zone 

System and the Voring Plateau (Figure 3-14). The Jan Mayen Fracture Zone System 

(the Western, Eastern and Central Jan Mayen Fracture Zones, and the Norway Basin 

Fracture Zone) transects the entire southern Norwegian-Greenland Seafloor
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Figure 3-14. Main structural features along the Norwegian Margin: Eastern Jan 
Mayen Fracture Zone and Voting Plateau. Part o f  the Voting Plateau seaward o f  the 
Voring Plateau Escarpment is the Voting Outer Ridge. Province-I is underlain by 
deeply buried Paleocene lava flows and pre-Tertiary sediments and old thinned 
continental crust. Province-II covers the crest o f  the Voring Outer Ridge and has a 
smooth basement reflector. Province-Ill is underlain by seaward-dipping basement 
reflectors. Province-IV is normal oceanic basement with rough seafloor bathymetry 
(Eldholm, 1991). JMI: Jan Mayen Island.
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(Torske and Prestvik, 1991). At its western terminus, numerous seamounts comprise 

the volcanically-active Jan Mayen Island, which rises to an elevation o f 2277 m above 

sea level (Sylvester, 1975). In contrast, nodal deeps (depressions at ridge-transform 

intersections) occur at the intersection of the southern terminus o f  the Mohns Ridge 

with the West Jan Mayen Fracture Zone (Vogt, 1986).

The eastern continuation o f the Jan Mayen Fracture Zone System forms a 

tectonic boundary between Norway (65.5°N, 6°E) and the Lofoten Basins along the 

Norwegian Margin. The extinct spreading axis o f the Aegir Ridge (65°N, 5°W, a 

broad 25 km long valley with depths o f4000-4500 m) lies in the southern Norway 

Basin. The Voring Plateau, bounded by this extinct ridge and the Eastern Jan Mayen 

Fracture Zone reaches an average depth o f  1450 m adjacent to the Norwegian Margin 

(M utter et al., 1984; Eldholm et al., 1989). A continent-oceanic crustal transition 

defines the Voring Plateau Escarpment and separates the Voring Basin from the 

Lofoten Basin (Talwani and Eldholm, 1972; Eldholm etal., 1989; Skogseid and 

Eldholm, 1989). The escarpment continues to about 69.3°N defining a region 

between the Voring Plateau and the Lofoten Fracture Zone (Torske and Prestvik, 

1991).

Large-scale marginal faulting along the coastline o f Lofoten and Vesteralen 

Islands (landward o f  the Lofoten Fracture Zone) has been suggested by many authors 

and the over deepened marginal channels are thought by some to reflect actual fault 

lines (Hotendahl, 1960). However, Talwani and Eldholm (1972) concluded that these 

marginal channels were probably caused by glacial erosion.
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b. Senja Margin:

The Senja Margin, oriented obliquely to the Mohns Ridge, is located between 

71°N and Bjornoya (Bear Island) north o f  74°N, and is bounded by the Senja 

Fracture Zone (south o f 73°N, Figure 3-15). To the east o f  the Senja margin, the 

continental slope o f the southwest Barents Sea contains a submarine fan situated in 

front o f the Bear Island Trough which has accumulated more than 7 km o f sediment 

locally since continental breakup about 55 Ma (Faleide et al., 1984). The Bear Island 

submarine fan is a depocenter and has a width o f  220 km at its proximal part and 400 

km at a depth o f  2000  m (Vorren e ta l,  1989; Vogt et a l, 1993); it extends over 280 

km beyond the shelf break, and is characterized by numerous thin mudflows up to 200 

km-long which reach the Mohns Ridge valley (from the SeaMARC-II data, Vogt et 

a l,  1993). On the southern Senja Margin, a large deep-seated salt massif was 

mapped at a depth o f  more than 10 km (Myhre et a l, 1982).

c. Western Svalbard Margin:

The Western Svalbard Margin extends from Bjomoya to 80°N adjacent to the 

Hornsund Fault Zone (Figure 3-15). In this region, the continental shelf is 

approximately 75 km wide and it narrows to approximately 10 km, near the 

northwestern tip o f  Svalbard. The shelf morphology reflects features caused by 

glacial activity during the last few million years along Svalbard (Vogt et a l., 1993). 

The continent-ocean transition along the Western Svalbard Margin, between 75.5°N
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Figure 3-15. Bathymetry and main structural features on the Senja and Western 
Svalbard Margins, contours every 1000 meters. SF: Senja Fracture Zone, GFZ: 
Greenland Fracture Zone, WBS: Western Barents Shelf, HF: Homsund Fault Zone, 
KR: Knipovich Ridge, HR: Hovgard Ridge, MTF: Molloy Transform Fault, MR: 
Molloy Ridge, YP: Yermak Plateau. Bathymetry o f the northern Svalbard- 
Nordaustlandet Margin adapted from Cherkis et al, (1994).
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and 76.5°N, is defined by the Homsund Fault, with almost a 5-10 km continuous 

throw (Sundvor and Austegard, 1990). The Homsund Fault parallels the active 

Knipovich Ridge, and extends to the southwestern edge o f  the Yermak Plateau 

(80°N, Sundvor et al., 1977, 1982a, 1982b; Okay and Crane, 1993).

d. Northern Svalbard-Nordaustlandet Margin:

Three distinct features dominate the northern Svalbard-Nordaustlandet Margin 

(Figure 3-15): the southern part o f  the Yermak Plateau, the Hinlopen Strait 

(Hinlopenstretet, between Spitsbergen and Nordaustlandet Islands) and the 

Nordaustlandet Margin.

The Yermak Plateau, covered by a thick layer o f  sediments, extends for 235 

km from 80°N to 83°N and its arcuate shape averages 125 km in width (Sundvor et 

al., 1977, 1978, 1982a). The Yermak Plateau is flat-topped and trends in a northeast- 

southwest direction, narrowing to the northeast (Sundvor et a!., 1982a, 1982b). To 

the west is a narrow shelf (1 km-wide) bordered by a 300 m high escarpment with a 

1:10 gradient (Sundvor and Austegard, 1990). The southwestern flank o f the plateau 

drops to a depth o f more than 4000 m merging with the Molloy Deep (Sundvor et al., 

1982a). The southern plateau lies at the northeastern edge o f the active Eurasian 

Plate boundary, along the Knipovich Ridge and Molloy Transform Fault.

The northern slope o f the Yermak Plateau is bordered by the flank o f the 

Nansen Ridge which extends across the Eurasia Basin where it runs into the Siberian 

Margin near the outflow o f the Lena River into the eastern Arctic Ocean. On the
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opposite side o f the Fram Strait from the northenvYermak Plateau lies the Morris 

Jesup Rise (500 to 1000 m deep) adjacent to the northeastern Greenland Margin 

(Feden er a/., 1979; Vogt et al., 1981),

The central and southern Yermak Plateau is topographically irregular and is 

broken by numerous normal faults (Sundvor et a/., 1982b; Okay and Crane, 1993) 

that are thought to extend into the northern margin o f  Svalbard where Cenozoic 

volcanic centers lie aligned along Woodfjorden (Prestvik, 1978; Amundsen et al., 

1987; Skjelvale et al., 1989). A large submarine canyon (the Sofia Canyon, Sundvor 

et al., 1982a) incises deeply into the eastern flank o f  the southern Yermak Plateau. It 

serves as a major conduit for sediment transport for the northern Svalbard Margin.

Further to the east, the Hinlopenstretet divides the island o f Spitsbergen from 

Nordaustlandet. Deep canyons cut the margin north o f Hinlopenstretet, west o f  

Kongsfjorden (80° 15' N) and off Islefjorden (Ohta, 1972; Pfirman, 1989). The 

canyon near the Hinlopenstretet forms a channel-like feature crossing the entire 

margin. This U-shaped depression is about 11-12 km-wide, 400 m-deep and is 

thought to have been formed by glacial activity (Kristoffersen elal., 1982; Pfirman, 

1989).

2. S e is m ic -R e f l e c t io n  a n d  -R e f r a c t io n  D a t a

The continental margins o f the Norwegian-Greenland Sea and Eastern Arctic 

Ocean have been studied mostly by multichannel seismic surveys to understand the
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lithospheric extension processes (Talwani and Eldholm, 1972; Sundvor et at., 1977, 

1978, 1979; Mutter etal., 1982; Kristofferson et al., 1982; Roberts and Ginzburg, 

1984; Eldholm etal.., 1986; Hinz etal., 1987; Mutter et al., 1988; Larsen and 

Jakobsdottir, 1988; Eldholm etal., 1989; Eldholm and Grue, 1994). A large number 

o f  multichannel seismic reflection and refraction surveys have been carried out at the 

Voring Margin (Eldholm et al., 1979; Mutter et at., 1982, 1984; Hinz et al., 1987; 

Skogseid and Eldholm, 1989), the Western Svalbard-Barents Margin (Schliiter and 

Hinz, 1978; Sundvor et al., 1979; Myhre etal., 1982; Eldholm etal., 1987; Myhre 

and Eldholm, 1988), northern Svalbard and the southern Yermak Plateau (Sundvor et 

al., 1977, 1978, 1979, 1982a, 1982b; Sundvor and Austegard, 1990; Faleide et al., 

1991) and in the Eurasia Basin (Kristoffersen etal., 1982; Jackson et al., 1984).

Most o f these studies have imaged the sedimentary column and provided only modest 

constraints on basement structure.

Hinz and Weber (1976), Hinz (1981) and M utter et al. (1988) first noticed the 

extensive suites o f seaward dipping reflectors on the Voring Plateau from 

multichannel seismic reflection profiles. These results indicated seaward diverging 

wedges beneath the smooth acoustic basement o f  the Outer Voring Plateau (on the 

Norwegian Margin, Eldholm etal., 1987) and Faeroe-Shetland Escarpment (on the 

More Margin, Roberts etal., 1984). Based on sonobuoy refraction and a few two- 

ship refraction measurements, Mutter etal. (1982) showed that the crust beneath the 

seaward dipping units of the Voring Plateau was at least twice the thickness o f normal 

oceanic crust. Dipping reflectors located immediately seaward o f the Faeroe-Shetland
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Escarpment are not associated with seafloor spreading magnetic anomaly lineaments 

(Talwani and Eldholm, 1977).

. The Voring Plateau Escarpment has been mapped to 68.4°N from seismic data 

(M utter et al., 1982, 1984; Skogseid and Eldholm, 1987). The escarpment was 

considered by Talwani and Eldholm (1972, 1977) to be an early Tertiary structure, 

marking a distinct boundaiy between continental and oceanic crust. They showed 

that the acoustic basement o f the Outer Voring Plateau formed a basement high with a 

smooth and highly reflective summit, quite unlike the rough acoustic signature usually 

associated with oceanic basement. They also recognized that the oldest marine 

magnetic isochron-24 occurring in the deep, adjacent Lofoten Basin continued into 

the region o f  smooth acoustic basement o f  the Outer Voring Plateau. Leg 38 o f  the 

Deep Sea Drilling Program drilled into acoustic basement o f  the Voring Plateau and 

confirmed Talwani and Eldholm's (1977) prediction that the basement was comprised 

o f  basalts (Talwani et al., 1976), supporting the interpretation that the outer plateau 

was constructed o f  oceanic crust.

Seaward-dipping reflectors define a zone which consists o f an inner part 

where the dipping wedge commonly rests on a base reflector, and an outer part where 

there is no apparent base to the wedge (Figure 3-16). Eldholm and Grue (1994) have 

named it the Zone-Ill. The continental-oceanic crustal transition (the Zone-Ill and 

IV boundaries) is placed at the seaward termination o f the base reflector (Skogseid 

and Eldholm, 1987). The base reflector continues into Zone-II which lies between 

the apex o f the wedge and an escarpment, or a distinct flow front. Zone-I represents
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lavas landward o f the escarpments.

Eldholm etal. (1984) have placed the continent-oceanic crustal transition near 

the seaward termination o f reflector-K (Figure 3-16). M utter etal. (1984) believe 

that this reflector may mark the dike/lava transition. The acoustic basement is 

overlain by a 1-km thick low-seismic velocity zone o f uncertain origin (possibly 

sedimentary sequences), and broken by several normal faults. The Escarpment is also 

associated with a zone o f smooth opaque basement (5.3-6.3 km/s; Mutter et al.,

1984) that separates the Inner Voring Plateau from the Outer Voring Plateau (an area 

with the oldest spreading lineations and thin sediments). North o f  the Voring Plateau 

a similar escarpment in the Lofoten Basin has been noticed with a shallow acoustic 

basement (Eldholm et al., 1979). Below the sediments o f  the Lofoten Basin lies a 

typical oceanic crust increasing in thickness from 5 to 8 km under the escarpment.

The marginal highs contain thick seaward dipping wedges (Mutter et al.,

1984; Skogseid and Eldholm, 1989; Eldholm and Grue, 1994). Velocities in the 

dipping wedges increase with depth, reaching -6 .5  km/s in the deepest part (4-6 km 

below the top). Local shallow low-velocity layers related to the basalt-dacitic flow 

transition, have been reported in the Zone-II (M utter et al., 1984; M utter and 

Zehnder, 1988; Mjelde etal., 1992). In the absence o f  a marginal high on the 

Lofoten margin, Eldholm and Grue (1994) infer the Zone-I and II boundaiy from 

lateral change in the velocity (Mjelde et al., 1992).

The entire Western Svalbard-Barents Margin is characterized by a thick 

Cenozoic low-velocity sedimentary wedge with velocities o f  2.9-4 .8 km/s



1 0 6

superimposed upon oceanic crust with an average seismic velocity o f  7 .1 km/s (Myhre 

etal., 1982, 1992). The continent-oceanic crustal transition on the Senja and 

Western Svalbard Margins (Figure 3-17, between 70°N and 77°N) was established 

based on the structural boundaries seen in the multichannel seismic data (Myhre,

1984; Myhre and Eldholm, 1988; Faleide et al., 1991), The main feature is a north- 

northwest trending fault system on the continental shelf between 74° and 79°N. The 

existence o f a major fault, representing a significant geological boundary, beneath the 

shelf was first recognized by Sundvor and Eldholm (1979) who named it the 

Homsund Fault Zone. Myhre (1984) mapped the continent-oceanic crustal transition 

close to the Homsund Fault Zone. Along the Homsund Fault Zone the seaward 

dipping reflectors (4.5 and 5.5 km/s, Myhre and Eldholm, 1988) mark the transition, 

Myhre and Eldholm (1988) confirmed that this fault zone forms a complex region o f  

continent-ocean transition along the Western Svalbard Margin. Between 75° and 

77°N, the fault zone is dominated by a system o f downfaulted blocks with small 

individual throws (Sundvor and Austegard, 1990). To the north this fault zone is 

characterized by a major fault scarp with a throw o f almost 6 km (Sundvor and 

Austegard, 1990).

The southern part o f the Yermak Plateau has been covered by a series o f 

multichannel seismic reflection surveys and sonobuoy reflection experiments (Sundvor 

etal., 1977, 1978, 1979, 1982a; Austegard, 1982). From near the coast o f northern 

Spitsbergen (81.43°N) an opaque reflector, called 0, has been mapped as acoustic 

basement (Figure 3-18). It is block-faulted and buried with sediments. The
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multichannel seismic data (Sundvor and Austegard, 1990) confirm this interpretation 

with a 4.5 km thick layer o f  5-5.7 km/s velocity structure. Based on these seismic 

data, Sundvor and Austegard (1990) established a tentative continent-ocean boundary 

on the northern Svalbard Margin.

Sundvor et al. (1982a) traced this reflector as far south as 25 km from the 

northwestern part o f Spitsbergen and suggested a connection to the high grade 

Precambrian gneiss complex (Hecla Hoek) exposed onshore. This continuous 

basement reflector below a sedimentary basin o f a maximum thickness o f  4.5 km, 

correlates with a 5-5.7 km/s refractor velocity (Austegard, 1982). This part o f  the 

margin also corresponds to the area o f smooth magnetic field reported by Feden el al. 

(1979). The distance between magnetic isochron-24 and the suggested continent- 

oceanic crustal transition is approximately 100 km, or twice the width o f  crust o f  

unknown origin indicated by Vogt el al. (1979). A 5.5 km/s refractor exists in the 

entire Hinlopenstretet (Sundvor et al., 1978). In many profiles, another seismic 

refractor (below this 5.5 km/s layer) appears to have velocities o f  5.8- 6.6  km/s 

indicating an acoustic basement along the northern Svalbard-Nordaustlandet Margin 

(KristofTersen et al., 1982; Sundvor and Austegard, 1990).

3 . S e d im e n t a t io n  A l o n g  h i e  E a s t e r n  M a r g in s

Sedimentation in the northern Norwegian-Greenland Sea and eastern Arctic 

basin was influenced by glaciation o f the surrounding continents and shelves. The
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Figure 3-18. A seismic record from the northern Svalbard Margin, (a) Main 
structures on the Norwegian Margin (bathymetry in meters), B: geoseismic transect, 
(b) Multichannel section showing a continues basement reflector from nearshore 
northern Svalbard onto the southern part o f  the Yermak Plateau (after Sundvor et al., 
1982a).
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modern depositional environment o f the Norwegian-Greenland Sea is highly 

asymmetric (in an E-W direction) because o f  the surface water masses and pack ice 

cover o f  the Eastern Greenland current regime. Marginal highs which now are 

buried, acted as barriers to the terrigenous sediments during the early stage o f  basin 

formation (Eldholm and Windisch, 1974). Analyses o f  results from the Ocean 

Drilling Project-Leg 104 (Eldholm et al., 1987) established that the Northern 

Hemisphere experienced a multitude o f  glaciations during at least the past 2.56 Ma 

(Thiede etal., 1989). In this region, a thick sequence o f  hemipelagic and pelagic 

sediments rests on terrigeneous material overlying volcanic basement. Post opening 

sediment thicknesses range from zero at the axis o f  the mid-ocean ridge, on some 

basement highs and on steep escarpments to over 2 km along parts o f  the continental 

margin (Gronlie and Talwani, 1978).

On Leg 38 o f  the Deep Sea Drilling Project the oldest post-opening sediment 

recovered was late Paleocene-early Eocene, on the crest o f  the Voring Plateau 

(Schrader et al., 1976). A major hiatus was found over the Voring Plateau which, 

changed from a high-energy, shallow, terrigenous province to an open-water pelagic, 

biogenic-dominated depositional region.

The Lofoten-Vesteralen area is characterized by a large accumulation o f  

sediments o f which the main part is o f pre-Tertiaiy age, deposited prior to the opening 

o f  the Norwegian-Greenland Sea (Eldholm et al., 1984). The total sediment 

thickness is small (1 to 2 km) and, apart from an irregular thin local upper layer o f  

Quaternary age, sediments are all consolidated (Talwani and Eldholm, 1972).



The age and distribution o f  the sediments along the Svalbard Margin agrees 

with the tectonic model for the opening o f  the Norwegian-Greenland Sea (Myhre et 

al., 1988). Terrigenous accumulations o f 6 to 7 km or more (Senja-Western Svalbard 

Margin) were laid down on igneous oceanic crust (Eldholm and Windisch, 1974; 

Myhre et al., 1982, 1992). Sediment sequences o f varying thickness overlie an 

unconformity (upper regional unconformity) along the Senja-Western Svalbard 

Margin. The thickest sedimentary sequence occurs at the margin and is between 900 

and 1000 m ’s thick (assuming a velocity o f 2 km/s in the sediments, Vorren et al.,

1989). A massif o f  salt, found by Faleide et al. (1984) was dated as Permian. Nearby 

in the southwestern Barents Sea a sequence o f Lower Cretaceous sediments 

accumulated with rapid subsidence and subsequent salt mobilization (Myhre et al., 

1982).

Further north, along the Western Svalbard Margin, Schluter and Hinz (1978) 

mapped an uppermost sedimentary unit which is thought to consist o f Pliocene- 

Pleistocene muds interbedded with turbidites and mass-transported sand related to 

glacial-interglacial periods. Myhre and Eldholm (1988) proposed that there was a 

considerable increase in sediment deposition at 5-6 Ma, based on interpretation o f 

seismic profiles. In addition, Myhre and Eldholm (1988) estimate that prior to mid- 

Miocene the sedimentation rates were approximately 100 mm/y. Since the Miocene 

(during the last 5 my) the rates have increased to more than 300 mm/y. Faleide et al.

( 1984) suggest an unconformity at the base o f the upper Paleocene. It was about this 

time that block faulting was initiated adjacent to Svalbard. Faleide et al. (1984)
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interpreted the unconformity as a result o f tectonic activity near the present continent- 

oceanic crustal transition. Myhre et al. (1982) proposed that all o f  the sediment north 

o f  76°N and seaward of the Hornsund Fault Zone was deposited since the mid- 

Oligocene.

Depocenters occur along the Western Svalbard Margin (Kongsfjorden, 

Isfjorden, Storfjordrenna) with approximate velocities o f  1.9-2.2 km/s and thicknesses 

o f 1.6-2.4 s (Myhre and Eldholm, 1988). The location o f  depocenters seaward o f 

east-west fjord systems and submarine depressions indicate high offshore 

sedimentation rates associated with late Cenozoic glaciations (Myhre and Eldholm, 

1988). During the Deep Sea Drilling Program-Leg 38, Site 344 was drilled just east 

o f  the Knipovich Ridge (toward the margin). In this site, about 377 m o f  glacial 

marine sediments were recovered above the basement. Talwani et al. (1976) dated 

basal sediments as lower Pliocene or upper Miocene. Along the entire continental 

margin a wedge o f Tertiary sediments has prograded into the ocean forming the 

present passive margin (M yhreetal., 1982).

During glacial periods, the Norwegian-Greenland Sea is thought to have been 

more or less covered by sea ice including extensive glacier coverage o f  the Barents 

and Greenland shelves (Thiede et al., 1990). The last glacial maximum is 

documented as approximately 18 thousand years ago (CLIMAP, 1976). Fram Strait 

may have played an important role in the feedback o f  the glacial-interglacial cycles 

(Thiede et al., 1990). During the Ocean Drilling Program-Leg 151 (Arctic Gateway- 

1, Mhyre et al., 1994) physical property measurements on sediments suggest episodic
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overcompaction during the Quaternary, which may have resulted from periodic 

burden by glacial ice. Sediments include minor amounts o f  biogenic material perhaps 

because o f low productivity due to ice cover, dilution by siliciclastics, and dissolution. 

Analyses o f dropstone abundances indicate an intensification of glacial conditions 

about 3.5 Ma, marked by the first occurrences o f  dropstones. These data suggest 

episodical intensive ice-rafting in the period 3.5 to 1.0 Ma. Sedimentation rates at the 

Yermak Plateau are extremely high ranging about 10 to 200 m/Ma during the 

Quaternary.

As the high latitude northern Norwegian-Greenland Sea, and the shallow 

shelves bordering northern Svalbard might have been covered by a grounded ice sheet 

during the Quaternary Glaciation, the fault bounded continental margin o f 

Nordaustlandet was substantially modified by glacial scour and later day bottom 

currents associated with melt waters. Mass sediment transport in response to ice 

movement is an important process on the northern Svalbard-Nordaustlandet Margin 

(Okay et al., 1991). Sediments are texturally heterogeneous due to the major role 

played by ice in their origin, transport and deposition. Sediment surfaces are often 

strained by the ice impact leaving plow marks and later modified by strong contour 

currents (Vogt et al., 1994).
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4 . H e a t  F l o w

Heat flow values are high (average 124 mW/m2) relative to crustal age 

along/near volcanic marginal plateaus on the eastern margin o f  the Norwegian- 

Greenland Sea (Figure 3-8). On the Norwegian Margin there is an increase o f  heat 

flow toward the continental margin (reaching from 41 to 87 mW/m2). Heat flow 

values on the Voring Plateau range from 43 to 118 mW/m2, while heat flow averages 

105 mW /m2 near the East Jan Mayen Fracture Zone. Heat flow reaches 96 mW/m2 

along the Jan Mayen Ridge and 217 mW/m2 at its southern terminus with northern 

Iceland (Langseth and Zielinski, 1974).

Heat flow values near the Senja Fracture Zone range from 81-103 mW/m2 In 

contrast, although the data are fewer, the heat flow values along the east coast o f 

Greenland at a comparable latitude are considerably lower (67 to 84 mW/m2). Heat 

flow reaches 140 mW/m2 along the Western Svalbard Margin at 75°N (over the 

Hornsund Fault) and 100 mW/m2 at 78°N.

Along the northern Svalbard-Hinlopen-Nordaustlandet Margin heat flow data 

are scarce but range (from 61 to 109 mW/m2). Over the southern Yermak Plateau on 

the northern Svalbard Margin (Figure 3-9), heat flow ranges from 104 to 138 mW /m2 

(Crane et al., 1982; Sundvor, 1986; Crane et a!., 1991). In contrast, the northern 

part o f  the Yermak Plateau is colder ranging from (54-92 mW/m2, Jackson et al.,

1984; Sundvor, [986; Sundvor and Torp, 1987). Off-axial heat flow highs are also 

observed along the northeastern Nordaustlandet Margin (109 mW/m2, Sundvor and
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Torp, 1987). No heat flow data have been reported from the region o f Kong Karls 

Land and southern Svalbard within the Barents Sea.

A full analysis o f  heat flow data will be presented in Chapter 5, corrected for 

variable rates and durations o f sedimentation and then reinterpreted in the context o f  

thermal rejuvenation along the margins.

5.. S e is m ic it y

Intraplate seismicity is highly concentrated between the Knipovich Ridge area 

and the eastern margins o f the Norwegian-Greenland Sea, as well as on the western 

Svalbard Platform (Figure 3-19). Earthquakes on Spitsbergen occur along major N-S 

trending normal faults, such as the Homsund, Billefjorden, and Lomfjorden Fault 

Zones. Mitchell et al. (1990) suggest that the maximum principal stress axis indicates 

extension (in the E-W direction), and is perpendicular to the major faults and 

continental margin orientation.

There are highly active and concentrated seismic zones in Heer Land in 

southwestern Svalbard (77.8°N, 18°E) and in northern Nordaustlandet where 

earthquake zones are located close to the landward side o f the continental margin 

(Figure 3-19). The frequency o f earthquakes in Heer Land and Nordaustlandet 

appears to be much higher than that along the oceanic ridge system (Mitchell et al.,

1990). In contrast, seismicity is low in the region o f  the West Spitsbergen Orogeny. 

Mitchell et al. (1990) suggest that the Heer Land Zone correlates intraplate seismicity
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Figure 3-19. Earthquakes in the Svalbard region. Earthquake epicenters are shown 
as diamonds and triangles determined from different sources (after Muller, 1993). 
Tectonic lineaments on Svalbard are by Ohta (1972). Shaded areas along the 
Knipovich Ridge and Yermak Plateau indicate high heat flow (> 150 mW/m2) as 
reported by Crane et a l (1982, 1988, 1991). The stippled area outlines the Central 
Tertiary Basin. KR: Knipovich Ridge; COB: Continental-oceanic crustal transition 
(after Eldholm et al., 1987); MR: Molloy Ridge; HFZ: Homsund Fracture Zone, 
STF: Spitsbergen Transform Fault, BFZ: Billefjorden Fracture Zone, LFZ: 
Lomfjorden Fault Zone, R: Rijpfjorden Fault Zone, HL: Heer Land Seismic Zone, 
KKL: Kong Karls Land.



having 6-values o f 1.4 to pre-existing faults (mostly compressional and shear 

movements). On northern Nordaustlandet, two concentrations (extension- and shear- 

dominated intraplate movements with an apparently NNW-orientation) occur with 

both 6-values o f  0.5 (Bungum and Kristoffersen, 1980). If the 6-value is a measure o f  

the relative abundance o f  large and small earthquakes, (an approximate average for 6 

is 1) a small value for 6 indicates that small earthquakes are not so frequent and that 

large earthquakes are more likely to occur. Small values for 6 are usually 

characteristic o f  continental rifts and regions with deep earthquake foci, and large 

values for 6 are typical o f mid-ocean ridges.

6. M a g n e t ic  A n o m a l ie s

Much o f the eastern margin o f the Norwegian-Greenland Sea is characterized 

by “ magnetic smooth zones” without hint o f clear magnetic anomaly age identifiers 

(Figure 3-12). The section o f  the margin most easily dated is the Voring Plateau.

The Voring Plateau Escarpment is characterized by a distinctive short-wavelength 

negative magnetic anomaly (Talwani and Eldholm, 1977). Landward o f  anomaly 24 

lies strips o f  crust about 50 km wide that are magnetically featureless (Vogt at al.,

1981; Srivastava, 1985) and thus may mark the continent-oceanic transition (Vogt, 

1986). The magnetic character along the Lofoten Margin (northern Voring Plateau) 

alters between seafloor spreading anomalies and magnetic smooth zones (Figure 3-



In addition to the magnetic smooth zones which characterize parts o f  the 

southeastern margin, the magnetic character o f the northern Norwegian-Greenland 

Sea is also confused, not coherent or entirely absent. Am (1975) from aeromagnetic 

measurements, suggested Mesozoic doleritic and gabbroic intrusions on the shelf and 

upper slope along the margin similar to those observed in Svalbard. Although 

magnetic anomalies align symmetrically about the Mohns Ridge, at its northernmost 

terminus, where the ridge abuts the paleo-Senja and Greenland Fracture Zones, no 

clear definition in the background magnetic field is observed (Kovacs et at., 1982).

Even further to the north the high amplitude magnetic anomalies over the 

Hovgard Fracture Zone may indicate a displacement o f  this fragment from the 

Western Svalbard Margin (Myhre et al., 1992). Like parts o f the southeastern 

margins o f  the Norwegian-Greenland Sea, a magnetic smooth zone was reported by 

Feden et al. (1979) on the southern part o f  the Yermak Plateau, north o f  the 

Spitsbergen Fracture Zone. In contrast, the northern Yermak Plateau is characterized 

by high amplitude and long-wavelength magnetic anomalies, varying from 300 to 

1600 nT (Figure 3-11; Feden etal., 1979; Kovacs etal., 1982; Jackson etal., 1984).

7 . G r a v it y

The eastern margins o f  the Norwegian-Greenland Sea are characterized by 

locally varying free-air gravity anomalies (from -50 to more than 100 mGal, Figure 3- 

13, Gronlie and Talwani, 1982; Faleide et al., 1984). On the Voring Plateau, free-air



gravity anomalies reach 50 mGal (or more). However, a negative gravity anomaly 

(37 mGal) occurs inside the plateau escarpment. A prominent landward-dipping 

escarpment has been mapped at 68.9°N coincident with a steep gravity gradient 

(Talwani and Eldholm, 1972), The Eastern Jan Mayen Fracture Zone is characterized 

by negative gravity anomalies (37 mGal) and the active portion o f the fracture zone is 

characterized by positive values (> 100 mGal). North o f the Voring Plateau in the 

Lofoten Basin, a large positive anomaly (>100 mGal) may indicate some high density 

crust under the Lofoten-Vesteralen Islands.

The Senja Gravity High (in excess o f 135 mGal) is oriented in a N-NW 

direction between 70°N and 73.5°N at the Senja Margin (Figure 3-13). In this 

region, the gravity high is correlated with seaward dipping reflectors and also high 

heat flow. It is difficult to resolve iow-amplitude magnetic features on the shelf and 

upper slope, where the gravity-field is very quiet except for some local areas o f  high- 

amplitude anomalies (Am, 1975). The anomaly could be explained by a 30 to 60 km- 

wide subbasement-reflector intrusive. Talwani and Eldholm (1977) suggest that the 

Senja Gravity High defines the eastern extension o f  the Greenland Fracture Zone now 

buried by sediments. Around the Greenland Fracture Zone a large positive anomaly 

(approximately 117 mGal) may also be indicative o f  high-density crust located 

beneath the ridge (Gronlie and Talwani, 1982). A 20- to 50-km wide belt o f  positive 

isostatic anomalies is located just seaward o f the Greenland Escarpment.

At approximately 74°N, southwest o f Bjornoya, there is a gravity high (10 to 

200 km-Iong) o f  80 mGal trending in a NE direction (Faleide et al., 1984; Myhre and
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Eldholm, 1988). A series o f positive landward anomalies, linearly aligned between 

Bjornoya and 76.5°N appear parallel to the shelf edge. The Bjomoya Gravity 

Anomaly has a shape and amplitude similar to the anomalies over the neighboring 

mid-ocean ridge (Myhre, 1984), yet differs from the Senja and the Homsund 

anomalies. Myhre (1984) explains this difference and suggests that this gravity 

anomaly is associated with a structural high trending obliquely to the continental 

margin. This gravity high has a smaller amplitude than the elongate belts o f the Senja 

and Hornsund Highs and it appears to form a link between them.

[n contrast, the Homsund Fault anomalies trend in a N-NW direction from 

Bjomoya to 77.5° N landward o f the shelf edge and are thought to mark the 

continental-oceanic crustal boundary. The anomalies are split into two maxima: 

Myhre and Eldholm (1988) suggest that the maxima (145 mGal at 75.5°N and 132 

mGal at 77°N) are caused by local intrusive bodies surrounded by less dense 

continental crust along the Hornsund Fault. The shape and location o f  the main 

anomaly excludes a topographic edge effect origin (Gronlie and Talwani, 1982;

Myhre and Eldholm, 1988). Eldholm et al. (1987) suggests that the anomalies may 

indicate the emplacement o f  subaerial Icelandic-type basalts during the earliest stage 

o f  sea-floor spreading. Along the margin between the Senja and Hornsund Fault 

Zone, the acoustic basement reflector, forming a marginal high, terminates along 

northeastern trending faults which are offset along lineaments subparallel with the 

Senja Fracture Zone and the Hornsund Fault Zone (Myhre and Eldholm, 1988).



C. SUMMARY

The present-day plate boundaries in the Norwegian-Greenland Sea are 

morpho-tectonically complex features. Both paleo- and presently-active propagating 

ridges (Aegir, Mohns, and Knipovich) impacted paleo-shear zones (East Jan Mayen, 

Voring, Lofoten, Vesteralen, Senja, and Spitsbergen) which defined the nascent 

transtensional volcanic margins (Norwegian, Senja, and Svalbard). Most recently, the 

Mohns Ridge intersected and was deflected into the Spitsbergen Shear Zone forming 

the Knipovich Ridge in the process. If  the present is the key to the past then mid

ocean ridge deflection occurred commonly in the early history o f the Norwegian- 

Greenland Sea.

Studies indicate that complex margin formation in the Norwegian-Greenland 

Sea is associated with episodic magmatic behavior such as early Tertiary and Neo- 

volcanic activities (Talwani and Eldholm, 1977; Skogseid and Eldholm, 1987; M utter 

etal., 1988; Eldholm, 1991; Crane et al., 1991; Okay and Crane, 1993; Eldholm and 

Grue, 1994). By drilling into the eastern margins' seaward-dipping structure, it was 

discovered that a series o f  volcanic flows extruded through continental rock before 

and during seafloor spreading, thus the continental margins o f  the Norwegian- 

Greenland Sea are dominated by deep fracture zones associated with volcanism. The 

fracture zones were originally defined by a prominent, elongate, gravity anomaly. 

Seismic, magnetic and gravity data support this relationship (Eldholm et al., 1987; 

Myhre and Eldholm, 1988). High positive free-air gravity anomalies are associated



with seaward dipping reflector sequences, indicative o f high density crust creating the 

eastern volcanic margins.

The magnetic character also suggests an exceptionally high rate o f basalt 

accumulations at the continent-oceanic transition. Earthquakes occur along the 

continental-oceanic crustal transition, as well as on the Svalbard Platform with 

extension-dominated intraplate movements along major N-S trending normal faults 

associated, with diffuse magmatic activity.

The Norwegian-Greenland Sea lies within a broad region o f anomalously high 

heat flow. This high heat flow implies that relatively high temperatures exist at 

shallow depths in the crust. Thus, in response to the heating, the seafloor in the 

eastern Norwegian-Greenland Sea is thermally elevated. However, the questions 

remain about the level o f  present-day volcanic activity along the margins o f  the 

Norwegian-Greenland Sea and its correlation to the unusual patterns o f  intraplate 

seismicity and presently high heat flow in the regions where crust was thought to be 

many ten’s o f millions o f years old. To resolve this problem, we collected 

SeaMARC-II data to investigate whether or not this area o f  high seismicity had been 

volcanically active in the recent past. Our findings from these data are described in 

the following chapter.
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Chapter 4

M O R PH O -T E C T O N IC  STUDIES A LO N G  TH E SV A LB A R D  M A R G IN S:

SeaM A RC-II RESULTS

A. SeaMARC-II SURVEYS

Two SeaMARC-II expeditions (1989 and 1990) investigated the previously 

unmapped seafloor in the northern Norwegian-Greenland Sea and the adjacent part o f  

the eastern Arctic Ocean (Crane et al., 1990; Sundvor et al., 1990, 1991; Vogt et al., 

1990, 1991, 1993; Okay et al., 1991, 1993; Doss et al., 1991). These expeditions 

were made possible by the collaboration o f several institutions. The Naval Research 

Laboratory chartered the SeaMARC-II system from the Hawaii Institute o f  

Geophysics. The University o f Bergen provided a research vessel, Hakon Mosby, 

including navigation equipment and shipboard-geophysical sensors (3.5 and 38 kHz 

echo sounders, towed proton precession magnetometer, and gravimeter). Scientific 

staff, representing the City University o f New York, the Lamont-Doherty Earth 

Observatory o f  Columbia University, the Hawaii Institute o f  Geophysics, the Scripps 

Institution o f  Oceanography, the Naval Research Laboratory, and the University o f  

Bergen participated. The main objective o f my study during these expeditions was to 

map the regional volcano-tectonic structures and investigate their relationships to the 

thermal evolution o f transtensional volcanic margins adjacent to the northeastern 

Norwegian-Greenland Sea,
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The SeaMARC-II system, as a mapping tool, collects a combination o fback- 

scatter, side-looking sonar imagery and swath-type bathymetry (see Appendix A for a 

review). This combination facilitates sufficiently accurate descriptions o f  the seafloor. 

Volcanics (flows, cones and craters), normal faults, sedimentary and glacial features, 

and erosional channels are visible on the sonar imagery allowing us to investigate the 

geological processes operating in the northern Norwegian-Greenland Sea and in 

adjacent parts o f  the Eastern Arctic Ocean.

During the SeaMARC-II/1989 Expedition the northern part o f the Knipovich 

Ridge, Molloy Transform Fault along the Western Svalbard Margin and southwestern 

Yermak Plateau were mapped. In the fall o f 1990 more than 200  km o f Arctic sea-ice 

melted north o f the Svalbard Archipelago. Favorable ice conditions (more open 

water than at any time in the previous 43 years) allowed the deep ocean research 

northeastward to 81.8°N, 29°E. The break from impossible conditions also enabled 

us to obtain the first side-looking sonar data from the deep-water Arctic Ocean. The 

SeaM ARC-II/1990 investigation covered the NE Lofoten Basin, the Bear Island Fan 

(Bjornoya), the Hovgard Fracture Zone, and the northern Svalbard and 

Nordaustlandet margins. The entire area was surveyed in less than 4 weeks under 

(sometimes) severe-ice and weather conditions. SeaMARC-II side-looking sonar 

imagery and swath-bathymetry were generally o f good quality throughout the cruise 

although rough weather resulted in the loss o f gravity data along the northern 

Svalbard-Nordaustlandet Margin.
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This chapter combines the results o f  regional examples o f  side-looking sonar 

images, and preliminary geological-geophysical interpretations. Figure 4-1 depicts the 

track chart o f  both the 1989 and 1990 SeaMARC-II Expeditions (on a polar 

stereographic projection). Figure 4-2 illustrates a combination o f  swath-bathymetry 

and side-looking sonar imagery mosaics from these expeditions (Plate I in Appendix 

B). These images represent the first side-looking sonar data from the deep-water 

Eastern Arctic Ocean, As a result o f  the two-year high-latitude investigations, about 

15,000 line kilometers o f data were collected, representing approximately 150,000 

km2 ofside-scan imagery and 75,000 km2 swath-bathymetry. The SeaMARC-II side 

looking sonar images have recently been compiled by Crane and Solheim in the 

Seafloor Atlas o f the Norwegian-Greenland Sea (Crane and Solheim, 1995).

B. GEOLOGY OF THE SVALBARD REGION

1. TECTONICS

Along the northern coast o f  Svalbard, NW-SE and NNE-SSW trending 

depressions are dominant on the shelf area. These two directions correspond closely 

with the conjugate fracture system in the Caledonian rocks (Birkenmajer, 1981; Ohta, 

1982; Max and Ohta, 1988). The area from central to southern Spitsbergen is 

characterized by large NNW-SSE trending fault zones that were first active in
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Figure 4-1. Tracks chart o f the SeaMARC-II Expeditions (1989 and 1990).
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Figure 4-2. SeaMARC-II side-looking sonar imagery and swath-bathymetiy ( 1989 
and 1990), from the Seafloor Atlas o f the Norwegian-Greenland Sea by Crane and 
Solheim (1995). Boxes indicate study areas: the northern Svalbard margin (A), the 
northern Nordaustlandet margin (B).
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Devonian times (Ohta, 1982). These are o f Tertiary age and older than the NNW- 

SSE striking graben and horst structures (Ohta, 1982; Steel et a!., 1985). They 

indicate a right lateral transpressive stress, perhaps caused by the northward 

movement o f  the Greenland plate in Eocene times prior to the opening o f  the 

northernmost Atlantic Ocean (Kristoffersen and Talwani, 1978). The fault zones 

bounding this area, the Lomfjorden Fault and Billefjorden Fault Zone in the east and 

the Forland Fault Zone in the west, join to become one fault zone in the Heer Land 

region; and this junction borders the southern Central Tertiary Basin o f Spitsbergen 

(see Figure 3-19 in Chapter 3). Some minor faults trending NE also occur along the 

west coast o f  Spitsbergen.

The Central Tertiary Basin in the southern part o f Spitsbergen is generally 

asymmetric and associated with both strike-slip and thrust faulting. The Basin 

developed east o f  a strike slip boundary between the Eurasian and Greenland plates in 

response to the initiation o f  rifting, and later seafloor spreading in the northern 

Norwegian-Greenland Sea (Muller and Spielhagen, 1990), The Tertiary deformation 

appears to be less pronounced eastward and most o f the Tertiary faults are younger 

than the folding (Harland, 1985; Steel eta!., 1985). Kellogg (1975) suggested that 

the main tectonic face may have been initiated in the late Eocene with culmination in 

the Oligocene. The compressive phase was followed by a period o f  tensional stresses 

resulting in formation o f the down-faulted blocks and grabens. Holtendahl (1960) 

suggested an offshore continuation o f this Tertiary fault pattern onto the northern 

Svalbard margin.
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2 . S u r f a c e  G e o l o g y

There is a succession o f sedimentary rocks from the Cambrian to the Tertiary 

in Svalbard (Figure 4-3), Within the context o f plate tectonics, the late Paleozoic and 

Mesozoic rocks are similar to those in northern Canada, perhaps indicating a 

continuous sedimentary basin from the Canadian Arctic across Ellesmere Islands to 

Svalbard prior to the rifting in the Arctic Ocean (Kellogg, 1975). In the late 

Cretaceous an epirogenic uplift occurred in Svalbard, therefore no late Cretaceous 

sediments are observed on land. Most o f the Tertiary rocks are located in the 

southern part o f  Spitsbergen (the Tertiary Centra! Basin).

The youngest rocks are believed to be o f  Oligocene, possibly Miocene age 

(Flood et al., 1971). The uplifted areas have been a source region for the Tertiary 

deposits. The older rocks in the northern Spitsbergen and Nordaustlandet were most 

likely exposed prior to Cenozoic, however, the Hecla Hoek Complex along the 

Western Svalbard Margin became exposed during the middle Tertiary (Kellogg,

1975). The uplift along the continental margin occurred along a system o f 

northwards trending faults with subsequent erosion o f the early Tertiary, Mesozoic 

and late Paleozoic deposits.

Volcanics are exposed in Spitsbergen and Nordaustlandet, discussed in chapter 

3 (Harland, 1971; Prestvik, 1978; Birkenmajer, 1981). Quaternary volcanic centers 

and active thermal springs are located in western Spitsbergen while Tertiary plateau 

basalts are found on eastern Spitsbergen. Both Lower Cretaceous and Mesozoic
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volcanics (tholeiitic-type) are exposed on both sides o f Hinlopenstretet, on 

Nordaustlandet and Kong Karls Land (Figure 3-6).

C. SeaMARC II-DATA INTERPRETATIONS

1. .  N o r t h e r n  S v a l b  a r d - N o r d a u s t l a n d e t  M a r g in

a. Bathymetry:

Figure 4-4 depicts a bathymetric chart o f the northern Svalbard- 

Nordaustlandet Margin obtained from the SeaMARC-II swath-bathymetry data. 

Bathymetric contours indicate the arcuate shape o f  the southern Yermak Plateau, 

deepening to the northeast (2600 m). The shelf along the northern Svalbard Margin 

is very shallow (600 m). The bathymetric chart indicates that on the shelf north o f  

Svalbard and Nordaustlandet there are depressions (presumed canyons) perpendicular 

to the coastline. The shelf is transected by wide transverse channels which appear to 

be continuations o f the main fjord system. The bathymetry o f  the continental shelf 

along the northern Nordaustlandet Margin is characterized by several N-S trending 

canyons reaching depths o f  3000 m (Figure 4-4), which may be superimposed upon 

pre-existing fault grabens which cross through the region.
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Figure 4 -4 . Bathymetry o f  the northern Svalbard-Nordaustlandet Margin, This map 
is constructed from the SeaMARC-II swath-bathymetry data, placed on a polar
stereographic projection. Bathymetry contour intervals 100 m. Northern coastline of Svalbard modified from Cherkis etai. (1994).
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b. Geological Interpretations;

i. Sedimentary and Glacial Features 

The main geological features from Plate 1 o f  SeaMARC-II side-looking sonar 

images in Appendix B are documented in Figure 4-5. These are sedimentary features, 

iceberg-plow marks, glacial canyons, erosional channels, faults, volcanic seamounts 

and volcanic cones surrounded by lava flows and volcanic constructional terrain.

Figure 4-6 is a SeaMARC-II sonar image depicting iceberg-plow marks and 

sedimentary lineations (on the northwestern tip o f  Spitsbergen at 8°E). In general, the 

iceberg-plowmarks are trending in theN E-SW  direction, and parallel the western 

edge o f  the southern Yermak Plateau. Further north, the orientation o f  iceberg-plow 

marks suggests that either large icebergs were carried by the Spitsbergen Current from 

the Norwegian-Greenland Sea into the Arctic Ocean or that they w ere formed by a 

grounded ice sheet moving across the shallow Yermak Plateau. These marks were 

most likely created during a prior glacial event, because icebergs o f  such size are no 

longer observed in this area (Sundvor et al., 1982; Vogt et al., 1994).

A sonar image o f  the eastern flank o f Hinlopenstretet (Figure 4-7), shows 

erosional channels that indicate large-scale mass wasting and sediment transport along 

the northern Nordaustlandet Margin (Figure 4-5). If  these interpretations o f  the sonar 

imagery are correct then glacially derived sediments were/are transported as far as the 

3600 m isobath (in Figure 4-4). Active-glacial ice streams are still carving into the 

heads o f fjords, and transporting the glacial sediments. Lineations on the
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Figure 4-5. A geological interpretation along the northern Svalbard-Nordaustlandet 
M argin. The main features, obtained from the SeaMARC-II side-looking sonar 
imagery, are: glacial canyons, erosional channels, iceberg-plow marks, faults, 
seamounts, and highly reflective seafloor (RE seafloor) either debris terrain or 
seafloor basalts.
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I c e b e rg  p l o w  m a r k s
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Figure 4-6. Iceberg-plow marks on the southwestern Yermak Plateau. Plow marks 
trend parallel to the edge o f  the Yermak Plateau along the northern Svalbard Margin. 
The orientation o f  iceberg-plow marks (Upslope) indicates the direction o f the 
Spitsbergen Current during the last glacial event. The SeaMARC-II side-looking 
sonar imagery (10 km-wide swaths) is projected onto a plan-view, polar stereographic 
reference frame. The imagery is displayed in shades o f  gray with acoustic shadows as 
white and strong reflections as black. The white corridor in the middle o f the imagery 
is the sonar vehicle path.
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Figure 4-7. Fault controlled glacial canyons and erosional channels on the 
Nordaustlandet Margin.
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surface sediments indicate the presence o f  strong bottom currents. For example, 

bottom currents flow northward around Svalbard and may help to modify the glacial 

valleys and channels along the northern Nordaustlandet Margin (Pfirman, 1989). 

Canyons appear to be controlled by the many pre-existing N-S trending faults 

dominating this margin. These faults may still be associated with volcano-tectonic 

activity in the region. If  one traces the faults onto or adjacent to Nordaustlandet, one 

notices several igneous provinces bounding the steeply dipping scarps.

/'/. Volcano-Tectonic Features 

Volcanics and faults along the northern Svalbard-Nordaustlandet Margin are 

indicated in Figure 4-8 (Prestvik, 1978; Hjelle and Lauritzen, 1984; Lauritzen and 

Ohta, 1984). Basalts are very common in Spitsbergen and Nordaustlandet (Harland, 

1971; Prestvik, 1978; Birkenmajer, 1981). Indeed, volcanic and tectonic features 

often coincide on Svalbard. For example, Quaternary volcanic centers and active 

* thermal springs are located along the Raudfjorden Fault Zone in western Spitsbergen. 

Tertiary plateau basalts are found along the Billefjorden Fault Zone on eastern 

Spitsbergen. Lower Cretaceous and Mesozoic volcanics are exposed along the 

Lomfjorden, Rijpfjorden, and Lady Franklinfjorden Fault Zones on both sides o f 

Hinlopenstretet, on Nordaustlandet and Kong Karls Land.

In the marine environment, three distinctive regions o f  high reflectivity-high 

backscatter seafloor associated with highly-reflective fault scarps are observed from 

sonar images o f the northern Svalbard Margin (Figure 4-8). The three regions are:
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Figure 4-8. Volcanics o f  Spitsbergen and Nordaustlandet. Various published maps 
and sources are used (Prestvik, 1978; Hjelle and Lauritzen, 1984; Lauritzen and Ohta, 
1984). Regions o f highly reflective seafloor (SEAFLOOR) are likely submarine 
volcanics provinces that occur along the major faults. Qv: Quaternary volcanic 
centers, Tv: Tertiary volcanics. Fault Zones: Billeijorden (B), Bockfjerden (Bf), 
Foreland (F), Lomfjorden (L), Lady Frank!infjorden (LF), Raudfjorden (R), 
Rijpijorden (Rf).
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the Yermak Seamount, the Hinlopenstretet and Nordaustlandet highly-reflective 

("presumed volcanic") Terrain. Because they are marine extensions o f  terrestrial 

volcanism, it is highly likely that they are volcanic as well.

In the first marine presumed-volcanic region, an elongate seamount (the 

Yermak Seamount) is found at 12°E. The feature can be seen in both the side- 

looking sonar imagery and bathymetry (Figure 4-9). The seamount has an overall 

diameter o f  about 15-20 km. Highly reflective flank flows are located at its base. 

Several linear features adjacent to the volcanic feature are characterized by high 

acoustic back-scatter. These linear features are interpreted to be highly reflective fault 

scarps that face inwards toward the seamount. The NW-SE trending faults are 

located directly north o f  several extensional fault zones, namely: the Raudfjorden 

Fault Zone (I2°E), and the Bockfjorden Fault Zone (13°E) associated with 

Quaternary volcanic centers in northern Spitsbergen.

The second presumed-volcanic region is observed between 14°E and 17°E 

(Figure 4-10) and is characterized by several volcanic seamounts, bordered by faults, 

detected in the sonar imagery. Linear features with high acoustic back-scatter are 

interpreted to be highly reflective fault scarps trending NW-SE and are located 

directly north o f several extensional fault zones, namely: Billefjorden Fault Zone 

( I 6°E), and Lomfjorden Fault Zone (18°E), associated with Tertiary and Quaternary 

volcanic centers in Spitsbergen, These faults are oriented in the direction parallel to 

the Billefjorden Fault Zone, which cuts through Spitsbergen south to north along 

Hinlopenstretet and where Tertiary volcanic centers are exposed. This region is



Figure 4-9. (a) Side-looking sonar imagery o f the Yermak Seamount on the 
northern Svalbard Margin ("C" in Plate 1, Appendix B). (b) shaded areas indicate 
seafloor bathymetry, dark squares total magnetic field over the Yermak Seamount. 
This region is bordered by faults, and is characterized by a relatively high magnetic 
field. Major fault zones, and Quaternary volcanic center on Spitsbergen are indicated 
( 11°E on B refer to 11°E on A.)
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interpreted to be volcanic constructional terrain (the Hinlopen Volcanic Terrain) 

covered by volcanic lavas, because the seafloor is also characterized by a large- 

amplitude magnetic anomaly (Figure 4-10). The Hinlopen presumed-Volcanic 

Terrain is 60-80 km wide and located between the Widjefjorden and Hinlopenstretet. 

A volcanic cone (at 16.5°E) is detected in this volcanic constructional terrain. This 

volcanic cone (Mosby Peak) is located directly north o f the Quaternary volcanic 

center in the Woodfjorden region, and is marked by a significantly high amplitude 

magnetic anomaly (250 nT, Figure 4-10).

The third presumed-volcanic region (Nordaustlandet Terrain) is located north 

o f  northeastern Nordaustlandet (Figure 4-11). Here, strong acoustic reflections 

suggest either volcanic flows or regions covered by glacially derived talus. However, 

subaerial fissure-fault controlled lavas, associated with Mesozoic plateau basalts on 

Nordaustlandet and Kong Karls Land probably extend into the submarine 

Nordaustlandet Terrain. These faults also coincide with the erosional channels that 

cross the northern Nordaustlandet Margin. In Figure 4 -1 1 a bathymetric profile 

indicates the rough nature o f the seafloor. The faults are located directly north (24°E) 

o f  the Rijpfjorden and Lady Franklinfjorden Fault Zones in Nordaustlandet. For this 

reason it is highly likely that the Nordaustlandet Terrain is at least in part o f  volcanic 

origin.



144

Nordaustlandet Volcanic Terrain55600

O ) 55100

54600

Longitude °E

Figure 4- 1 ]. (a) Sonar imagery along the northern Nordaustlandet Margin fault 
controlled patches of highly reflective seafloor, glacial canyons and channels ("B" and 
"E" regions in Plate 1, Appendix B). (b) Seafloor bathymetiy, high heat flow, and 
high total magnetic field (dark squares) are indicated.
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c. Geophysical Characteristics:

The surveyed region lies outside o f the clearly defined magnetic anomaly 

province which is characteristic o f  the Eastern Arctic Ocean Seafloor. However, high 

amplitude magnetic fields are indicative o f seafloor volcanism in the region (Figure 4- 

12). The Yermak Seamount in particular is marked by an increase in magnetic 

amplitude o f 102 nT over background (Figure 4-9). The Hinlopen Volcanic Terrain 

is characterized by a large-amplitude magnetic anomaly and a high heat flow province 

(Figure 4-10). The region o f high heat flow on the southwestern Yermak Plateau 

(104-138 mW/m2, Crane etal., 1982) corresponds to a high-amplitude total-magnetic 

field (250 nT, Okay etal., 1991) which is comparable to the magnetic field ofM osby 

Peak and nearby Quaternary volcanic centers on Spitsbergen (Prestvik, 1978).

A nother region where the total magnetic field is noticeably high is at 29°E where 

faults and volcanic-looking features are detected along the northern Nordaustlandet 

Margin (Figure 4-11). In addition, along the northeastern Nordaustlandet Margin, the 

mapped high amplitude total magnetic field (750 nT) correlates with off-axial heat 

flow highs (77 and 109 mW/m2 in Figure 4-13; Sundvor and Torp, 1987). High heat 

flow, and magnetic data suggest that the Nordaustlandet Volcanic Terrain may not be 

as old as the dacitic lavas in the surrounding area. If  this is correct then the crust must 

be rejuvenated by some sort o f magmatic source beneath the Svalbard Archipelago.

The distribution o f present-day earthquake activity in the northern Svalbard 

and Nordaustlandet regions is shown in Figure 4-13. Noticeable earthquake activity 

has been recorded along the major faults (the Rijpfjorden and Lady Franktinfjorden
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Figure 4-12. Total magnetic field along the northern Svalbard-Nordaustlandet 
Margin. Contour intervals are in 100 nT. Volcanic, "presumed" seafloor basalts o f 
undetermined age (SEAFLOOR), tectonic features, and heat flow are indicated.
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Fault Zones) o f Nordaustlandet (Mitchell ei al., 1979; Bungum et al., 1982; Mitchell 

et al., 1990), This concentrated earthquake zone extends along the seafloor, where 

faults can be observed on sonar imagery. Two concentrated seismic zones are 

observed around I6°-24°E and 30°E (Figure 4-14). Mitchell et al. (1990) suggest 

that fault plane solutions indicate the maximum-principal stress axis to lie E-W 

(normal to the western continental margin. As this region is more than 200  km away 

from the plate boundary, earthquake concentrations plus high heat flow and high 

amplitude magnetic anomalies suggest that the region may be undergoing thermal 

rejuvenation and diffuse rifting.

2. T h e  M o i. l o y  T r a n s f o r m  F a u l t  a n d  W e s t e r n  S v a l b a r d  M a r g i n

a. Geological Interpretations:

i. Sedimentary and Glacial Features

A geological interpretation o f  the SeaMARC-II side-looking sonar imagery 

(Figure 4 - 1 5 )  along the Western Svalbard Margin is illustrated in Figure 4-16. The 

main features mapped are: faults, volcanic flow, volcanic cones, craters, pock marks, 

and fault controlled slumping on the Western Svalbard Margin where the propagating 

Knipovich Ridge intersects the oblique Molloy Transform Fault.

Thick sediments that cover older features on the seafloor (Figure 4-15). Due 

to its close proximity to the continental margin, the plate boundary (comprised o f the 

northern Knipovich Ridge and the Molloy Transform Fault) are often covered by the 

thick sediments which cover older features on the seafloor. The continental margin is
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Figure 4-14. Distribution o f earthquakes in the Svalbard and Nordaustlandet regions, 
Earthquakes occur along the major faults in the islands and continue to the seafloor 
(Mitchell etaL, 1979; Bungum etaL, 1982; Mitchell e t a l 1990). Fault Zones: 
Foreland (F), Raudfjorden (R), Bockfjorden (B), Billeljorden (Bf), Lomfjorden (L), 
Lady Franklinfjerden (LF), Rijpfjorden (Rf).
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Figure 4-15. SeaMARC-H side-scari sonar imagery along the Western Svalbard 
Margin. The sonar images reveal the intersection o f  the Knipovich Ridge with the 
Molloy Transform Fault.
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Figure 4-16. Structural and volcanic interpretation o f  the northern Knipovich Ridge 
and the Molloy Transform Fault along the Western Svalbard Margin. SeaMARC-II 
side-scan sonar images reveal the double-fault o f the Molloy Transform at its 
intersection with the northern Knipovich Ridge. Open circles represent earthquakes. 
Solid lines represent faults, black patches indicate cones, craters and lava flows, 
stippled areas represent downslope transport o f  sediment (Crane and Solheim, 1995).
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characterized by rapid progradation heavily influenced by repeated Quaternary 

glaciations and possibly bottom currents. Adjacent to the Svalbard margin the 

seafloor is subjected to constant mass wasting. Only a few slump scars were imaged 

near the thickly sedimented slopes at the Molloy Transform area (Figure 4-16). 

Possible bottom-current generated features appear in side-looking sonar images near 

the Molloy Transform (Figure 4-15). Their location in proximity to this active fault 

means that a tectonic origin cannot be ruled out.

Pockmarks were imaged, scattered across the thick sediments atop anticlinal 

structures. Pockmarks appear as small dark speckles, barely resolvable in the side- 

looking sonar imagery (Figure 4-16). These features are thought to have been 

derived by methane venting and their distribution is associated with high heat flow 

that might cause the thawing o f  subjacent clathrates below the sedimentary layers 

(Figure 4-17).

//. Volcano-Tectonic Features 

The most prominent volcano-tectonic features in this region are at the 

intersection o f the northern Knipovich Ridge and the Molloy Transform Fault. This 

section o f the plate boundary is characterized by ultra-slow, oblique and asymmetric 

spreading along the transform fault. The neo-tectonic Molloy Transform, a double

fault, is covered by thick sediments. Near the intersection o f  the northern Knipovich 

Ridge and Molloy Transform Fault (78°30' N, 7°E), the offset between the double 

faults reaches 8 km. In the intersection region, ridge related faults (and some off-axial
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Figure 4-17. Geophysical data at the intersection o f the northern Knipovich 
Ridge/Molloy Transform Fault along the Western Svalbard Margin. Bathymetry is 
indicated (1 km contour interval). Heat flow data are as reported by Crane et al. 
(1991). High magnetic field regions (>54,400 nT) and earthquakes are indicated. 
Distribution o f  earthquakes provided from Bungum etal. (1982) and Mitchell el al. 
(1990). Notice concentrated earthquake zone lies south-north (at 7°E, 78°40’ N) 
where pockmarks and high heat flow and high-amplitude total-magnetic field are also 
found. MTF: Molloy Transform Fault, KR: Knipovich Ridge.
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faults) bend towards the transform trend, north to northwest. A broader belt o f 

deformed lineations striking 30° to 45° with respect to the transform trend, can be 

found up to 10-30 km SW o f the transform axis. Volcanic cones, craters and lava 

flows are located only in the northern Knipovich Ridge valley (Figure 4-17). South o f 

the intersection region, faults on the flank o f the rift valley make a V-shaped pattern 

which point towards the intersection o f  the northern Knipovich Ridge and Molloy 

Transform Fault (Doss et al., 1991; Okay etal., 1993).

b. Geophysical Characteristics:

Seismological data from Sykes (1965), Bungum et al. (1979, 1982, 1990) and 

Mitchell et al. (1979, 1990) indicate significant earthquake activity concentrated at the 

intersection o f the northern Knipovich Ridge and the Molloy Transform along the 

Western Svalbard Margin (Figure 4-16). However, near 7°E, the distribution o f  

earthquakes is highly concentrated in a N-S direction and extends significantly north 

o f  the Knipovich Ridge/Molloy Transform Fault intersection. Superposition o f the 

epicenters on the structural map shows the close correlation between sonar imagery, 

and fault lineations and earthquakes, suggesting that these orthogonal lineations are 

most likely active faults. That the N-S oriented faults and are a direct extension o f  the 

Knipovich Ridge suggests that recent propagation o f  the ridge may be proceeding 

north o f the Molloy Transform Fault.

High heat flow (>150 mW/m2) along the Western Svalbard Margin (Figure 4- 

17) was observed at the tip o f  the northern Knipovich Ridge and the Molloy
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Transform Fault. In addition, certain regions along the northern Knipovich Ridge, 

Molloy Transform Fault and Western Svalbard Margin were characterized (during the 

SeaMARC-II Survey) by a total magnetic field higher than 54,400 nT (Figure 4-17). 

Five o f  the six zones o f  high-amplitude magnetic field lie within a corridor o f 

relatively high heat flow (125-150 mW/m2), which extends northwest o f  the 

intersection o f  the Knipovich Ridge with the Molloy Transform, into and along the 

seismically active faults mentioned above, lending further credence to the idea that rift 

propagation is ongoing north o f the Molloy Transform Fault. Sandwiched between 

these two belts o f  high heat flow lies a 40 km long lenticular-shaped region o f  low 

heat flow (<100  mW /m2) parallel and north o f the Molloy Transform Fault (Figure 4- 

17).

D. SUMMARY OF SeaMARC-II DATA RESULTS

SeaMARC-II data were collected to resolve the plate tectonic evolution o f  the 

northern Norwegian-Greenland Sea margins and to map seafloor and geological 

features. SeaMARC-II data show the interaction between the slow spreading center 

o f  the northern Knipovich Ridge and one o f the worlds longest fracture zones (the 

Spitsbergen Fracture Zone). Evidence o f  further northward rift propagation o f  the 

Knipovich Ridge was found on the western Svalbard Margin to the north o f  the
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Molloy Transform. The following represent key geological processes which were 

detected by the SeaMARC-II imagery:

1. Iceberg-plow marks are observed on the northwestern tip o f  Spitsbergen 

(paralleling the edge o f  the Yermak Plateau). The direction o f iceberg-plow marks 

indicates that large icebergs were either carried by the Spitsbergen Current from the 

Norwegian-Greenland Sea into the Arctic Ocean during the last glacial event, or were 

part o f  an extensive grounded but moving ice sheet in the region. Lineations carved 

into sediment are evidence that strong bottom currents may at times scour the shallow 

slopes.

2 . SeaMARC-II images along the Western Svalbard Margin reveal the 

double-faulted Molloy Transform Fault at its intersection with the Knipovich Ridge. 

Heat flow, magnetics, earthquakes and pockmark terrain on the western Svalbard 

Margin indicate that the Knipovich Ridge is propagating northwards. Near 7°E, 

seismic activity is evidence for recent tectonic activity north o f the Molloy Transform 

Fault. Three o f  the six zones are aligned along the N-S oriented margin boundary 

faults north o f  the Molloy Transform and within the corridor o f high heat flow 

described above, suggesting that subjacent magmatic intrusion is now taking place. In 

addition to this, the identification o f  multiple ridge/transform trending normal faults 

(north o f the ridge/transform intersection) suggests that the plate boundary is in the 

process o f  propagating to the North.

3. SeaMARC-II side-looking sonar imagery along the Northern Svalbard- 

Nordaustlandet Margin reveals ofF-axial zones o f presumed magmatic intrusions that
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have been active along the faults located directly north o f  the major fault zones o f  

Spitsbergen and Nordaustlandet such as: Raudfjorden, Bockfjorden, Billefjorden, 

Lomfjorden, and Rijpfjorden Faults. According to interpretations o f magnetic, 

seismic, structural, and heat flow data, I conclude that these NW-SE trending faults 

associated with the secondary and Tertiary detachment faults bordering the northern 

Svalbard-Nordaustlandet Margin are the loci o f ofF-plate boundary volcanic intrusions 

and thermal rejuvenation.

In addition, regions o f high total magnetic field, earthquake activity and off- 

axial high heat flow are coincident with highly-reflective seafloor (presumed-volcanic 

terrain). The combination o f the above suggests that the seafloor in these regions may 

be volcanic in nature. The SeaMARC-II images also reveal the presence o f the 

Yermak Seamount, a volcanic cone, and the Mosby Peak within the Hinlopen 

Volcanic Terrain. Higher heat flow, and magnetic data indicate that the crust in the 

region o f  the Nordaustlandet Volcanic Terrain is not as old as the dacitic lavas and 

therefore the continental margin in this region must be rejuvenated by either a 

subjacent or lateral heat source.
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Chapter 5

HEAT FLOW MODELING STUDY OF THE EASTERN 

NORWEGIAN-GREENLAND SEA MARGINS

A. ANALYSIS OF HEAT FLOW

1. D is t r ib u t io n  o f  H e a t  F l o w  d a t a  f r o m  n  n* N o r w e g ia n - G r h e n i .a n d

S e a

Figure 5-1 illustrates collected heat flow in the North Atlantic, Norwegian- 

Greenland Sea, and eastern Arctic Ocean regions (Lachenbruch and Marshall, 1968; 

Langseth and Zielinski, 1974; Crane et at., 1982; Jackson et al., 1984; Sundvor,

1986; Sundvor and Torp, 1987; Crane et al., 1988). Heat flow generally decreases 

with increasing crustal age and distance from the active spreading centers. However, 

heat flow was found to increase along the eastern margins, and in particular on the 

volcanic plateaus (Figure 5-1). In general, heat flow averages 124 mW /m2 on the 

eastern margins, and is far in excess o f heat flow on the western margins o f  the 

Norwegian-Greenland Sea (64 mW /nr). Six regions o f high heat flow can be 

distinguished along the eastern margins: the Voring Plateau on the Norwegian Margin 

(87 mW /m2), the Senja Margin (121 mW /nr), the Hornsund Fault region (140 

mW/m") on the western Svalbard Margin (at 75°N), the intersection o f the northern 

Knipovich Ridge and Molloy Transform Fault on the Western Svalbard Margin
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Figure 5-1. Heat flow in the North Atlantic Ocean, Norwegian-Greenland Sea and 
eastern Arctic Ocean regions. The map is compiled from Langseth and Zielinski 
(1974), Vogt etal. (1981), Crane et at. (1991). Stations north of79°N  are from 
Craneeta l. (1982), Jackson et al, (1984), Sundvor (1986), and Sundvor and Torp 
(1987). The northern Norwegian-Greenland Sea basin adjacent to Svalbard, the 
Knipovich Ridge (KR), the Mohns Ridge (MR), and the southern Yermak Plateau 
(YP) are regions o f relatively high heat flow (Crane et a!., 1982, 1988, 1991): the 
Voring Plateau (VP), the Jan Mayen Ridge (JMR), and the Nansen Ridge (NR).
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at 78.5°N (197 mW/m2), the southern Yermak Plateau adjacent to the northwestern 

Svalbard Margin (138 mW/m2), and Northern Svalbard-Nordaustlandet Margins (109 

mW/m2).

In this thesis, I analyze heat flow data collected in the eastern Norwegian- 

Greenland Sea and eastern Arctic Ocean to refine an evolutionary scenario o f 

volcanic plateau formation and thermal rejuvenation o f the continental crust along 

transtensional passive margins. In this region, magnetic anomalies are nearly absent, 

thus heat flow is a significant tool to reveal the time o f geologic events. Magnetic 

anomalies are absent along much o f  the Knipovich Ridge and the Senja, Western 

Svalbard and Northern Svalbard-Nordaustlandet Margins. Therefore, thermal-crustal 

ages can be compared to magnetic ages at only a few o f the analyzed heat flow 

stations.

In this complex region, I analyze heat flow to estimate thermal crustal ages.

In the following sections, I demonstrate how a propagating lateral heat source 

(controlled by far field kinematics) can create off-axial heat flow highs along 

transtensional passive margins. Data are applied to heat flow and numerical 

lithospheric extension models to constrain the evolutionary scenario o f  the eastern 

Norwegian-Greenland Sea. I also demonstrate how elevated heat flux can be 

generated by enchanced lateral thermal gradients created by asymmetric simple-shear 

lithospheric extension in regions where magma is intruded into paleo-shear zones.

Each modeled section compares observed heat flow and seafloor bathymetry along 

with the best known seismic structure for the area. Seismic records are used to
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determine the proximity o f heat flow stations to the sediment-basement boundaries. 

Cross-sections are constructed from data derived from multichannel seismic refraction 

stations, DSDP and ODP drill sites, and sonobuoy experiment results (Appendix B).

There are still many data gaps in this study area. Due to lack o f data the 

average sedimentation rate (from site to site) was assumed. Another uncertainty was 

the age o f oceanic crust. For instance, poor constraints on the age, extent and 

direction o f  spreading o f oceanic crust in the region o f  the southern Yermak Plateau 

led me to use an alternative method o f analyzing the heat flow by applying numerical 

lithospheric extension modeling. It is worth noting that measured heat flow must be 

corrected for the blanketing effect due to sedimentary coverage (Hutchison, 1985). 

W here sediments are thin, such as near the axis, the rough basement topography also 

causes spatial variability in heat flow. Rapid and irregular sedimentation patterns and 

fluctuating bottom-water temperatures make measurements o f  heat flow in the 

shallow marginal areas, such as the Yermak Plateau, difficult. However, all stations 

penetrated below the seasonal thermal boundary layer in the sediment making it 

possible to analyze these data.

2. HEAT FLOW CORRECTIONS

Two methods are applied to analyze heat flow. Firstly, I apply the Hutchison 

Model (Hutchison, 1985) to correct for the blanketing effect due to sedimentary 

coverage, and calculate the heat flow at the base o f the sediment unit. Secondly, I
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apply the cooling oceanic crust model to estimate thermal-crustal ages for corrected 

heat flow.

a. Blanketing Effect:

Calculating heat flow correction due to sedimentation allows a comparison o f 

observed heat flow values with those predicted by lithospheric extension models. 

These require a given initial temperature at depth and a constant temperature for a 

lower boundary condition (Sclater and Francheteau, 1970; Parsons and Sclater,

1977). To correct heat flow accurately, the thermal effects o f  sedimentation are taken 

into account. Observed surface heat flow is disturbed in areas o f high-relief 

topography (Von Herzen and Uyeda, 1963). Adjacent to margins, the rapid sediment 

deposition causes a reduction in the observed surface heat flow (Hutchison, 1985).

As continuous plate motion carries the crust away from the axial zone, a gradually 

thickening sedimentary blanket seals the features, turning the heat transport over to 

molecular conduction (Vogt et al., 1981; Thiede etal., 1989). A correction for the 

blanketing effect is used to compensate for this reduction (Appendix A).

This model can be used to help predict the thermal crustal age when magnetic 

anomalies are not available. Because the sedimentation in this region does not appear 

to be tied closely to the subsidence rate o f a newly evolving oceanic lithosphere 

(Myhre et al., 1982; Crane et al., 1991), I analyzed the heat flow using the Hutchison 

(1985) model which accounts for changes in the sedimentation rate, variation in 

sediment type, compaction o f  the sedimentary column and surface temperature
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changes. Assuming that the heat flow has been constant and the sedimentation rate 

has been uniform (as the thermal regime can recover slowly) the heat flow at the 

surface o f the sediments can be estimated (Hutchison, 1985). The effects o f  

sedimentation on temperature and heat flow o f a slab are determined by using a one 

dimensional finite difference model (Beaumont e ta i,  1982; Hutchison, 1985),

I corrected heat flow by using best estimates for sediment type and thickness 

based on seismic profiles and sound velocity profiles, including DSDP- and ODP-Site 

results, and core samples taken in these regions. One to two sedimentary layers are 

assumed based on the in-depth analyses o f sedimentation in this region (Myhre et a /., 

1982). Variable sedimentation rates and durations are input into the Hutchison model 

(Hutchison, 1985) yielding outputs which are compared to observed values.

b. Extension Rates and Estimation o f the Thermal-Crustal Age: 

Calculating the blanketing effect o f sediment gives a comparison between 

corrected heat flow values and heat flow values predicted by a model o f  cooling 

oceanic lithosphere (Parsons and Sclater, 1977; McKenzie, 1978). The cooling 

oceanic crust model o f McKenzie (McKenzie, 1978) assumes that the oceanic 

lithosphere cools as it moves from the ridge axis. As a result o f  this, high heat flow 

occurs at mid-ocean ridges and decreases with distance from it (Sclater and 

Francheteau, 1970; Langseth and Zielinski, 1974). The gradual decrease in heat flow 

with increasing crustal age is explained by the cooling and thermal contraction o f  the
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lithosphere, which is consistent with the gradual deepening o f the ocean floor with 

time (Parsons and Sclater, 1977).

Stein and Stein (1992) also suggest that the systematic variation o f  ocean 

depth and heat flow with age became the primary constraint on models o f  the thermal 

evolution o f the lithosphere. Parsons and Sclater (1977) found that such a model, for 

a 125 km-thick plate with a basal temperature of 1350°C, provided good fits to the 

observed heat flow and bathymetry. The model describes the general shape o f  the 

depth curve, including the flattening for ages >70 Ma and the heat flow for ages >50 

Ma. Both theoretical cooling curves (Parsons and Sclater, 1977 and Stein and Stein, 

1992) overlap at crustal ages younger than -6 0  Ma.

In this thesis, I attempt to determine local spreading rates by matching the heat 

flow data, corrected for sedimentation, with a model for the age-dependent cooling o f 

oceanic crust (called the PS-cooling curve by Parsons and Sclater, 1977; Appendix 

A).

3. T e s t in g  L it h o s p h e r ic - E x t e n s i o n  M e c h a n is m s

After sedimentary corrections have been made, corrected heat flow data can 

be used to constrain which o f  the lithospheric extension models are most applicable to 

describe the evolution o f the Norwegian-Greenland Sea (pure- and simple-shear, or 

combination o f  both). Heat flow and seafloor bathymetry computed by numerical 

modeling indicate the effects o f  heat entering the lithosphere. The purpose o f  using
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numerical modeling is to constrain a kinematic development model for the evolution 

o f  the Norwegian-Greenland Seafloor. A kinematic model can explain how a 

continent breaks up, what type o f lithospheric extension and heat sources develop, 

and how a shear zone can trap a mid-ocean ridge forming transtensionai volcanic 

passive margins, plateaus and off-axial multiple-zones o f  intrusions in this section.

The numerical modeling technique exercises a finite difference method, which 

simulates two-dimensional time-dependent lithospheric extension. This method 

employs statistics for the Continuity Equation (Appendix A), which equates horizontal 

and vertical velocity gradients and conserves volume. The model deals with the 

advection o f  heat by prescribing the asthenospheric flow field without regard to 

material strength or body force (Buck et al., 1988). Heating results from the thinning 

and extending o f  the lithosphere. Other additional heat sources such as induced 

convection and radiogenic heating are not considered in this method. The model 

properties, assumptions and equations used are discussed in Appendix A.

Model results depend on extension geometries and their development through 

time even though they all have the same heat input. Pure-shear extension occurs 

across a zone whose width is changing (depending on time. Figure 2-4). A simple- 

shear extension occurs on a planar low-angle detachment fault, which cuts the entire 

lithosphere (Figure 2-1). The most significant parameter o f  lithospheric extension is 

the total amount o f  extension that has occurred which represents the total heat input 

into the lithosphere.
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B. ANALYSIS OF HEAT FLOW FROM THE EASTERN NORWEGIAN- 

GREENLAND SEAFLOOR: VOLCANIC MARGINAL PLATEAUS AND 

TRANSTENSIONAL VOLCANIC MARGINS

I. Tf II: V O R ING  PLATEAU ALONG THE NORW EGIAN M ARGIN

Heat flow collected from the Norwegian Margin is shown in Figure 5-2 (most 

data were collected during the Verna expeditions, Langseth and Zielinski, 1974), 

Cross sections from the Mohns Ridge to the margin indicate the normal cooling o f 

oceanic crust (from 268 mW/m2 at the plate boundary to 58 mW/m2 at the margin 

ocean/floor interface). However, further landward on the Inner Voring Plateau, heat 

flow increases to 87 mW/m2 along the Inner Voring Plateau; distinctly warmer than 

that predicted by local magnetic anomalies. Landward o f  the plateau is an area 

associated with a magnetic smooth zone (amplitude relief less than 100 nT reported 

by Talwani and Eldholm, 1972; in Figure 3-11). The heat flow profile (AA1) 

presented, crosses the magnetic smooth zone and is aligned perpendicular to the 

Voring Plateau Escarpment. Heat flow stations, physical properties and seafloor 

bathymetry are illustrated in Figure 5-3. Detailed information about the stations are 

given in Figure A-6  (Appendix B). Heat flow corrected for the thermal blanketing 

effect o f  sedimentation, is presented in Table 5-1. The decompacted sediment 

thickness is then estimated for each heat flow station. Sedimentation rate, physical 

properties and corrected heat flow values are summarized in Tables 5 -la to 5 - Id.
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Figure 5-2: Heat flow in the southeastern Norwegian-Greenland Sea. AA': Voring 
Plateau transect, BB' transect perpendicular to the Senja Escarpment, CC' transect 
across the Eastern Jan Mayen, Voring, and Senja Fracture Zones. Locations o f heat 
flow values (m W /nr) and station numbers (in parenthesis), bathymetry contour 
intervals at 0.5 km and magnetic anomalies (dotted lines) are indicated along the 
Norwegian and Senja Margins. Heat flow data were collected by Sundvor (1986) and 
Langseth and Zielinski (1974). VPE: Voring Plateau Escarpment, VFZ: Voring 
Fracture Zone, LFZ: Lofoten Fracture Zone, SFZ: Senja Fracture Zone, LFI: Lofoten 
Islands, EJMFZ: Eastern Jan Mayen Fracture Zone.
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Table 5-1. Heat flow analysis: Voring Plateau on the Norwegian Margin.

Table 5 -1 a. Corrected Heat Flow across the Voring Plateau transect. Layer 1 
compacted sediment thickness (H 1, comp, km), seismic velocities (V 1, km/s), 
decompacted sediment thickness (H 1, decomp, km), magnetically derived crustal age 
(my), sedimentation rate (m/my), heat flow reduction factor (RF), corrected heat flow 
(Correct., HF, mW/m2) for each station on the A-A' Voring Plateau transect.

Table 5 - lb. Layer 2 sedimentation corrections along the Voring Plateau transect (A- 
A1). See Table 5 -la  for column headers calculation. Porosity 0 z 2.

Table 5 -lc . Layer 1+Layer 2 sedimentation corrections. See caption o f  Table 5 -la  
for column header definitions.

Table 5 - Id. Corrected heat flow and thermal ages at stations on the Norwegian 
Margin (Figure 5-2). Difference between thermal ages and magnetic crustal ages 
(Aage). The mean difference between the magnetic and thermal crustal ages is - 18 
mybp.



T a b le  5-1 a
V0RI MG PLA1rEAU

Layer 1

H1 H1 Mag. S ed . O bs. Correct. S t #
com p V1 d ecom p A ge Rate RF1 Hf Hf

km km/s km my m/my mW/m2 mW/m2

1.06 1.9 1.32 45 29.33 1.08 7 6 ± 1 0 82.1 1 1 4
0.99 2.1 1.21 44 27.51 1.04 7 3 + 3 78.8 75
0.56 2.1 0.64 46 13.91 1.03 7 8 ± 3 80.3 6 6
0.56 2.1 0.64 60 27.23 1.04 8 0 ± 3 83.2 6 5
1.25 2.1 1.58 60 67.23 1.11 7 6 + 6 84.4 6 4
0.64 1.5 0.73 60 31.06 1.04 8 7 + 6 90.5 1 1 6
2.01 2.3 2.81 60 119.57 1.19 4 1 + 1 0 48.8 131
2.31 2.1 3.31 60 140.85 1.23 7 5 ± 2 84 61
2.31 2.1 3 .28 60 139.57 1.23 6 6 + 2 81.1 6 0
1.39 2.3 I 1.75 65 74.47 1.14 55±1 62.7 5 9



T a b le  5 -1  b

V0RING PLATEAU
Layer 2

H2 H2 Mag. S ed . O bs. Correct.
S t # com p V2 0Z2 d ecom p Age Rate RF2 Hf Hf

km km/s km my m/my m/Wm2 m/Wm2

DHF 65 0.91 3.17 0.43 1.03 60 17.17 1.04 8 0 ± 3 83.2
D H F 64 0.85 3.17 0.43 0.97 60 16.17 1.04 7 6 ± 6 79 .04

116 0.81 3.17 0 .44 0.9 60 15.13 1.04 8 7 ± 6 90.48
131 1.82 3.64 0.39 2.22 60 37.11 1.09 4 1 + 1 0 44.69

DHF 61 1.38 3.62 0.41 1.9 60 31.67 1.08 7 5 ± 2 81
DHF 60 2.71 3.25 0.33 3.62 60 60.33 1.16 6 6 ± 2 76.56
DHF 59 2.61 3.25 0.34 3.46 65 57.67 1.16 55+1 63.8



T a b le  5 - 1 c

V0RING PLATEAU
Layer 1 +2

H V H 1+2 Mag. S e d . O bs. Corr.
S t # co m p 0 z 1+2 d ecom p A ge Rate R F 1+2 Hf Hf

km km my m/my mW/m* mW/m2

DHF 65 1.85 0.35 2.42 60 40.33 1.09 80 87.2
DHF 64 2.11 0.32 2.86 60 47 .66 1.14 76 78 .7

116 2.29 0.31 3.16 60 52.66 1.14 87 99.2
131 3 .88 0.25 5.82 60 97.11 1.26 41 57 .7

DHF 61 3 .68 0.23 5.67 60 94.51 1.26 75 94.5
DHF 60 5.11 0.19 8.12 60 135.21 1.31 66 85.8
DHF 59 3.99 0.25 5.99 65 99.81 1.26 55 66.8



I I
T a b le  5-1 d

V0RING PLATEAU th erm al re ju v e n a t io n

M agnetic O bs. Corr. Thermal A
S t # A ge Hf Hf A ge A ge

my mW/m! mW/m2 my my

1 14/V-30 45 76 82.10 35.9 9.1
DHF 75 44 73 78.8 42 18
DHF 66 46 78 80.3 36 10
DHF 65 60 80 87.2 33 27
DHF 64 60 76 78.7 39 21

116/V-30 60 87 99 25 35
131/V-30 60 41 59 .7 60 0
DHF 61 60 75 90 30 30
DHF 60 60 66 85.8 32 28
DHF 59 65 55 66.8 55 5

A A ge=18 my
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Velocity structure and sediment thickness information were obtained from several 

sources (Eldholm and Windisch, 1974).

Limitations o f  the seismic data lie in the assumption that velocities greater than 

4.9 km/s are assumed to be basement. There is some uncertainty in determining the 

actual sedimentary thickness in this region, however, I believe that the termination o f  

the main basin westward at the marginal escarpment (Figure 5-3) is well documented. 

The oldest post-opening sediment (between oldest oceanic crust and continental crust 

on the crest o f  the Voring Plateau) was late Pal eocene-early Eocene (Schrader et al., 

1976). Two layers and averaged velocities are assumed for each site. Average 

sedimentation rates are estimated using decompacted sediment thickness and magnetic 

crustal ages obtained from magnetic anomalies in the region.

Corrected heat flow values are compared to observed heat flow values in 

Figure 5-4. In Figure 5-5, corrected heat flow is compared to the PS-cooling curve. 

Determined thermal-crustal ages are compared to magnetic ages in Figure 5-6. In 

summary, corrected heat flow values indicate that thermal-crustal ages are much 

younger (by 18 Ma) than the age estimated by magnetic anomaly Iineations. Episodes 

o f  thermal rejuvenation occurred at both 35 mybp in regions where magnetic ages 

w ere determined to be 60-65 Ma, and at 25 mybp in regions where the magnetic ages 

are thought to be -4 5  Ma (Figure 5-5).
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Figure 5-5. Cooling oceanic crust model: Voring Plateau. Comparison o f  observed 
heat flow and corrected heat flow with the PS-cooling curve o f  Parsons and Sclater 
(1977). Date o f  the most recent thermal rejuvenation is estimated to be 26 mybp. 
VPE: Voring Plateau Escarpment.
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Figure 5-6. Comparison between magnetically and thermally derived crustal ages 
across the Voring Plateau (A-A1 transect). Mean age difference (Aage) is found to be 
18 my at the Voring Plateau Escarpment (VPE) on the Norwegian Margin. Ch 24 
indicates magnetic anomaly-Ch 24.
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2 . T h e  S e n j a  T r a n s t e n s io n a l  V o l c a n ic  M a r g in

The heat flow profile (BB1 profile in Figure 5-2) transects the northern 

Norwegian Margin to the Senja Margin (Figure 5-7). The heat flow profile indicates 

that the highest heat flow (121 mW/m2) is located on the Senja Escarpment. In the 

same region, a wide magnetic smooth zone (landward o f  the Senja Margin) is 

interpreted as shallow magnetic basement (<2 km in depth). However, south o f  this 

region between 12°E and 15°E magnetic anomalies are discernible. By projecting the 

anomalies into our region o f interest we can obtain an estimated magnetic crustal age. 

Detailed information for the stations are given in Figure A-6  (Appendix B).

In this region, sedimentary sequences o f  varying thickness lie on igneous 

oceanic crust along the Senja-VVestem Svalbard Margin (Eldholm and Windisch,

1974; Myhre et al., 1982). The thickest sedimentary sequence occurs at the margin 

and is between 900 and 1000 m 's  thick (assuming a sound velocity o f  ~2 km/s in the 

sediments, Vorren et al., 1989). According to Tatwani and Eldholm (1972) most o f 

these sediments are pre-Tertiary in age.

To model corrected heat flow, two sedimentary layers o f  average velocities 

are assumed at each heat flow site. Decompacted sediment thicknesses are calculated 

for each heat flow station. Sedimentation rates are determined using estimated 

decompacted sediment thicknesses and magnetic crustal ages. The results o f  

sedimentation rates, corrected heat flow and thermal-crustal ages are tabulated in
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Figure 5-7. Heat flow transect (B-B1) across the Senja Margin (see Figure 5-2 for 
location). Heat flow values (triangles) are superimposed on seafloor bathymetry 
across the Senja Escarpment (SE) and Lofoten Basin (LB). Sediment seismic 
velocities (km/s) are derived from Eldholm and Windisch (1974) and Vogt (1986); 
see Tables 5-2a and 5-2c for details.
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Tables 5-2a to 5-2c. Observed surface heat flow is compared to corrected heat flow 

in Figure 5-8.

In Figure 5-9, corrected heat flow is compared to the PS-cooling curve. 

Thermal crustal ages are compared to magnetic crustal ages in Figure 5-10. Two high 

heat flow episodes on crust supposedly 35 and 60 Ma old suggest that the crust in 

these regions has been thermally rejuvenated to 25 and 10 M a respectively. Thermal 

crustal ages are on average 22 my’s younger (based on the cooling oceanic plate 

model) than the estimated magnetic ages.

3 . T h e  E a s t e r n  Ja n  M a y e n - V o r in g - S e n j a  M a r g in  P r o f il e

The heat flow profile CC1 crosses the margin between 7°W and 16°E and 

transects the Eastern Jan Mayen Fracture Zone, Voring Fracture Zone, Voring 

Plateau, Lofoten Fracture Zone, and Senja Fracture Zone (Figure 5-2). Observed 

surface heat flow, seafloor bathymetry and seismic velocity structure along the profile 

(modified from Eldholm and Windisch, 1974) are indicated in Figure 5-1 la  and 5- 

1 lb. All o f  these sites are regions o f  high heat flow located at considerable distances 

from the axis o f  the Mohns Ridge.

To correct each heat flow value for sedimentation, decompacted sediment 

thicknesses are calculated at each station. Sedimentation rates are estimated using 

decompacted sediment thicknesses and magnetic ages. Determined sedimentation 

rates, magnetic crustal ages, corrected heat flow and thermal crustal ages are tabulated
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Table 5-2. Heat flow analysis: Senja Margin.

Table 5-2a. Corrected Heat Flow. Layer 1 compacted sediment thickness (H 1, comp, 
km), seismic velocities (V 1, km/s), decompacted sediment thickness (H 1, decomp, 
km), magnetically derived crustal age (my), sedimentation rate (m/my), corrected heat 
flow (Correct., HF, mW/m3) for each station on the B-B1 Senja Margin transect.

Table 5-2b. Layer 1+Layer 2 sedimentation corrections. See captions for Table 5-2a 
for column header definitions.

Table 5-2c. Heat flow modeling results: Senja Margin. Corrected heat flow values 
and thermal crustal ages for each station on the Senja Margin. Difference between 
thermal ages and the ages estimated based on magnetic anomalies is Aage. Mean age 
(Aage) is found to be 15.6 my.
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SENJA MARGIN
|

T a b le  5 -2 a

Layer 1
H1 H1 Mag. S e d . O bs. Correct.

S t # co m p vr d eco m A ge R ate Hf Hf
km km/s km my m/my mW/m! mW/m 2

54/V-23 0.91 2.5 1.06 40 26 .5 1 1 5 + 8 123
1O/V-27 2 .4 1.7 2.21 23 130 8 4 ± 7 108

F49 2.4 1.8 5 .88 26 163.33 62+1 84.9
F48 2.4 1.28 1.59 35 63 .6 7 1 + 2 90.8
F46 2 .4 2 .16 4 .68 40 187.2 6 4 ± 2 82.56
F45 2.1 2.16 4 .83 40 205 .5  71 ± 2 119
F43 2.1 2 .18 3 .06 40 130.2 6 3 ± 3 99
F44 2.1 2 .18 3.06 50 130.2 6 5 ± 2 105
F42 2 2.5 3 .87 50 164.7 5 8 ± 6 87
F50 2 2.5 3 .87 50 164.7 5 9 ± 2 94
F41 2 2.1 3.1 50 131.9 121 ± 6 171
F40 2 2.1 3.1 50 131.9 8 4 ± 6 118
F55 2 2.1 3.1 55 131.9 4 8 ± 1 0 68
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T a b le  2 b

SEN JA  MARGIN
Laver 1+2

H1+2 H(+2 Mag. S e d . O bs. C orrect.

S t # co m p V2 d e co m A ge R ate Hf Hf

km km/s km my m/my mW/m2 mW/m2

F48 2 .48 3.4 3 .3 7 35 134.8 7 1 ± 2 90.8

F46 4 .6 6 3.4 7 .36 40 294 .4 6 4 ± 2 83

F45 5.61 3.4 9 .3 7 40 375 71 ± 2 78

F43 4 .18 3.4 6 .5 40 260 6 3 ± 3 72

F44 4 .18 3.4 6 .5 50 226 6 5 ± 2 78

F42 3.98 3.4 6 .7 50 271 .6 5 8 ± 6 87

F50 3.9 3.4 6.1 50 244 5 9 + 2 76

F41 3.1 3 .4 4 .6 5 50 186 121 ± 6 148

F40 2.5 3.4 3 .7 50 66.3 8 4 ± 6 99

F55 2.5 3 .4 3 .6 5 60 60.8 4 8 ± 1 0 66

r



T a b le  5 -2 c

thermal rejuvenatic n
O bs. Corr. Mag. Thermal A

Hf Hf A ge A ge A ge

mW/m2 mW/m2 my my my

115 123 40 15 25

84 108 23 21.8 1.7

62 84.9 26 23 3

71 90.8 35 29.6 5 .4

64 83 40 22 18

71 7 8 40 16 24

63 71 .8 40 25 .4 14.6

65 78 50 39 11
58 87 50 26 24

59 75 .5 50 2 6 24

121 148 50 15 35

84 99 50 25 25

48 66 60 55 5

A Age = 15.6 my
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Figure 5-8. Heat flow analysis: Senja Margin. Comparison o f  the observed heat flow 
and corrected heat flow across the Senja Escarpment (SFZ), Lofoten Basin (LB).



188

SENJA MARGIN

250 i

N 200
SE

E 150 ■

o  100 o x -  v-

LB

6545255

 PS-cooling curve

°  observed hf

x corrected hf

age  of crust (my)

Figure 5-9. Cooling oceanic crust model: Senja Margin. Comparison o f  observed 
surface heat flow and corrected heat flow to the PS-cooling curve o f  Parsons and 
Sclater (1977). Date o f  the most recent thermal rejuvenation for the Senja Margin 
(on crust with magnetic anomaly ages o f  50 M a) can be estimated to be —12 mybp. 
SE: Senja Escarpment, LB: Lofoten Basin.
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Figure 5-10, Crustal ages: Senja Margin. Comparison o f  the magnetic ages and 
thermal ages. Mean age (Aage) is found 15.6 my for the Senja Margin. Hf: heat flow 
values, Ch (6-22): magnetic anomalies, (?): magnetic smooth zone. SFZ: Senja 
Fracture Zone, LB: Lofoten Basin.
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Figure 5-11. (a) Heat flow profile: Eastern Jan Mayen-Vering-Senja Margin. Heat 
flow values (triangles) and seafloor bathymetry from the Jan Mayen Fracture Zone 
and the Outer Voring Plateau to the Senja Escarpment (CC1 transect between 7 .13°W 
and 15.57°E, Heat flow collected by Langseth and Zielinski (1974) and Sundvor and 
Eldholm (1979). (b) Seismic velocity structure o f  the Eastern Jan Mayen-Voring- 
Senja Margin Profile. Sediment velocity stations on the bottom o f  the profile are 
indicated in Table 5-3 (Eldholm and Windisch, 1974; Vogt, 1986) and for further 
seismic information see Appendix B. EJM: Eastern Jan Mayen Fracture Zone, V: 
Voring Fracture Zone, L: Lofoten Fracture Zone, VA: Vesteralen Fracture Zone, SE: 
Senja Escarpment.
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in Table 5-3. Observed surface heat flow is compared with corrected heat flow in 

Figure 5-12.

Corrected heat flow is compared to the PS-cooling curve in Figure 5-13. 

Computed thermal crustal ages are compared to magnetic crustal ages in Figure 5-14. 

Between 24 mybp and 11.5 mybp the crust was repeatedly heated (Figure 5-13).

Heat flow analyses imply that there may have been another paleo-fracture zone in the 

southern Norwegian-Greenland Sea, which I name "the Vesteralen Fracture Zone". 

The most recent thermal rejuvenation event occurred at 18 mybp along the Senja 

Fracture Zone, at 24 mybp on the Voring Fracture Zone, at 25 mybp on the Voring 

Plateau, at 17 mybp on the Lofoten Fracture Zone, and at 16 mybp on the Vesteralen 

Fracture Zone.

In summary, thermally derived crustal ages suggest that the Voring, Lofoten, 

Vesteralen Fracture Zone and Senja Fracture Zone (Senja Margin Escarpment) have 

been repeatedly reheated. Comparing the crustal age differences from both margins 

(Norwegian and Senja Margins) suggest that heating was more dominant and longer- 

lived along the Senja Margin. The Lofoten Fracture Zone is closer to the Senja 

Margin and is presently warmer and hence more recently rejuvenated than the Voring 

Fracture Zone.
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Table 5-3. Corrected heat flow: Norwegian Margin. Corrected heat flow values and 
thermal ages for the crust underlying each heat flow station along the Jan Mayen- 
Voring-Senja Profile (CC). Compacted sediment thickness (H l comp., km), 
calculated decompacted sediment thicknesses (H 1 decomp., km), magnetic ages, 
sedimentation rates (m/my), and observed and corrected heat flow are determined for 
layers 1 and 2 . Sediment seismic velocities are tabulated. Difference between thermal 
ages and the ages estimated based on magnetic anomalies is Aage. Mean age (Aage) 
is found 15.3 mybp.
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Figure 5-12. Heat flow analysis: Norwegian Margin. Comparison o f  the observed 
heat flow and corrected heat flow along the Eastern Jan Mayen-Voring-Senja Profile 
(CC‘). VAFZ: Vesteralen Fracture Zone, LFZ: Lofoten Fracture Zone, VFZ: Voring 
Fracture Zone, SFZ: Senja Fracture Zone, EJMFZ: Eastern Jan Mayen Fracture 
Zone.
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Figure 5-13. Cooling oceanic crust model: Norwegian Margin, Comparison o f 
observed heat flow and corrected heat flow to the PS-cooIing curve. EJM: Eastern 
Jan Mayen Fracture Zone, VFZ: Voring Fracture Zone, L: Lofoten Fracture Zone, 
VA: Vesteralen Fracture Zone, SFZ: Senja Fracture Zones along the C C  profile. 
Dates o f  the most recent thermal rejuvenation episodes along the Eastern Jan Mayen- 
Voring-Senja Line: 18 mybp for the Eastern Jan Mayen Fracture Zone, 24 mybp for 
the Voring Fracture Zone, 25 mybp for the Voring Plateau, 17 mybp for the Lofoten 
Fracture Zone, 16 mybp for the Vesteralen Fracture Zone, up to 11.5 mybp for the 
Senja Margin.
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Figure 5-14. Crustal ages: Norwegian Margin. Comparison o f  the magnetic ages and 
thermal ages. Mean age difference (Aage) is found to be 15.3 mybp across the Jan 
Mayen-Voring-Senja Profile (CCP). EJMFZ: Eastern Jan Mayen Fracture Zone, VFZ: 
Voring Fracture Zone, LFZ: Lofoten Fracture Zone, SFZ: Senja Fracture Zone, 
VAFZ: Vesteralen Fracture Zone.
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4 . T h e  M o l l o y  T r a n s f o r m  F a u l t -W e s t e r n  S v a l b a r d  M a r g i n

Observed heat flow data along the western Svalbard Margin are illustrated in 

Figure 5-15. Figure 5-16 depicts a heat flow profile transecting from west to east the 

Western Svalbard Margin (at 78.5°N). High heat flow is observed at the tip o f  the 

northern Knipovich Ridge (371 mW/m2) and the intersection with the Molloy 

Transform Fault (197 mW/m2) and along the Western Svalbard Margin (100 

mW /m2). As described in earlier heat flow manuscripts, crustal ages in this region can 

only be interpreted by using heat flow, because magnetic anomalies are nearly absent.

Sedimentation rates, reduction factors o f heat flow, corrected heat flow and 

thermal crustal ages are tabulated in Table 5-4. Along the Western Svalbard Margin, 

Myhre and Eldholm (1988) estimate that, prior to mid-Miocene the sedimentation 

rates were approximately 10 cm/Ma. Since the Miocene (during the last 5 M a) the 

rates have increased to more than 30 cm/Ma. They divided the sediments into two 

layers, referred to as layer 1 and layer 2 (Figure 5-16). The upper layer was deposited 

during the last 5.5 Ma. Faleide et al. (1984) suggest an.unconformity at the base o f  

the upper Paleocene. It was about this time that block faulting was initiated adjacent 

to Svalbard. Faleide etal. (1984) interpreted the unconformity to be a result o f  

tectonic activity near the present continent-oceanic crustal transition. Talwani et al. 

(1976) dated basal sediments as lower Pliocene or upper Miocene. Tertiary sediments 

were prograded toward the ocean basin forming the present passive margin (Myhre, 

1984).
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Figure 5-15. Heat flow (with station # '  s) at the intersection o f  the northern 
Knipovich Ridge/Molloy Transform Fault along the Western Svalbard Margin. Data 
(AA1 profile) is complied from Langseth and Zielinski (1974) and Crane et al. (1982, 
1988, 1991). Heat flow values reach 197 mW/m2at the intersection and 371 mW/m2 
around the tip o f  the Knipovich Ridge (within the rift valley). Close to Spitsbergen 
(only 70 km-distant) heat flow is still high (100 mW/m2). Structural lineaments and 
volcanics are obtained from SeaMARC-II data.
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Figure 5-16. Heat flow profile at the intersection o f  the northern Knipovich Ridge 
and Molloy Transform Fault. Heat flow stations and values were collected by Crane 
e ta l  (1982, 1988, 1991), sediment velocity information are interpreted from Torp 
(1987). Seafloor bathymetry (shaded) was collected during the SeaMARC-11 
Expedition (1989).
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M olloy Transform  Fault and l

Western Svalbard Margin (78°30* N) j
i  1 
i  l

|

Sed. Obs. Correct Thermal
St# Rate RF Hf Hf I Age

m /m y m W /m 2 m W /m 2 my

25/84 29.25 1.27 138±2 175 9.3
26/84 25.78 1.31 156±14 204 7.8
90/84 2.35 1.16 137+2 160 9
27/84 22.37 1.23 154±6 190 6.7
91/84 3.24 1.25 139±2 175 8.4
92/84 1.53 1.13 125±1 142 9.3
94/84 2.29 1.48 197±9 293 10.5
93/84 5.54 1.26 91±4 115 12

21A/-27 11.25 1.41 131 ±5 183 13
5/ 12.45 1.43 124±4 173.6 3.7

' 4/ 9.39 1.52 101 ±4 153.5 8.1
3/ 9.23 1.52 100+1 152 12

Table 5-4. Heat flow corrections at the intersection o f  the northern Knipovich Ridge 
and Molloy Transform Fault. Sedimentation rates, heat flow, reduction factors, 
observed and corrected heat flow values and thermal ages are tabulated across the 
Molloy Transform Fault along the Western Svalbard Margin at 78.5°N (between 
3.94°E and 8.84DE).
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Observed surface heat flow is compared to corrected heat flow in Figure 5-17. 

Thermal crustal ages and seafloor bathymetry are illustrated in Figure 5-18. The 

thermal crustal age along the Svalbard Margin is younger (13 Ma old) than expected 

for a crust 70 km away from the continent. Figure 5-19 compares this corrected heat 

flow with modeled heat flow predicted by the PS-cooIing curve.

Figure 5-20 indicates the thermally derived crustal ages in the area, combined 

with other thermal modeling results as suggested by Crane et al. (1991). On the 

southern side o f the Molloy Transform Fault at the northern Knipovich Ridge, 

thermal crustal ages approach 0-3.3 mybp. However, heat flow data north o f  the 

Molloy Transform Fault and on the West Svalbard/Yermak Plateau Margin show 

crustal ages o f 13 mybp. Crane et al. (1988) suggest that the thermal crustal age o f  

the Svalbard margin, further south (at 75°N), is 36 Ma. The young age o f  the 

northeastern Svalbard Margin is suggestive o f  large scale, widespread regional 

heating.

5. T h e  S o u t h e r n  Y e r m a k  P l a t e a u

a. High Heat Flow:

A region o f  high heat flow (up to 138 mW/m2) on the southern Yermak 

Plateau trends NNW-SSE from 8 P N  along the northern Svalbard Margin (Crane et 

al., 1982, 1988; Okay and Crane, 1993; Figure 5-21). Magnetic anomalies are absent 

from this part o f  the plateau. In the region o f  the high heat flow transect-AA' a
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Figure 5-17. Heat flow analysis at the intersection o f  the northern Knipovich Ridge 
and Moiloy Transform Fault. Comparison o f  the observed heat flow and corrected 
heat flow is shown across the Molloy Transform Fault (MTF) along the Western 
Svalbard Margin (WSM) at 78.5°N.
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Molloy Transform Fault - Western Svalbard Margin
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Figure 5-18. Crustal ages at the intersection o f the northern Knipovich Ridge and 
Molloy Transform Fault. Thermally derived crustal ages and seafloor bathymetry are 
shown across the Molloy Transform Fault.
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Molloy Transform Fault - Western Svalbard Margin
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Figure 5-19. Cooling oceanic crust model at the intersection o f  the northern 
Knipovich Ridge and Molloy Transform Fault. Comparison o f  best fitting observed 
heat flow and corrected heat flow with the PS-cooIing curve. Date o f  the most recent 
thermal rejuvenation at the intersection is found to be 3.5 mybp. MTF: Molloy 
Transform Fault.
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Figure 5-2!. Main structures on the southern Yermak Plateau adjacent to the 
northern Svalbard Margin. Locations o f heat flow values (mW /m2) along the AA' 
transect are indicated by dots (collected by Crane et al,, 1982; and Sundvor, 1986, 
and reported by Sundvor and Torp, 1987; Crane et al., 1988), Simplified bathymetry 
is adapted from Jackson et al. (1984) and Cherkis et al, (1991). The basement o f  the 
plateau is broken by numerous normal faults indicating a large complex graben system 
(interpreted from seismic cross sections collected by Sundvor et a l,  1982b). Faults 
that define the NW-SE trending Woodfjorden plateau basalts (stars) roughly lie in 
alignment with the western flank o f  the Yermak Plateau. Hom sund Fault (HF) lies 
along the western edge o f  the Yermak Plateau and is bordered by the Spitsbergen 
Transform Fault (STF), Molloy Ridge (MR) and Molloy Transform Fault (MTF).
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basement reflector is detected, which was interpreted as a volcanic constructional unit 

by Sundvor et al. (1978, 1982a). This basement reflector is highly faulted, and 

disappears under low velocity sediments (<2.5 km/s, Figure 5-22). Sundvor and 

Austegard (1990) have established the basement reflector (>5.5 km/s) as a tentative 

oceanic-continental crustal transition.

b. Correction o f Heat Flow:

The compacted sediment thicknesses measured beneath the heat flow stations 

are corrected for a thermal cold blanketing effect. Decompacted sediment thicknesses 

are calculated for each time o f  onset and duration o f  intrusion. Following this, 

sedimentation rates are estimated using two-way travel times and sediment seismic 

velocities (Tables 5-5 and 5-6). Sedimentation rates are calculated using 

decompacted sediment thickness, based on the age o f  the crust below the heat flow 

station.

c, Spreading Rate-Corrections and Thermal-Crustal Age Estimations: 

Thus surface heat flow is corrected (for each onset age o f  intrusion and 

duration o f  heating) to determine its value at the base o f the sedimentary unit. For 

each heat flow station (assuming that extension has taken place by an intrusive event 

during a fixed period o f  time) corrected heat flow is determined by using the 

Hutchison Model (Table 5-7).
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Figure 5-22. Heat flow profile: Southern Yermak Plateau. Line drawing o f  a seismic 
cross section on the southern Yermak Plateau. Observed surface heat flow (qs) is 
indicated (AA1 transect, see Figure 5-21). Seismic velocities (km/s) from Sonobuoy 
refraction measurements along the line are indicated (Sundvor et al., 1982). Dark 
solid lines indicate the interface between layer I and layer 2. The basement-reflector 
correlates with a 5.5 km/s seismic refraction velocity. Depths to subsurface are 
estimated in seconds o f  two-way travel time. Numerous normal faults indicate 
stretching and thinning o f  the continental crust. The Hornsund Fault is determined to 
be a continent-oceanic crustal transition.
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SO U T H E R N  YERM AK  PLATEAU

L a v er  1

Heat
Flow
St.#

Sedim ent

se ism ic
velocity
(km/s)

Depth 

z =TWT/2

(sec)

Hcomp

(km)

Hdecomp

(km)

64 1.80 0.33 0.59 0.68
65 1.97 0.43 0.85 1.01
66 2.10 0.52 1.09 1.34
67 2.10 0.90 1.89 2.57
68 2.10 1.14 2.39 3.43
16 2.10 1.24 2.60 3.80

Table 5-5. Physical properties: southern Yermak Plateau. Depths (sec), compacted 
sediment thicknesses (Hcomp) and decompacted sedimentary thicknesses (Hcomp) 
calculated from two way travel time (TWT) and seismic velocities for each heat flow 
station (Sitf).



SOUTHERN YERMAK PLATEAU

St# qs

(mWm*2)

m K Pc

(x106)

K

{x107km/my)

64 1 0 4 + 6 0.424 1.333 3.336 12.56
65 11 4 ± 1 0.403 1.373 3.305 13.07
66 1 3 1  ± 2 0.386 1.405 3.279 13.48
67 1 3 8 + 6 0.319 1.542 3.179 15.27
68 1 2 5 ± 6 0.283 1.621 3.125 16.34
16 1 2 1 ± 1 1 0.269 1.653 3.104 16.78

Table 5-6. Thermal parameters: southern Yermak Plateau. Porosities (p), 
conductivities (K), specific heat o f  fluid (pc), and diffusivities ( k )  for each heat flow 
station.
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High heat flow (on supposedly thinned continental crust) indicates that some 

intrusive activity exists on the southern Yermak Plateau. Crane et al. (1982) suggest 

that intrusive activity initiated at 16 Ma and is continuing to the present. This region 

most likely has undergone the same Cenozoic volcanism that started about 11 mybp, 

approximately 100 km to the SE on Spitsbergen (Prestvik, 1978; Amundsen etal., 

1987, 1988). This interpretation is supported by the Quaternary volcanism and 

thermal springs (Amundsen etal., 1988; Skjelvale etal., 1989) in the Woodfjorden 

area o f  Svalbard. Rifting, adjacent to Svalbard, began between 35 and 40 mybp as 

suggested by Crane et al. (1988). Therefore, 1 assumed 40 Ma for the maximum 

onset age o f  intrusion in the southern Yermak Plateau. Seven thermal episodes 

(between 0 and 40 Ma) are used to define the duration o f  intrusion (Tables 5-7a to 5- 

7g). Two o f  these thermal episodes imply that intrusion is still continuing (0 mybp to 

35 mybp and 0 mybp to 40 mybp). Five thermal episodes imply that the intrusion 

ceased 10 to 18 mybp. Lithospheric extension rates (between 0.2 cm/yr and 0.5 

cm/yr) are determined for each duration o f  intrusion responsible for stretching and 

extension o f the plateau (Figures 5-23 a to Figure 5-23g).

Thermal episodes are assumed for the different onset ages o f  intrusion and for 

the duration o f  heating, o f  the continental lithosphere, in the southern Yermak Plateau 

(Tables 5-8a to 5-8c). Corrected heat flow values are compared to modeled heat flow 

o f  the PS-cooIing curve (Figures 5-24a and 5-24b). The best fit o f surface heat flow 

and corrected heat flow is assumed to yield the most reasonable onset age o f  intrusion 

and duration o f  heating for the region. The best mean difference between modeled
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Table 5-7. Heat flow analysis: southern Yermak Plateau.

Table 5-7a. Thermal Episode 1: assumes a duration o f  intrusion and thermal 
rejuvenation between 0 and 40 Ma with a total extension rate o f  0.2 cm/yr. The 
distances between heat flow stations and the point source (where the highest heat flow 
is observed), decompacted sediment thickness, thermal age o f  the crust (my), 
sedimentation rate (m/my) and corrected heat flow values are calculated. The average 
sedimentation rate is 568 m/my. The difference between observed heat flow (qs) and 
corrected heat flow (q^) is Aq, and the average mean heat flow (Aq) is 47.5 mW/m2.

Table 5-7b. Thermal Episode 2: assumes a duration o f intrusion and thermal 
rejuvenation between 0 and 35 Ma with a total extension rate o f  0.23 cm/yr. The 
average sedimentation rate is calculated to be 675 m/my. The average mean heat flow 
(Aq) is 53.7 mW/m2.

Table 5-7c. Thermal Episode 3: assumes a duration o f intrusion and thermal 
rejuvenation between 10 and 40 Ma with a total extension rate o f  0.26 cm/yr. The 
average sedimentation rate is 125 m/my. The average mean heat flow (Aq) is 21.3 
mW /m2.

Table 5-7d. Thermal Episode 4: assumes a duration o f intrusion and thermal 
rejuvenation between 10 and 35 Ma with a total extension rate o f 0.32 cm/yr. The 
average sedimentation rate is 134 m/my. The difference between observed heat flow 
(qs) and corrected heat flow (q^) is Aq and the average mean heat flow (Aq) is 21.3 
mW /m2.

Table 5-7e. Thermal Episode 5 : assumes a duration o f  intrusion and thermal 
rejuvenation between 11.5 and 40 Ma yielding a total extension rate o f  0.28 cm/yr.
The average sedimentation rate is 117 m/my. The difference between observed heat 
flow (qs) and corrected heat flow (q^) is Aq and the average mean heat flow (Aq) is
20.3 mW/m3

Table 5-7f. Thermal Episode 6: assumes a duration o f intrusion and thermal 
rejuvenation between 11.5 and 35 Ma yielding a total extension rate o f  0.34 cm/yr.
The average sedimentation rate is 125 m/my. The difference between observed heat 
flow (qs) and corrected heat flow (q^) is Aq and the average mean heat flow (Aq) is
20.3 m\V/m2.

Table 5-7g. Thermal Episode 7: assumes a duration o f  intrusion and thermal 
rejuvenation between 18 and 35 Ma yielding a total extension rate o f 0.5 cm/yr. The 
difference between observed heat flow (qs) and corrected heat flow (<ŷ ) is Aq and the 
average mean heat flow (Aq) is 18.2 mW/m2. The average sedimentation rate is 134 
m/my.



Table 5-7a

SOUTHERN YERMAK PLATEAU

Thermal Episode 1 :0 - 40 my 
0.2 cm/yr

Sedimentation Rate
St# Distance Hdecomp Aae of Crust Sed.Rate qs qp Aq

(km) (m) (my) (m/my)

64 23.10 680 22.9 29.7 104 109 5
65 13.99 1010 13.8 72.9 114 125 11
66 6.97 1340 6.9 194.2 131 153 22
67 0.96 2570 1.0 2570.0 138 308 170
68 10.82 3430 10.7 320.0 125 169 44
16 17.31 3800 17.1 221.8 121 154 33

Ave.Sed.Rate = 568 m/my n 47.5 mWm‘:
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Table 5-7b

SOUTHERN YERMAK PLATEAU

Thermal Episode 2 : 0 - 35 my 
0.23 cm/yr

Sedimentation Rate
St# Distance Hdecomp Aae of Crust Sed.R ate qs qb Aq

(tan) (m) (my) (m/my)

64 23.10 680 20.01 33.99 104 109 5
65 13.99 1010 12.12 83.35 114 125 11
66 6.97 1340 6.04 221.97 131 155 24
67 0.96 2570 0.83 3090.88 138 335 197
68 10.82 3430 9.37 366.00 125 172 47
16 17.31 3800 14.99 253.46 121 159 38

Ave.Sed.Rate = 675 m/my Aq = 53.7 mWm"2

2
1

7



Table 5-7c
SOUTHERN YERMAK PLATEAU

Thermal Episode 3:10 - 40my 
0.26 cm/yr

Sedimentation Rate
St# Distance

(km)
H decomp
(m)

Aae of Crust Duration 

(my)

Sed.Rate

(m/my)
qs «lb Aq

64 23.10 680 17.8 27.8 24.5 104 109 5
65 13.99 1010 10.8 20.8 48.6 114 122 8
66 6.97 1340 5.4 15.4 87.0 131 147 16
67 0.96 2570 0.7 10.7 240.2 138 174 36
68 10.82 3430 8.3 18.3 187.4 125 157 32
16 17,31 3800 13.3 23.3 163.1 121 152 31

Ave.Sed.Rate = 125 m/my Aq = 21.3 mWm*2
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Table 5-7d
SOUTHERN YERMAK PLATEAU

Thermal Episode 4:10 - 35 my 
0.32 cm/yr

Sedimentation Rate
St# Distance

(km)
Hdecomp
(m)

A ae of Crust 

(my)

Duration Sed.Rate

(m/my)
qs Aq

64 23.10 680 14.44 24.44 27.82 104 109 5
65 13.99 1010 8.74 18.74 53.90 114 123 9
66 6.97 1340 4.40 14.40 93.90 131 146 15
67 0.96 2570 0.60 10.60 242.45 138 174 36
68 10.82 3430 6.76 16.76 204.65 125 157 32
16 17.31 3800 10.83 20.83 182.43 121 152 31

Ave.Sed.Rate = 134 m/my Aq = 21.3 mWm'2

2I9



Table 5-7e
SOUTHERN YERMAK PLATEAU

Therm al E p iso d e  5 :11.5 - 40 m y 
0.28 cm/yr

Sedim entation Rate
St# Distance

(Km)
Rdecomp
(m)

A q eo f Crust 

(my)

Duration Sed.R ate

(m/my)
qs qb Aq

64 23.10 680 16.27 27.77 24.49 104 108 4
65 13.99 1010 9.85 21.35 47.30 114 122 8
66 6.97 1340 4.90 16.40 81.70 131 146 15
67 0.96 2570 0.68 12.18 211.07 138 170 32
68 10.82 3430 6.76 19.12 179.40 125 157 32
16 17.31 3800 12.20 23.70 160.40 121 152 31

Ave.Sed.Rate = 117 m/my Aq = 20.3 mWm'2

tol-Jo



Table 5-7f
SOUTHERN YERMAK PLATEAU

Thermal Episode 6:11.5 - 35 my 
0.34 cm/yr

Sedimentation Rate
Distance

(km)
Hdecomp
(m)

Aoe of Crust 

(my)
Duration Sed.Rate

(m/my)
q s Rb Aq

64 23.10 680 13.43 24.93 27.27 104 109 5
65 13.99 1010 8.14 19.64 51.44 114 122 8
66 6.97 1340 4.05 15.55 86.16 131 147 16
67 0.96 2570 0.56 12.06 213.10 138 169 31
68 10.82 3430 6.29 17.79 192.80 125 157 32
16 17.31 3800 10.07 21.57 176.20 121 152 31

Ave.Sed.Rate = 125 m/my Aq = 20.3 mWm'2

to
t o



Table 5-7g
SOUTHERN YERMAK PLATEAU

Thermal Episode 7:18 - 35 my 
0.5 cm/yr

Sedimentation Rate
s tg Distance Hdecomp A ae of Crust Duration Sed.Rate qs <1b Aq

(km) (m) (my) (m/my)

64 23.10 680 9.72 26.72 27.82 104 108 4
65 13.99 1010 5.89 22.89 53.90 114 122 8
66 6.97 1340 2.93 19.93 93.06 131 144 13
67 0.96 2570 0.40 17.40 242.45 138 165 27
68 10.82 3430 4.55 17.70 204.65 125 154 29
16 17.31 3800 7.28 21.57 182.43 121 149 28

Ave.Sed.Rate = 134 m/my Aq = 18.2 mWm‘

toto
to
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Figure 5-23a. Thermal Episode 1. Observed surface heat flow (qs) and corrected 
heat flow at the base o f  the sediment (q^) versus thermal age o f  the crust (age1/2) for 
an assumed duration (0-40 Ma) on the southern Yermak Plateau and the total 
extension rate o f  0.2 cm/yr.
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Figure 5-23b. Thermal Episode 2. Observed surface heat flow (qs) and corrected 
heat flow at the base o f  the sediment ( ^ )  versus thermal age o f  the crust (age1'2) for 
an assumed thermal rejuvenation duration (10-40 Ma) on the southern Yermak 
Plateau and the total extension rate o f  0.23 cm/yr.
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Figure 5-23c. Thermal Episode 3. Observed surface heat flow (qs) and corrected 
heat flow at the base o f  the sediment (q^) versus thermal age o f  the crust (agel/2) for 
an assumed thermal rejuvenation duration (10-40 Ma) on the southern Yermak 
Plateau and total extension rate o f  0.26 cm/yr.
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Figure 5-23d. Thermal Episode 4. Observed surface heat flow (gs) and corrected 
heat flow ( ^ )  at the base o f  the sediment versus thermal age o f the crust (age1/2) for 
an assumed thermal rejuvenation duration (10-35 Ma) on the southern Yermak 
Plateau and the total extension rate o f  0.32 cm/yr.
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Figure 5-23e. Thermal Episode 5. Observed surface heat flow (qs) and corrected 
heat flow (rfe) at the base o f  the sediment versus thermal age o f  the crust (agelc) for 
an assumed thermal rejuvenation duration (11.5-40 Ma) on the southern Yermak 
Plateau and the total extension rate o f  0.28 cm/yr.
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Figure 5-23f Thermal Episode 6. Observed surface heat flow (qs) and corrected heat 
flow {qfy) at the base o f the sediment versus thermal age o f the crust (agel/2) for an 
assumed thermal rejuvenation duration (11.5-35 Ma) on the southern Yermak Plateau 
and the total extension rate o f  0.34 cm/yr.
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Figure 5-23g. Thermal Episode 7. Observed surface heat flow (qs) and corrected 
heat flow ( ^ )  at the base o f the sediment versus thermal age o f  the crust (agel/3) for 
an assumed thermal rejuvenation duration (18-35 Ma) on the southern Yermak 
Plateau and the total extension rate o f 0.5 cm/yr.
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Table 5-8. Cooling oceanic plate model: southern Yermak Plateau.

Table 5-8a. A comparison o f  corrected heat flow (q^) to theoretical heat flow values 
(qs.p) based on the age-dependent cooling o f  the oceanic crust (Parsons and Sclater, 
1977). Thermal age o f  the crust for each heat flow station are tabulated. Aq: the 
difference between corrected heat flow ( ^ )  and the theoretical heat flow (gs.p), Aq: 
the mean value, it indicates the goodness o f fit for Thermal Episodes I to 3.

Table 5-8b. A comparison o f  corrected heat flow (q^) to theoretical heat flow values 
(qs,p) for Thermal Episodes 4 to 6. Thermal Episode 4 (for a duration o f  10-35 Ma) 
gives the best fit. Aq: the difference between corrected heat flow (q^) and the 
theoretical heat flow (qs.p \  Aq is 24.3 mW/m2 and the total extension rate is 0.32 
cm/yr.

Table 5-8c. Thermal Episode 7. The thermal age o f  the crust for each heat flow 
station is tabulated. Aq: the difference between corrected heat flow (r^,) and the 
theoretical heat flow (qs.^). The mean (Aq) value is 36 mW/m3



T a b le  5 -8 a  

S O U T H E R N  Y E R M A K  P L A T E A U
COOLING OCEANIC CRUST

Thermal Episode 1: Thermal Eoisode 2: Thermal Episode 3:
0 - 4 0 i my 0 - 35 my 1 0 -4 0  my

Age Age Age
St# my <lb ^sp Aq my qb <1sp Aq my qb qsp Aq

64 22.9 109 100 9 20.1 109 111 2 27.8 109 90 19
65 13.8 125 130 5 12.1 125 140 15 20.8 122 108 14
66 6.9 153 188 35 6.04 155 189 34 15.4 147 125 22
67 1.0 308 840 532 0.8 335 950 615 10.7 174 150 24
68 10.7 169 150 19 9.3 172 160 12 18.3 157 112 45
16 17.1 154 121 33 14.9 159 128 31 23.3 152 100 52

Aq = 107 mWrn'2 Aq = 118 mWrn'2 Aq = 29.4 mWm*2

tou>



T a b le  5 - 8 b  
S O U T H E R N  Y E R M A K  P L A T E A U

COOLING OCEANIC CRUST

Thermal Episode 4 : Thermal Episode 5 : Thermal Episode 6 :
10 -3 5  my 11.5-■40 my 11.5 ■■35 my

A ge A ge Age
St# my Clsp Aq my <lb <!sp Aq my qb qsp Aq

64 24.4 109 100 9 27.7 108 90 18 24.9 109 99 10
65 18.7 123 115 8 21.3 122 105 17 19.6 122 111 11
66 14.4 146 125 21 16.4 146 120 26 15.5 147 120 27
67 10.6 174 150 24 12.1 170 140 30 12.1 169 140 30
68 16.7 157 120 37 19.1 157 110 47 17.8 157 117 40
16 20.8 152 105 47 23.7 152 100 52 21.6 152 110 42

Aq = 24.3 mWrn'2 Aq = 31.7 mWrn"2 Aq = 26.6 mWrrf2
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Table 5-8c

SOU TH ERN  YERMAK PLATEAU 

Thermal Episode 7:
1 8 -3 5  Ma

Age
St# Ma % (Isp Aq

64 26.7 108 93 15
65 22.9 122 100 22
66 19.9 144 110 34
67 17.4 165 120 45
68 21.6 154 105 49
16 24.3 149 97 52

Aq = 36 mW/m3
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Figure 5-24a. Cooling oceanic crust model: southern Yermak Plateau (Thermal 
Episodes I to 4). Comparison o f  corrected heat flow and theoretical heat flow 
(qSJ}) on the southern Yermak Plateau, Theoretical heat flow (dotted line) is based on 
Sclater and Parsons, 1977). Mean values (Aq) indicate the goodness o f  fit o f  four 
episodes. Note the best fit is Thermal Episode'4 with a mean value o f 24.3 mW/m2 
for the duration o f  intrusion o f  25 mybp the thermal rejuvenation occurring between 
10-35 Ma with a total extension rate o f  0.32 cm/yr.



2 3 5

790.1 '

690.1 -
Episode

H J-tO M y  A q  =31.7mWm‘ 

26 6 ntlVm'' 

18-35 My 36mWm'2

theoretical cooling curve 

qs-P
5  590.1 -O

3O
rau

290.1 *

90.2
5.0 10.0 15.00.0 20.0 25.0

age of tiie crust

Figure 5-24b. Cooling oceanic crust model: southern Yermak Plateau {Thermal 
Episodes 5 to 7). Comparison o f  corrected heat flow (q^) in the southern Yermak 
Plateau to theoretical heat flow (qsp) (dotted line, based on Sclater and Parsons, 
1977). Mean values (Aq) indicate the goodness o f  fit.
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and corrected heat flow (Aq) is 24 mW/m2 (Thermal Episode 4, for an ongoing 

intrusion from 35 mybp to present, Table 5-8b). The mean value o f  worst fit o f  the 

thermal episodes is 118 mW/m2. I f  the cooling oceanic plate model adequately 

represents the intrusive activity in this region, the crust was most recently rejuvenated 

11 mybp. Figure 5-25 depicts thermal crustal ages demonstrating time o f  intrusion 

and thermal rejuvenation on the Yermak Plateau, as determined from Thermal 

Episode 4. This thermal-crustal age coincides with the commencement o f  volcanism 

in the Woodfjorden area o f  Spitsbergen.

d. Testing the Lithospheric Extension Mechanisms:

If  the southern Yermak Plateau is primarily continental crust, the cooling 

oceanic plate model is not adequate. In this case, it would be more appropriate to 

apply continental lithospheric extension models to the plateau. I use numerical 

modeling to determine the thermo-mechanical structure o f  the plateau and to 

determine whether or not the plateau is undergoing breakup and rifting by symmetric 

pure-shear extension (Parsons and Sclater, 1977; McKenzie, 1978) or undergoing 

asymmetric simple-shear extension along a major detachment fault. The best fit to 

observed data suggest a spreading rate o f  0.32 cm/yr.

In Figures 5-26 and 5-27 the numerical modeling results illustrate different 

results assuming an initial rift width and total extension rate for crustal thinning, heat 

flow, thermal uplift and subsidence. Model results depend on the temperature
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Figure 5-25. Estimated thermal ages (Thermal Episode 4): southern Yermak Plateau. 
Thermal crustal ages {dots) are indicated (see Table 5-8). These thermal crustal age 
contours (interval o f  10 my, bold lines) coincide with the ages o f  plateau basalts 
(shaded region) and thermal springs {star) in the Woodfjorden Volcanic Center in 
Spitsbergen. Simplified bathymetry (in meters) adapted from Cherkis et al. (1991).
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Yermak Plateau (E pisode 4)
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Figure 5-26. Pure-shear lithospheric extension: southern Yermak Plateau. Total 
extension rate is 0.32 cm/yr (0-35 Ma, Thermal Episode 4) and total present-day 
offset across is 112 km. The initial crustal thickness was 32 km (un-shaded region o f 
the lithospheric section) and the initial rift width was 48 km. Observed seafloor 
bathymetry (topography) and heat flow indicated by dots are superimposed on the 
synthetic topography and heat flow curves. Curvilinear lines in the lithospheric 
section show isotherms and dark shaded region that indicates an upwelling 
asthenosphere. Horizontal and vertical scales are in kilometers. Grid dimensions are 
13x104.
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Figure 5-27. Simple shear lithospheric extension model: southern Yermak Plateau. 
Total extension rate is 0.32 cm/yr for a low-angle (22°) detachment fault (Thermal 
Episode 4). Observed seafloor bathymetry (topography) corrected for sediment 
loading (dots) is superimposed on the synthetic topography curve and it is the sum o f 
crustal subsidence and thermal uplift. Initial crustal thickness was 32 km and the initial 
rift width was 25 km. Present offset observable across the extended region is 112 km.
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structure o f  the model lithosphere and the distribution o f  crustal thickness. Figure 5- 

26 is a result o f  the pure-shear lithospheric extension mechanism. Figure 5-26 shows 

corrected heat flow superimposed on synthetic heat flow. Heat flow and topography 

(seafloor bathymetry) numerically produced by pure-shear extension is unlikely to 

match the heat flow on the southern Yermak Plateau. For a slow extension rate (0.3 

cm/yr) the rifting cannot produce enough heat approaching the mantle solidus 

anywhere in the lithosphere. Numerical modeling o f  simple-shear is used for various 

dip angles o f  the detachment fault, such as, a shallow dipping (22°) detachment fault 

extending 0.3 cm/yr. Observed heat flow and topography (indicated with circles) are 

superimposed on synthetic heat flow and topography (Figure 5-27). This model does 

not match observed topography and corrected heat flow.

The best fit between observed data (the heat flow and the net topography) and 

the synthetic data is obtained for a detachment fault dipping 45° (Figure 5-28). In this 

example, an intrusion started at 35 mybp. The extension o f  the crust (initially 32 km 

thick) has continued to the present with a total extension rate o f  0.32 cm/yr. The 

modeling result indicates a broad zone o f  intrusion which, created forty kilometers o f  

mechanically weakened and thermally rejuvenated continental crust. In this model, 

the detachment fault (dipping to the SW) should intersect another deep-seated major 

detachment fault dipping beneath the Knipovich Ridge (Crane et al., 1991).
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Figure 5-28. Kinematic model o f the Yermak Plateau. A numerical modeling result 
shows two detachment faults dipping at an angle o f  45° towards one another. The 
observed topography and heat flow across the southern Yermak Plateau {dots) and 
the Knipovich Ridge (triangles) are superimposed on the synthetic heat flow and 
topography curves. The Knipovich Ridge axis (open star) is at 78°N (from Crane et 
at., 1991). The initial crustal thicknesses for both models was 32 km at the initial 
point o f  rifting, and present-day offset across the ridge axis is 321 km.
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6 . T h e  N o r t h e r n  S v a l b a r d  M a r g in

A heat flow transect aligned from the Nansen Ridge to the Southern Yermak 

Plateau along the northern Svalbard Margin (near 8°E, Figure 5-29) reveals gradually 

decreasing heat flow with increasing distance from the mid-ocean ridge. However, 

around 82°N heat flow increases towards the northern Svalbard Margin and reaches 

138 mW/m* on the southern Yermak Plateau. Observed heat flow and seafloor 

bathymetry are presented in Figure 5-30. Average seismic velocities o f  the Nansen 

Basin are indicated in Table A-4 in Appendix B. Magnetic ages are estimated from 

Jackson etal. (1984). Sedimentation rates, magnetic ages, heat flow and thermal 

crustal ages are tabulated in Table 5-9. During the Ocean Drilling Program-Leg 151 

measurements revealed that sedimentation rates at the Yermak Plateau are extremely 

high ranging from 10 to 200 m/Ma during the Quaternary (Leg 151 Shipboard Party, 

1994).

Observed heat flow is compared to corrected heat flow in Figure 5-31. 

Corrected heat flow is compared to the model heat flow o f  the PS-cooling curve in 

Figure 5-32. Magnetic ages are compared to thermal crustal ages in Figure 5-33. Off- 

axial high heat flow and the younger thermal crustal ages represent thermal 

rejuvenation in the region. In summary, the age o f the crust was found to be as young 

as 10 Ma old and indicates a period o f time (35-10 mybp) when the southern Yermak 

Plateau was continuously or sporadically reheated (Figure 5-32).
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Figure 5-29. Heat flow and respective station locations on the Northern Svalbard- 
Nordaustlandet Margin. Heat flow data were collected by Crane et a i  (1982), 
Jackson et a i  (1984), and Sundvor (1986). Bathymetry (m) after Cherkis et ah 
(1991). The AA' profile transects the flank o f  the Nansen Ridge to the northern 
Svalbard Margin at 8°E. OfF-axis high heat flow is located on the southern Yermak 
Plateau (138 mW/m2), Magnetic isochrons (<dotted lines) are superimposed. Heat 
flow (dots) along the BB' profile was collected by Sundvor and Torp (1987). OfF-axis 
high heat flow is located on the northeastern Nordaustlandet Margin (80-109 
mW/m2). The heat flow profile (CC1) transects the Eastern Greenland Margin to the 
northern Svalbard-Nordaustlandet Margins. Data were collected by Crane et a i 
(1982) and Sundvor (1986). Along this profile several ofF-axis high heat flow values 
are found.



Northern Svalbard-Nordaustlandet Margin



2 4 6
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Figure 5-30. Heat flow profile: northern Svalbard. Heat flow values ( triangles) and 
seafloor bathymetry along the AA' profile from the flank o f  the Nansen Ridge to the 
southern Yermak Plateau (between 83°N and 80°N at 8°E) along the northern 
Svalbard Margin. Heat flow station numbers are indicated.
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NOF THERN SVALBARD MARGIN

O b s. Mag. S ed . C orrect .T herm al A

S t # Hf A ge Rate Hf : A ge I A ge
mW/m2 my m/my mW/m2 my ! my!

1 92 23 118.24 107.5 : 21.8 ! 1.2
2 54 30 67 62 ! 57 I -27
3 54 33 61 60 60 ! -27
5 33.9 37 50.3 47 70  ̂ -27

Y8 130 45 103 147 10.5 ; 34.5
Y9 148 45 103 150 : 13 : 32

Y10 121 45 103 129 ! 15 30
64 104 55 27.8 109 21 I 34
65 114 55 54 123 16 39
66 131 55 93.9 146 14 41
67 138 55 242.5 154 11 44
68 125 55 204.7 148 17 38

Y16 121 55 182.4 129 15 40

A |Age= 16.3 my
!

Table 5-9. Heat flow analysis: northern Svalbard Margin. Listings o f  sedimentation 
rates, estimated magnetic ages, corrected heat flow and thermal crustal ages from the 
flanks o f  the Nansen Ridge towards the northern Svalbard Margin (at 8°E).



2 4 8

NORTHERN SVALBARD MARGIN

160

E 120 SYP

observed hf80

corrected hf
40

S t#  2

o> r*.co CMCM
GO

CO
c\ico

CMeo
CJ
GO

r“
CO

CO CO
Latitude °N

Figure 5-31, Heat flow analysis: northern Svalbard Margin. Comparison o f  the 
observed heat flow and corrected heat flow on the northern Svalbard Margin 
(between 83°N and 80°N at 8°E). From the Nansen Ridge to 82.94°N heat flow 
gradually decreases away from the active spreading center. Around 82°N heat flow 
increases towards the northern Svalbard Margin and reaches 148 mW/m2 on the 
southern Yermak Plateau (SYP). This off-axial heat flow high represents thermal 
rejuvenation in the region.
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Figure 5-32. Cooling oceanic crust model: northern Svalbard Margin. Comparison 
o f  observed heat flow and corrected heat flow to model heat flow o f  the PS-cooling 
curve. The most recent thermal rejuvenation for the northern Svalbard Margin is 11 
mybp estimated by interpolation. SYP: Southern Yermak Plateau, NRF: Nansen 
Ridge flank.
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Figure 5-33. Crustal ages: northern Svalbard Margin, Comparison o f  the magnetic 
ages and thermal ages on the northern Svalbard Margin (8°E). From the flanks o f  the 
Nansen Ridge to 82.94°N thermal ages show gradually increase away from the active 
spreading center. Around 82°N ages decease to ~10 mybp on the southern Yermak 
Plateau. Magnetic ages (Ch 7-18) are obtained from Jackson et a i  (1984) and time 
scale o f LaBrecque et al. (1977). Question mark indicates the region with no 
discernible magnetic anomalies. The younger crustal ages represent thermal 
rejuvenation in the region. Aage is found to be 16.3 my.
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7. T h e  N o r t h e r n  N o r d a u s t l a n d e t  M a r g in

A heat flow profile (BB1), around 30°E, transects the flank o f  the Nansen 

Ridge to the northern Nordaustlandet Margin (Figure 5-29). Heat flow data were 

collected by Crane et al, (1982) and Sundvor and Torp (1987). From the Nansen 

Ridge to 85°N heat flow data show a gradual decrease with increasing crustal age 

(Figure 5-34). Around 85°N heat flow values increase towards the northern 

Nordaustlandet Margin and reach 109 mW/m2. There are no clear magnetic 

anomalies to define the crustal ages in this region. However, extrapolating from the 

closest magnetic anomaly, sedimentation rates can be estimated. The distance 

between magnetic isochron 24 and the suggested boundary is approximately 100 km 

(Vogt et al., 1979). Using an average half spreading rate o f  1 cm/yr the swath o f 

unidentified crust represents an interval o f  10 Ma implying an opening time o f 66 Ma.

Sundvor et al. (1978) discussed the seismic velocity structure for the area 

north o f  Nordaustlandet and for the Nansen Basin. They used average seismic 

parameters and sedimentation rates (Table A-4, Appendix B). Magnetic ages, 

corrected heat flow and thermal-crustal ages are tabulated in Table 5-10. Observed 

heat flow values are compared with calculated heat flow in Figure 5-35. Corrected 

heat flow is compared to the model heat flow o f the PS-cooling curve in Figure 5-36, 

Estimated magnetic ages are compared with calculated thermal crustal ages in Figure 

5-37. Figure 5-36 illustrates that sections o f  the Nordaustlandet Margin are thermally 

only 20 Ma old compared to its magnetic crustal ages estimated to be >60 Ma.
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NORTHERN NOFIDAUSTLANDET MARGIN
ii

St# O bs. Mag. C orrect. Sed. Therm al A
Hf Age Hf Rate Age L Age

mW/m* my mW/m2 m/my my I myII I
9/340 53 46 74 13.9 39 ! 7
7/310 80±1 50 83 12.8 35 15
6/296 77±4 50 80 12.8 37.6 12.4
5/287 91±1 50 94.6 12.8 26.2 23.8
3/282 98±5 55 94.6 11.6 21.9 33.1
Y18 109±6 55 101.9 11.6 17.6 37.4

2/280 88±4 55 92 11.6 27.2 27.8
i
l

a :age =22.3 my

Table 5-10. Heat flow analysis: northern Nordaustlandet Margin. Sedimentation 
rates, observed and corrected heat flow, magnetic and thermal crustal ages along the 
BB' profile from the flanks o f  the Nansen Ridge the northern Nordaustlandet Margin 
are indicated.
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Figure 5-35. Heat flow analysis: northern Nordaustlandet Margin. Comparison o f  
the observed heat flow and corrected heat flow on the northern Nordaustlandet 
Margin. From the flank o f  the Nansen Ridge to  85°N heat flow gradually decreases 
away from the active spreading ridge. Around 85°N heat flow increases towards the 
northern Nordaustlandet Margin and reaches 109 mW/m2.
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Figure 5-35. Heat flow analysis: northern Nordaustlandet Margin. Comparison o f 
the observed heat flow and corrected heat flow on the northern Nordaustlandet 
Margin. From the flank o f  the Nansen Ridge to 85°N heat flow gradually decreases 
away from the active spreading ridge. Around 85°N heat flow increases towards the 
northern Nordaustlandet Margin and reaches 109 mW/m2.
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Figure 5-36. Cooling oceanic crust model: northern Nordaustlandet Margin. 
Comparison o f  observed heat flow and corrected heat flow to model heat flow o f the 
PS-cooling curve. The interpolated age o f  the most recent thermal rejuvenation on 
the northern Nordaustlandet Margin is 20 mybp. NVT: Nordaustlandet Volcanic 
Terrain.
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Figure 5-37. Thermal ages: northern Nordaustlandet Margin. Comparison o f  the 
magnetic ages and thermal ages on the northern Nordaustlandet Margin. From the 
Nansen Ridge to 85°N crustal ages increase gradually. Around 85°N crustal ages 
decrease towards the northern Nordaustlandet Margin and reach 20 my. The younger 
thermally derived crustal ages (at considerable distance from the Nansen Ridge) and 
the magnetic smooth zone represent heat injection and thermal rejuvenation. Hf: heat 
flow values, (Ch 20): magnetic isochrons (from Jackson et al., 1984).
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8. T h e  E a s t e r n  G r e e n l a n d  a n d  N o r t h e r n  S v a l b a r d - N o r d a u s t l a n d e t  

M a r g in s  P r o f il e

The heat flow profile (CC) transects the Eastern Greenland Margin to the 

northern Svalbard-Nordaustlandet Margins (between 14.39°W and 32.22°E; Figure 

5-29). Heat flow highs are, from west to east, 69 mW/m2 (on the Eastern Greenland 

Margin), 229 mW/m2(near the Lena Trough), 138 mW/m2(on the southern Yermak 

Plateau), and 109 mW/m3(on the northern Nordaustlandet Margin, Figure 5-38). 

Sedimentation rates, corrected heat flow and thermal crustal ages along C C  are 

tabulated in Table 5-11. From the Lena Trough to 5°E, heat flow data show a 

gradual decrease with increasing crustal ages.

Observed heat flow is compared to calculated heat flow in Figure 5-39. 

Corrected heat flow values are compared to the theoretical heat flow values for the 

PS-cooling curve in Figure 5-40. Estimated crustal ages (where the magnetic 

lineaments are available) are compared to thermal crustal ages in Figure 5-41.

Around 5°E the heat flow increases toward the southwestern Yermak Plateau and 

reaches 138 mW/m3. This off-axial heat flow high (at considerable distance from the 

Knipovich and Nansen Ridges) and the younger crustal ages represent heat injection 

and thermal rejuvenation in the region. On the eastern part o f  the southern Yermak 

Plateau (on Hinlopenstretet) heat flow decreases, and crustal ages increase, thus 

Hinlopenstretet may act as a thermal boundary between the southern part o f  the 

Yermak Plateau and the northern Nordaustlandet Margin. However, because the data
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Figure 5-38. Heat flow profile: northern Svalbard-Nordaustlandet Margin. Heat flow 
values (triangles) and seafloor bathymetry along the CC1 profile (Figure 5-29) from 
the Eastern Greenland Margin and Yermak Plateau to the northern Nordaustlandet 
Margin (between 14.39°W and 32.22°E). EGM: Eastern Greenland Margin, LT:
Lena Trough, SYP: Southern Yermak Plateau, H; Hinlopenstretet, NVT: 
Nordaustlandet Volcanic Terrain, KK: Kong Karls Land. Sediment seismic velocities 
are indicated. Most o f  the area along the profile lacks magnetic anomalies. Deep 
seafloor bathymetry and low surface heat flow indicate a possible structural and 
thermal boundary on Hinlopenstretet between the Yermak Plateau and the 
Nordaustlandet region.
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I
i1

E G reenland - N Sva b ard-N ordaustlandet Margin
|

O bs. Mag. S ed . C orrect. Thermal A
St # Hf A ge R ate Hf A ge A ge

mW/m2 my m/my mW/m2 my my
ii i

Y4 69±2 60 | 27.23 71.76 55 5
12 229±6 5 ! 10.7 286 3.3 2.7
Y6 173±12 15 17.6 207 5.3 9.7
Y8 ,130+10 45 102.9 147 10.5 34.5
Y9 148±10 45 102.9 150 13 32

Y10 133±8 45 | 102.9 140 16 29
Y16 i 121+11 55 182.43 129 15 40
6 8  :125±6, 55 204.7 148 17 38
67 ; 138+6 55 242.5 154 11 44
6 6  J131 ±2 55 93.9 146 14 41
65 ;114+1 55 53.9 123 15.6 39.4
64 i104+6 55 27.8 109 21 34
2 0 69±5 55 27.2 73 46 9
17 61±9 55 27.2 67 55 0
18 109±6 55 27.2 113 19 36
6 98±4 55 27.2 101.9 2 2 33
7 88±5 55 27.2 92 27 28

A Age=22 my

Table 5-11. Heat flow analysis: northern Svalbard-Nordaustlandet Margin. 
Sedimentation rates, observed and corrected heat flow, magnetic and thermal crustal 
ages along the CC1 transect from the Eastern Greenland Margin to the northern 
Nordaustlandet Margin.



2 6 0

East Greenland-Northern Svalbard Nordaustlandet 
Margin

observed hf300

LT corrected hf

200

NVT

SYP= 100
EGM

I D 00
CM

COo CMCO CMOO)
CO

COo o> CO
w
CM

CO
CO
o>

to CM
CMo

CO
CO

Longitude °E

Figure 5-39. Heat flow analysis: northern Svalbard-Nordaustlandet Margin. 
Comparison o f  the observed heat flow and corrected heat flow along the East 
Greenland-Nordaustlandet Profile (CC). EGM: Eastern Greenland Margin, L T : Lena 
Trough, SYP: Southern Yermak Plateau, H: Hinlopenstretet, NVT: Nordaustlandet 
Volcanic Terrain.
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Figure 5-40. Cooling oceanic crust model: northern Svalbard-Nordaustlandet 
Margin. Comparison o f  observed heat flow and corrected heat flow with the PS- 
cooling curve. The ages o f  the most recent thermal rejuvenation’s along the northern 
Svalbard-Nordaustlandet Margin are estimated by interpolation. On the southern 
Yermak Plateau (SYP) and northern Svalbard Margin, the thermal rejuvenation 
occurred at 11 mybp, 37 mybp on Hinlopenstretet (H), and on the northern 
Nordaustlandet Margin (NNM) the thermal rejuvenation occurred at 20 mybp. EGM: 
Eastern Greenland Margin, LT: Lena Trough.
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Figure 5-41. Thermal ages: northern Svalbard-Nordaustlandet Margin. Comparison 
o f  the magnetic ages and thermal ages along the Eastern Greenland-Nordaustlandet 
Profile (CC). EGM: Eastern Greenland Margin, LT: Lena Trough, H: 
Hinlopenstretet, NM: Nordaustlandet Margin. (?): Magnetic Smooth Zone. SM: 
Seamounts, NVT: Nordaustlandet Volcanic Terrain, SYP: Southern Yermak Plateau.
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are so scarce, further interpretation requires additional heat flow stations in the 

northern Hinlopenstretet region.

In Figure 5-40 four distinctive groups o f heat flow highs and young thermal 

crustal ages are noticeable along the PS-cooling curve. The first group is located near 

the Lena Trough region, and suggests that the crust is approximately 6 my old. The 

second group is located on the southern Yermak Plateau and suggests that the age o f 

the crust is at least 10 my old (in agreement with the Quaternary and recent lavas and 

thermal spring activity in Svalbard). The third group is located between the islands o f 

Svalbard and Nordaustlandet, and suggests that the age o f the crust in this region is 37 

Ma (consistent with the ages o f Tertiary lavas on Svalbard). The fourth group is 

situated on the Nordaustlandet Margin, where high heat flow and thermal crustal ages 

indicate that intrusion took place here from 18-20 mybp.

9. S u m m a r y  o f  H e a t  F l o w  R e s u l t s

Figure 5-42 illustrates where thermally rejuvenated crust is associated with 

present-day earthquake activity within the eastern Norwegian-Greenland Sea and 

adjacent regions. Thermal-crustal ages on the marginal plateaus and fracture zones 

are much younger than magnetic crustal ages, indicating thermal rejuvenation (Figure 

5-43).

Anomalously high temperatures in the lithosphere result in high heat flow at 

the surface o f the crust. A large amount of heat brought up and injected into
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Figure 5-42. Thermally derived crustal ages in the eastern Norwegian-Greenland Sea. 
Contours indicate that the eastern margins are much younger than expected from 
magnetic anomalies. This contradicts the pure shear extension model o f McKenzie 
(McKenzie, 1978). Instead, eastern margins of the Norwegian-Greenland Sea have 
thermal signatures which could be created by asymmetric simple shear. Distribution 
o f  earthquakes (BSC: Barents Seismic Corridor and LS: Lofoten-Vesteralen Seismic 
Zone, HL: Heer Land Seismic Zone, NS: Nordaustlandet Seismic Zone) suggest that 
highly concentrated seismicity is associated with thermally rejuvenated crust. 
Earthquake locations are obtained from various sources (Bungum et aL, 1982; 
Mitchell e t a l 1990). VP: Voring Plateau, JMR: Jan Mayen Ridge, S: Senja Margin, 
SSZ: Spitsbergen Shear Zone, YP: Yermak Plateau, H: Hinlopenstretet, NR: Nansen 
Ridge, KKC: Kong Karls Corridor, RESEAFLOOR: highly reflective seafloor 
(presumably basalts') and debris fields, SDRS: seaward dipping reflector sequences.
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the lithosphere during the formation o f basaltic crust, is a signature of major tectonic 

events. Langseth and Zielinski (1974), Sclater etal. (1980), and Stein and Stein 

(1992) suggested that there is a balance between spreading rate and heat brought 

vertically from the asthenosphere to the base o f the lithosphere. Their general 

observation that heat flow and seafloor bathymetry change as a function o f age in 

most oceans, has held. In addition, they proposed that if the vertical heat flux (a 

mantle plume) governs the thickness o f  the lithosphere and induces the continental 

breakup (in the sense o f symmetric pure-shear lithospheric extension), then a faster 

spreading rate will coincide with a higher heat flow. I believe that this concept does 

not adequately describe the thermal evolution of the ultra-slow spreading ridges (such 

as the Knipovich Ridge within the northern Norwegian-Greenland Sea) and off-axial 

high heat flow distant from active spreading centers.

Table 5-12 summarizes the thermal-crustal ages and episodes o f thermal 

rejuvenation along the eastern margins o f the Norwegian-Greenland Sea. The 

continent-oceanic crustal transition on the Norwegian Margin at its intersection with 

the Lofoten-Vesteralen Fracture Zone was first formed at 60 mybp and heating 

continued on this margin until 16 mybp. Heat injection along the Voring Plateau 

continued until 26 mybp, and thus the region was the site o f  magmatic intrusions for 

up to 16 mybp after its oceanic crust was imprinted by magnetic anomalies. Thermal 

rejuvenation ages along the Senja Margin are 25 to 10 mybp with continued heating 

for 12 mybp (after the margin was first formed). At present the distribution o f



AGES OF THERMAL REJUVENATION 
EASTERN MARGINS OF THE NORWEGIAN-GREENLAND SEA

A G E  
Magnetic Thermal

Ma

Voting Plateau 60 26
E Jan Mayen FZ 60 (?) 18
Voring FZ 45 (?) 24
Lofoten FZ 60-40 17
Vesteralen FZ (?) 16
Senja FZ/Senja Margin 60 (?) 12

Homsund Fault (75°N) 60 (?) 36
(181 km)
Knipovich Ridge (78°N)
along the W. Svalbard Margin (?) 0
(0 km)

Intersection o f the northern Knipovich Ridge and 
the Molloy Transform Fault along the W. S. Margin
(<100 km, 78.5°N) (0) 3.5

the southern part
o f  the Yermak Plateau 50-60 (?) 11

Hinlopenstretet 50-60 (?) 37
(170 km)
Nordaustlandet Margin 750-60 (?) 20
(200 km)

Table 5-12. Summary of magnetic- and thermal-ages o f thermal rejuvenation along 
the eastern margin of the Norwegian-Greenland Sea. Question marks (?) indicate 
magnetic smooth zones in the areas, and (km) indicates the distances from the mid
ocean ridge.
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earthquakes is highly concentrated around these thermally rejuvenated regions (Figure 

5-42).

The thermal-crustal age (13 mybp) along the northwestern Svalbard Margin is 

younger than expected (35 mybp) according to age estimates o f the southwestern 

Svalbard Margin which corresponds with a plate boundary shift from the Senja 

Fracture Zone to the Hornsund Fault Zone along the Western Svalbard Margin.

Along the northern Svalbard-Nordaustlandet Margin, off-axial thermal rejuvenation 

events occurred from 35 to 10 mybp. The duration o f intrusion (estimated from 

thermal modeling) indicates that the southern Yermak Plateau was continuously 

heated between 35 mybp and 10 mybp. These results are in an agreement with the 

recent volcanics and activity o f  thermal springs in Svalbard.

Several intersecting detachment faults are proposed for the structural model of 

the northern Norwegian-Greenland Sea based on numerical modeling results of the 

northern Knipovich Ridge, the Southern Yermak Plateau, and the Nordaustlandet 

region. The best fit to the observed data suggest that asymmetric simple-shear 

lithospheric extension with a 45° major detachment fault dips to the East underneath 

Svalbard and intersects the seafloor at the northern Knipovich Ridge, as proposed by 

Crane et al. (1991), and Okay and Crane (1993). In addition, secondary and Tertiary 

(westward dipping) detachment faults probably cut through both the southern Yermak 

Plateau and the northern Nordaustlandet Margin and intersect the main detachment 

surface (Okay and Crane, 1993).
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Ail o f the detachment faults are thought to have been inherited from the fault 

system associated with the paleo-Spitsbergen Shear Zone. This indicates that the 

paleo-Spitsbergen Shear Zone was not a singular structure, but consisted o f several 

deep-seated pre-existing continental faults. These faults, as the secondary-Tertiary 

detachment faults, make excellent conduits for heat and magma transport. The lateral 

translocation o f magma is probably associated with asthenospheric underplating of 

Svalbard and parts o f the Barents Sea via these faults. The intrusion and extrusion o f 

basalt may still occur within these deep-seated faults and the southern part o f the 

Yermak Plateau (ten's o f kilometers from the Knipovich Ridge axis-the major 

detachment fault) and 100's of kilometers away near the island of Nordaustlandet.

The thermal-crustal age o f the Hinlopenstretet region located between the 

thermally rejuvenated sections of Svalbard and Nordaustlandet is 37 Ma. This result 

is consistent with the episode of Tertiary lava extrusion on Svalbard. The thermal- 

crustal age o f the margin o f eastern Nordaustlandet is found to be younger. In this 

region thermal rejuvenation has occurred as recently as 20 mybp. A thermal-crustal 

age contour map o f the Norwegian-Greenland Sea indicates that the eastern margins 

are much younger than expected (Figures 5-42 and 5-43).

In this study, it is primarily those regions where fracture zones intersect the 

margin, where thermal rejuvenation occurs. Apparently, fracture zones are excellent 

conduits for the transport o f heat, and thus they may continue to transfer heat 10's o f 

million o f years after seafloor spreading ceased in the region. In addition, seismic 

activity is enhanced in these locations. One possible cause o f this seismicity is that the



271

reduction in mechanical plate thickness under regions of localized intrusion and the 

added heat injection decreases the strength of lithosphere making it far more 

susceptible to seismic activity (McNutt, 1984).

In addition, thermal data suggest that when the northwards propagating 

Mohns Ridge intersected the paleo-Spitsbergen Shear Zone, only a portion o f the 

ridge entered the shear zone. The remaining deep-seated "propagating asthenospheric 

corridor" probably continued moving in its original direction, gradually underplating 

Svalbard in the process. The timing and the magnitude of thermal rejuvenation can be 

related to the rate at which the propagating asthenosphere moved underneath 

Svalbard. Once this asthenospheric corridor intersected Secondary and Tertiary 

detachment faults (dipping towards the newly formed Knipovich Ridge), then 

intrusion and extrusion into/along these faults occurred. I f  the present is the key to 

the past then it is likely that a similar process occurred along the Voring Plateau 

Escarpment when the pateo-Aegir Ridge intersected the paleo-Jan Mayen Fracture 

Zone.

Further research should be directed to answering to following questions:

1. Will the Knipovich Ridge continue to propagate northwards and deactivate the 

Molloy Transform Fault completely?

2. Will Nordaustlandet become a site o f extensive volcanic activity?

3. Will the underplating o f the Svalbard-Barents Sea region evolve into a completely 

new plate boundary?
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Chapter 6 

DISCUSSION

A. THERMAL REJUVENATION: EVIDENCE FOR ASTHENOSPHERIC 

CORRIDORS

The Norwegian-Greenland Sea lies within a broad region o f anomalously 

high heat flow. The heat flow profiles from two marginal plateaus and along 

transtensiona! volcanic passive margins, presented in the previous chapter, show a 

significant surface heating distant from the active spreading centers. The high heat 

flow implies that a significant amount o f heat lies at the base o f the lithosphere 

creating relatively high temperatures at shallow depths. In response, the eastern 

Norwegian-Greenland Sea seafloor (including the Voting and Yermak Plateaus and 

all transtensional margins) as well as the western Svalbard-Barents Platform are 

anomalously elevated.

Buck and Mutter (1989) suggest, that when a continent breaks up and a 

passive margin forms along a paleo-shear zone, a transition zone develops between 

continental and oceanic crust. According to Parsons and Sclater (1977) and 

McKenzie (1978) the surface expression o f the heat flow should be symmetric and 

dome shaped indicating the cooling of the oceanic crust toward the margins away 

from the ridge. However, in the case of the Norwegian-Greenland Sea, heat flow
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often increases towards the margins. This high heat flow at the margin may mark the 

point (in time) where partial melting increased because o f large lateral thermal 

gradients either at the onset o f rifting or during a later intrusive event. In addition, 

early extensive partial melting in these regions resulted in lava ponding onto the 

surface and the creation o f seaward dipping basaltic units and marginal volcanic 

plateaus. These events died down as more new oceanic crust formed and 

oceanization continued.

However, thermal ages along the eastern Norwegian-Greenland Sea indicate 

that the eastern margins are much younger than expected. This contradicts the 

symmetric, pure-shear extension model o f McKenzie (1978) but not asymmetric 

simple-shear extension model, Furthermore, younger thermal ages are also 

suggestive o f recent intrusion o f magma both into pre-existing fracture zones and 

along the margin o f the Barents/Svalbard Platform. This may be suggestive o f 

ongoing underplating of the western Svalbard Platform and the Barents Sea. In all 

likelihood, the propagating ridges (Aegir, Mohns, and Knipovich) were trapped by 

paleo-shear zones (East Jan Mayen, Voring, Lofoten, Vesteralen, Senja, and 

Spitsbergen) within the Norwegian-Greenland Sea and created volcanic plateaus 

(such as the Voring and Yermak) along the transtensional eastern margins 

(Norwegian, Senja and Western Svalbard). Although some magma was intruded into 

the pre-existing shear zones, in all likelihood, the deep-seated asthenospheric material 

probably continued to propagate along its original path underplating and thermally
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uplifting the margin of the Barents Sea in the process. The details o f the propagation 

events are outlined in the following sections.

B. THE V0RING PLATEAU AND NORWEGIAN VOLCANIC MARGIN

The separation o f Greenland and Norway along the Harland Line started 

about 60 mybp (Birkenmajer, 1981). It was associated with a short-lived but 

voluminous volcanic activity (Eldholm and Grue, 1994). Eldholm elal. (1989b) 

suggested that early Tertiary magmatism, in some way, was related to the Iceland 

Hotspot. White (1988) suggested a mushroom-shaped mantle plume (in 2000 km 

diameter) was centered near the Iceland plume at the time o f  rifting along the 

Norwegian Margin. The extinction of the paleo-Aegir Ridge is evidence (subaerial 

volcanism suggested by Eldholm and Grue, 1994) that the effects o f the plume abated 

rapidly (3.5 Ma) from its center. This observation argues against the concept o f the 

plume model. Eldholm ei al. (1989a) suggested that instead o f a mushroom shape, 

the upwelling mantle was shaped like a higher temperature carpet.

The main difficulty with the approach o f White (1988) is his idea regarding the 

magnitude o f the asthenospheric temperature and the time o f  volcanic activity due to 

the mantle plume. The mantle plume should cause symmetric dynamic uplift o f the 

entire area prior to rifting (White, 1988), However, the rocks at the margin off 

Norway have no record o f dynamic uplift (Eldholm et al., 1989b). The Paleocene
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uplift at the Voring Plateau (limited to the area adjacent to the line of break-up) was 

initiated after the onset o f rifting (Eldholm et al., 1989a), reflecting the isostatic 

response to the changing lithosphere (continent to oceanic). The passive margin and 

volcanic plateaus along the eastern Norwegian-Greenland Sea can probably be best 

explained by simple-shear dominated lithospheric extension mechanisms where the 

impact o f a propagating ridge upon an obliquely oriented paleo-shear zone releases a 

short-lived but voluminous magmatic production.

Although magnetic anomaly lineaments show the Harland Line (the Aegir 

Ridge and paleo-Mohns Ridge; Birkenmajer, 1981) propagated along the Jan Mayen 

Transform System (Figure 6-1). Hagevang el al. (1983) suggest formation o f the 

crust in the negative polarity interval between magnetic anomalies’ (Chron 24-25: 

58.7 to 56.6 mybp). A jump in the plate boundai^ occurred about 57 mybp causing 

the duplication o f the 24A and 24B on the southern Voring Plateau. At 55 mybp the 

plate boundary "straightened out" and symmetric spreading started along the Mohns 

Ridge (Hagevang el al., 1983). Hagevang et al. (1983) proposed that maximum 

magnetic amplitudes occur seaward o f the outer Vering Plateau. Leg 38 of the Deep 

Sea Drilling Project also showed that Fe-Ti-rich basalts with a high remnant 

magnetization increases westward, at the plateau, and are classified as hotspot-type by 

Raschka and Eckhardt (1976). However, Hey et al. (1980) suggest that the basaltic 

rocks responsible for high amplitude magnetic anomalies can occur at the tips o f 

propagating rifts. Although, we cannot demonstrate this, following Hagevang et al. 

(1983), rift propagation may well have occurred prior to Chron 23 time. By
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EVOLUTION OF THE V0RING PLATEAU
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Figure 6-1. Evolutionary model o f the Voting Plateau and the Norwegian Margin. 
The propagation o f the paleo-Aegir and -Mohns Ridges along the Jan Mayen 
Transform System created the Voting Plateau and the transtensional volcanic passive 
margin in the southeastern Norwegian-Greenland Sea. This configuration is revised 
from magnetic lineaments suggested by Hagevang et al. (1983). Bathymetry contour 
(1000 m) included. The paleo-Mohns Ridge propagated along the BFZ: Basin 
Fracture Zone, CJMFZ: Central Jan Mayen Fracture Zone, EJMFZ: Eastern Jan 
Mayen Fracture Zone, VFZ: Voting Fracture Zone, VPE: Voting Plateau Escarpment 
(white bold-line), LFZ: Lofoten Fracture Zones, VAFZ: Vesteralen Fracture Zone, 
COB: continental-oceanic crustal transition boundary.
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analyzing the early spreading rates Hagevang et al. (1983) find there are irregular 

anomalies probably caused by a combination o f intrusives and relief in the underlying 

oceanic crust. The duplication of Chron 24 line (Hagevang et al., 1983) indicates that 

the paleo-Mohns Ridge axis was offset by segments o f the Jan Mayen Transform 

System (East Jan Mayen Fracture Zone, Voring Fracture Zone, Lofoten Fracture 

Zone, and probably Vesteralen Fracture Zone).

During the propagation of the Harland Line, Eldholm etal. (1987) and Mutter 

et al. (1988) suggest that early Eocene lavas were extruded, for 2 to 3.5 my, at a high 

flow rate, and distant from the spreading center. Basalt samples from the Outer 

Voring Plateau indicate that high amplitude magnetic anomalies were created at the 

tip o f the northward propagation tip o f the Aegir Ridge (Eldholm et al., 1987).

During propagation along the Eastern Jan Mayen Fracture Zone (and during the 

adjustment o f the plate boundary along the northern margin), an abrupt crustal 

transition zone was created (seismic Reflector-K in Figure 3-16; Skogseid and 

Eldholm, 1987).

Heat flow analyses indicate that the crust on the Norwegian Margin was first 

heated 60 mybp and continued to be intruded by volcanism up to 16 mybp (Table 5- 

12). Segments o f  the Eastern Jan Mayen Fracture Zone, Voring Fracture Zone, 

Lofoten Fracture Zone and Vesteralen Fracture Zone, probably trapped or channeled 

the respective intrusions. The interaction o f the Aegir Ridge with the paleo-Jan 

Mayen Fracture Zone likely resulted in a pulse o f voluminous subaerial volcanism 

forming the Voring Plateau about 57 mybp. Relatively lower present-day heat flow in
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this region is probably the result of rapid heat loss during the period o f lava extrusion. 

However, thermal rejuvenation occurred up to 24 my ago on the Voring Fracture 

Zone and 26 my ago on the Vering Plateau.

The succession of these events probably coincided with the rapid propagation 

o f the paleo-Mohns Ridge northward along the Voring and Lofoten Fracture Zones. 

In all likelihood, deep-seated propagating magma from the paleo-Mohns Ridge 

moved beneath the northern Norwegian Margin and rejuvenated the crust underneath 

the Lofoten and Vesteralen Islands (16 mybp; Figure 5-42). Free-air gravity 

anomalies also suggest shallow-paleo magma sources in this region (Figure 3-13) 

where even today, earthquakes occur (Figure 3-10).

C. THE SENJA AND WESTERN SVALBARD TRANSTENSIONAL VOLCANIC 

MARGIN

The northeastern propagating Mohns Ridge interacted with the paleo-Senja 

Shear Zone between approximately Chron 23 and Chron 13. Until the plate 

reorganization, no-oceanic crust formed along the Senja Margin (Figure 6-2). The 

Mohns Ridge propagated northward along the paleo-Spitsbergen Shear Zone into the 

Arctic Basin rather than rifting the continental lithosphere in the Svalbard Platform. 

However, young thermal-crustal ages underneath and adjacent to Svalbard are 

evidence that underplating by mantle material is probably occurring in this region.
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The paleo-Senja Shear Zone most likely acted as a barrier to the surface 

expression o f the propagating Mohns Ridge blocking the rifting that would have 

penetrated through the Barents Platform, However, at depth, the asthenosphere 

associated with the propagating ridge apparently succeeded in underplating the Senja 

Margin thermally rejuvenating the Svalbard-Barents Platform in the process (Table 5- 

12). The distribution o f earthquakes (the Barents Seismic Corridor) indicates recent 

tectonic activity within the mechanically strong continental lithosphere in the regions 

where thermal rejuvenation has taken place (Figure 5-42). Thus, underplating and 

thermal uplift o f the Western Barents seafloor may still be occurring. At 35 mybp, 

transtensional movement occurred from the Senja Fracture Zone to the Hornsund 

Fault (one o f the faults within the paleo-Spitsbergen Shear Zone; Muller and 

Spielhagen, 1990; Faleide et al., 1991). After Chron 13, when the tensional regime 

became predominant, a system o f down-faulted blocks developed west of the major 

Hornsund fault. These were later buried by the increasing amount o f sediment 

deposited west o f the Hornsund Fault (Myhre, 1984). However, spreading evolved 

along this transtensional fault system creating the Knipovich Ridge in the process 

(Figure 6-2a).
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Figure 6-2. Evolution of the paleo-Spitsbergen Shear Zone.
(a) Distribution of plate boundaries during the opening o f the northern Norwegian- 
Greenland Sea during Chron 23, adapted by Crane et al. (1991). Straight thin lines 
represent sheared crust. Half-arrows show strike-slip movement. Large arrow head 
indicates the direction o f the Knipovich Ridge propagation.

(b) Present day plate boundaries and main structural features o f the northeastern 
Norwegian-Greenland seafloor. Numbered boxes: 1: the continent-oceanic crustal 
boundary, 2: bathymetry (m), 3: active spreading ridge, MR: Molloy Ridge, 4: 
magnetic lineations, 5: Spitsbergen Fold and Thrust Belt, 6: Tertiary Central Basin, 7: 
Early Eocene Volcanism, LG: Lofoten Gravity High, BG: Bjomoya Marginal High, 8: 
marginal free-air gravity anomalies, HG: Marginal Hornsund Gravity High (>100 
mGal). H: Hovgard Gravity High, MTF: Molloy Transform Fault, SG: Senja Gravity 
High.
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As the ridge propagated northward, it intersected the Spitsbergen Shear Zone 

producing massive extrusion and compression along the northern Svalbard Margin. 

Wrench movements along the Hornsund Fault Zone (Sundvor and Eldholm, 1979) 

were driven by dextral-transpression (Max and Ohta, .1988) related to the northward 

propagation o f the Mohns and Knipovich Ridges. The Bjorneya Marginal High was 

also formed by this early Eocene volcanism. Even at present, these intrusions are 

characterized by high heat flow and the Senja and Hornsund Gravity Highs (Myhre et 

al., 1982; Crane e ta l ., 1991). Present-day intraplate seismicity is also considerably 

higher where the Mohns Ridge bends and the propagation continues northwards 

along the Knipovich Ridge (Figure 6-3).

It is likely that when the stress regime shifted from shear to tension, along the 

nascent Knipovich Ridge, simple-shear lithospheric extension evolved along the 

former shear zone creating a detachment fault zone in the process. Based on the 

analysis o f  heat flow, the northward propagating Mohns Ridge entered the first of 

many major detachment faults (part o f the Spitsbergen Shear Zone) forming the 

Knipovich Ridge (Crane et al., 1991). Later deep-seated propagation probably 

intersected other detachment surfaces and intruded the northwestern Svalbard 

Margin. A propagation and migration o f the Knipovich Ridge from 7S°N to 78°N 

occurred in the middle Miocene. This event deactivated the Hovgard Ridge/Fracture 

Zone (Myhre et al., 1982; Crane et al., 1991; Okay et al., 1993) resulting in local 

excess volcanism (15 mybp).
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Figure 6-3. Evolutionary model for the development o f transtensional volcanic 
passive margins o f the eastern Norwegian-Greenland Sea. Transtensional margins 
were formed at the intersections of the Mohns Ridge with the Jan Mayen Fracture 
Zone (JMFZ), the Voring Fracture Zone (VFZ), the Vesteralen Fracture Zone 
(VAFZ), and the Senja Fracture Zone (SFZ), and the intersection o f the Knipovich 
Ridge with the Molloy Transform Fault (MTF) and the Spitsbergen Shear Zone 
(SSZ). The dotted area marks the present-seismic zones (LS: Lofoten-Vesteralen 
Seismic Zone, BAC: Barents Asthenospheric and Seismic Corridor, HL: Heer Land 
Seismic Zone, NS: Nordaustlandet Seismic Zone, KKC: Kong Karls Corridor). 
Systems of deep-seated faults (RFZ: Raudfjorden Fault Zone, BFZ: Billefjorden Fault 
Zone, LFZ: Lomfjorden Fault Zone, RfFZ: Rijpfjorden Fault Zone) trending parallel 
to the paleo-Spitsbergen Shear Zone act like vertical thermal boundaries along the 
northern Svalbard-Nordaustlandet Margin. SYP: Southern Yermak Plateau, NVT: 
Nordaustlandet Volcanic Terrain, HVT: Hinlopen Volcanic Terrain.
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Interpretations o f SeaMARC-II side-looking sonar imagery indicate that the 

northern Knipovich Ridge is at present propagating north o f the double-troughed 

Molloy Transform Fault near its intersection with the Knipovich Ridge at 78.5°N 

(Figure 4-15). In fact, this double-fault transform is probably the result of a recent 

transform migration (Okay et al., 1993) caused by the northward propagation o f the 

Knipovich Ridge (the age o f which we do not know) on the northwestern Svalbard 

Margin (Crane et al., 1991; Okay etal., 1993). Perhaps more recently, the 

northwards propagation o f the Knipovich Ridge caused the thermal rejuvenation of 

the northern Svalbard Margin, where the continent-oceanic crustal transition 

boundaiy developed 13 my ago (at 79°N; Okay et al., 1993).

The seismic pattern changes abruptly from the Mohns Ridge to the Knipovich 

Ridge (Figure 3-10). The Svalbard Archipelago is the most active region on the 

seismicity map of the Norwegian-Greenland Sea (Figure 4-14). Earthquake 

epicenters on Spitsbergen occur along major pre-existing structures, such as the 

Hornsund Fault Zone, Billefjorden Fault Zone, and Lomfjorden Fault Zone. Most 

likely, the oblique-intersection o f the Knipovich Ridge with the Spitsbergen Shear 

Zone continued to generate a compressional front on both the Western Svalbard 

Margin and on Svalbard (the Heer Land Seismic Zone in southern Spitsbergen) where 

fault plane solutions show compressional stresses on Heer Land (Mitchell et al.,

1990). In additional to compressive stress, it is likely that oceanic mantle has 

underplated the Svalbard Platform thermally rejuvenating a region extending from the
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Mohns Ridge bend, underneath the Barents Seafloor to a region north o f 

Nordaustlandet (the Barents Asthenospheric Corridor).

Elverhoi and Solheim (1987) likewise suggest that during the last 5 my or so 

the Western Barents Shelf has thermally uplifted. Sellevoll et ai. (1982) show that a 3 

km-deep Moho Zone occurs only under the Central Spitsbergen Tertiary Basin and is 

characteristic o f mobilized lower crust or igneous underplating. According to 

Amundsen et al. (1987) evidence from xenoliths and geophysics show that the crust is 

ca. 27 km thick and has been thinned by rifting for only 10-15 my. Both upper 

mantle ultrabasic and lower continental crustal high-temperature granulite xenoliths in 

the volcanics demonstrate subsided continental crust. Thus, shallow Moho depth 

(average 27 km, Amundsen etal., 1988; Sellevoll et al., 1991; Muller, 1993) suggests 

that the crust is thinner under the Svalbard Platform and that diffuse rifting and 

thermal rejuvenation have occurred in the Svalbard Platform as well. Apparently, 

while lavas erupted out o f the Knipovich Ridge (the major detachment fault), the 

deep-seated Barents Asthenospheric Corridor continued to propagate northeast o f the 

Mohns Ridge under Svalbard up to the northeastern Nordaustlandet region (35 to 20 

mybp).
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D. THE SOUTHERN YERMAK PLATEAU AND NORTHERN SVALBARD- 

NORDAUSTLANDET VOLCANIC MARGIN

The southern Yermak and Voring Plateaus have similar thermo-mechanical 

histories. They both were created during the development o f transtensional volcanic 

margins, on the compressional sides o f ridge/shear-zone impacts. Several studies 

(Sundvor et at., 1972, 1982b; Jackson et al., 1988) indicate that the southern Yermak 

Plateau was also deformed by crustal thinning, stretching by later dike intrusion 

besides undergoing large scale thermal rejuvenation (Okay and Crane, 1993). The 

high heat flow on the southwestern part o f the plateau suggests that intrusive activity 

occurred from 16 Ma to the present (Crane et at., 1982). Extensional faults oriented 

in the NW-SE direction range from the region o f high heat flow on the southern 

Yermak Plateau towards the volcanically active Woodfjerden area o f Svalbard 

(Gjelsvik, 1963; Prestvik, 1977; Crane et at., 1982; Amundsen et at., 1988;

Skjelkvale e t a l 1989). Heat flow measurements (Sundvor, 1986) also indicate that 

high heat flow continues onto the southern section o f the plateau where crustal 

thinning was observed by Johnson et at. (1982). Sundvor and Austegard (1990) 

proposed that this process also could have ruptured the continental crust, creating 

some oceanic crust in the process (Jackson et at., 1984; Sundvor and Austegard,

1990).

In contrast, the northern part o f the Yermak Plateau has lower heat flow 

values in the range o f 50-92 mW/m2 (Jackson etal., 1984; Sundvor and Torp, 1987).
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Sundvor and Austegard (1990) suggest that these heat flow values correspond to 

crustal ages between 41 and 26 Ma which are consistent with ages determined on the 

basis of extrapolated magnetic lineations (Feden et a!., 1979). These observed heat 

flow values (without corrections o f the blanketing effect due to sedimentation) when 

compared with the theoretical cooling curve (Parsons and Sclater, 1977) represent 

oceanic crust 56 my old, the assumed age o f the shelf edge that marks the continent- 

oceanic transition in this region (Sundvor and Austegard, 1990).

The southern Yermak Plateau intrusions and extrusions were probably trapped 

by several deep-seated faults related to the continuation o f the Homsund Fault Zone) 

trending southeastward from 81°N towards the coast o f Western Svalbard just 

seaward o f  the continent-ocean transition (Figure 6-4). The northern continuations o f 

the Raudfjorden Fault and Bockfjorden Fault on Spitsbergen dissect the southern 

Yermak Plateau. These faults likely acted as secondary detachment faults, interacting 

with the paleo-Spitsbergen Shear Zone, and consequently channeled the heat from the 

Knipovich Ridge causing intrusions in the southern Yermak Plateau at 11 mybp 

(Crane et at., 1991; Okay and Crane, 1993). Two detachment surfaces (Knipovich 

and Yermak) could be inherited from the faults associated with the paleo-Spitsbergen 

Shear Zone; Figure 6-5).

There is no-indication of pure shear extension on the plateau to explain the 

off-axial Yermak Plateau's volcanic formation. In addition, field observations do not 

support a symmetric extension process. Thermal modeling results reveal that heat 

sources (presumably from the asthenospheric corridor) propagated and intruded into
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Figure 6-4. Thermal rejuvenation model along the northern Svalbard-Nordaustlandet 
Margin. The Kong Karls Corridor is the northeastern expression o f the propagation 
o f deep-seated magma, creating thermal rejuvenation o f the crust around 20 my. As 
the asthenospheric corridor progressed to the northeast, at 11 mybp, shallower melt 
injected through multiple-faults creating the Mosby Peak, the Southern Yermak 
Plateau, and volcanic centers and hot springs in the Woodfjorden region (Svalbard). 
These regions have undergone and are probably still undergoing thermal rejuvenation. 
Multiple zones o f intrusion are common when continental margins form along paleo- 
shear zones and when they have been substantially faulted prior to rifting. Highly 
reflective seafloor interpreted as volcanic flows observed in SeaMARC-II images 
along this margin are surface expressions o f extrusion from multiple-fault zones 
(secondaiy detachment faults). The multiple-fault zones are R: Raudfjorden Fault 
Zone, B: Billefjorden Fault Zone, L: Lomfjorden Fault Zone, Rf: Rijpfjorden Fault 
Zone. NVT: Nordaustlandet Volcanic Terrain, HVT: Hinlopen Volcanic Terrain, KK: 
Kong Karls, BAC: Barents Asthenospheric Corridor, SAC: Svalbard Asthenospheric 
Corridor, SSZ: Spitsbergen Shear Zone.
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Figure 6-5. Kinematic model o f the southern Yermak Plateau formation. 
Evolutionary model describes a fault system of the Knipovich Ridge and southern 
Yermak Plateau.
Faults dip eastward from the Spitsbergen Transform Fault (STF)-Knipovich Ridge, 
intersecting a secondary fault dipping westward (under Svalbard). AA' profile 
represents the heat flow for the southern Yermak Plateau. HF: Homsund Fault Zone.
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the region by an asymmetric simple-shear extension mechanism. Bonatti and Michael 

(1989) report that fresh peridotites can be found in this area at shallow depth along 

the northern Svalbard Margin, indicating that the Yermak Plateau had been 

underplated and heated by oceanic mantle material most likely originating from a 

source under the Knipovich Ridge (rather than continental mantle). Heat flow 

analyses also indicate that some of the Barents/Yenmak underplating asthenosphere 

erupted near the Hinlopen Volcanic Terrain creating the Mosby Peak along the 

northern Svalbard Margin between 35 and 11 mybp. SeaMARC-II side-looking 

sonar imagery suggests that well defined normal faults cut the seafloor directly north 

o f  the active multiple-fault zones on Spitsbergen (the Raud^orden, Bockfjorden, 

Billefjorden, and Lomfjorden fault zones). The northern prolongation of these faults 

is coincident with a positive magnetic anomaly that suggests submarine volcanics 

(Figure 4-13).

It is likely that the Knipovich Ridge propagated northwards while its subjacent 

asthenosphere progressed northeastwards, intersecting and intruding the multiple- 

faults associated with the Paleo-shear zone creating the southern Yermak Plateau, the 

Mosby Peak, the Yermak Seamount at I2°E and the Woodfjorden volcanics in the 

process. The regions o f  high total magnetic field detected during the SeaMARC-II 

Expedition in 1990, are interpreted as probable dike injections associated with the 

underplating o f the Barents-Svalbard Platform by the Spitsbergen Shear 

Zone/Knipovich Ridge system. Each distinctive magnetic high is associated with 

highly reflective seafloor, which also correlates with off-axial heat flow highs and
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zones o f concentrated earthquakes (Figure 4-16). This suggests that these regions 

have undergone and are probably still undergoing thermal rejuvenation.

SeaMARC-II data (Sundvor et al., 1991; Okay et at., 1991; Okay and Crane, 

1993) indicate that there are also NW-SE trending faults (probably secondary and 

Tertiary detachment faults associated with the greater Spitsbergen Shear Zone 

System; Figure 6-5) bordering the northern Nordaustlandet Margin (northern 

extensions o f the Rijpfjorden and Lady Franklinfjorden Fault Zones). These are also 

probably the loci of off-axial volcanic eruptions (Okay et al,, 1991). Based on the 

analysis of heat flow, a thermal boundary probably exists between the southeastern 

Yermak Plateau and the northern Nordaustlandet Margin. This boundary between 

high heat flow and low heat flow coincides with the magnetic and structural 

boundaries along Hinlopenstretet, but the continental-oceanic crustal transition zone is 

unclear. According to heat flow analyses, the latest intrusion o f magma occurred at 

~37 mybp and was associated with Tertiary volcanics.

I suggest, that as the Mohns Ridge propagated northward, creating the 

Knipovich Ridge in the process, episodic transtensional stress propagated in space and 

time from Kong Karls Land to the Spitsbergen Shear Zone. Between 60-55 mybp 

and 35 mybp the Barents Asthenospheric Corridor likely propagated northwards, 

causing the eruption o f dacitic lavas on northeastern Nordaustlandet and Kong Karls 

Land (Figure 6-4). Dike injections also occurred along the Lady Franklinfjorden 

Fault. This fault is related to the other multiple-faults (secondary and Tertiary
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detachment faults on the northern Svalbard Margin) that trapped the deep-seated 

asthenosphere.

Fault plane solutions show extensional stresses active today on Nordaustlandet 

(Mitchell et a l,  1990). Mitchell et al. (1990) reported small 6-values for the 

Nordaustlandet Seismic Zone. This indicates, rather unique, diffuse rifting in the 

region. Focal mechanisms are not typical of earthquakes that are characterized by 

compressive stresses occurring at the passive margin or regions o f  continental rifting 

(Sykes, 1978). The earthquakes instead are caused by an extensional regime with a 

strike-slip component (Chan e t a l 1985; Mitchell e ta l,  1990) rather than by 

intraplate deformation. Savostin and Karasik (1988) suggested a Spitsbergen 

Microplate which was bordered by the seismic zones (Heer Land and 

Nordaustlandet), and they suggested that the Billefjorden Fault Zone, a major strike- 

slip feature in the area, is a major plate boundary. However, the Billefjorden Fault 

Zone is also a deep-seated secondary extensional fault (Lamar et al., 1986) that most 

likely served as a magma conduit or a vertical thermal-mechanical boundary. In 

general, the analyses o f these new geophysical data are highly suggestive o f large- 

scale underplating o f the Barents-Svalbard Platform and imply that either the axis o f  

spreading now centered along the Knipovich Ridge may either be migrating laterally 

as well as propagating to the North, or the data may suggest that the plate boundaiy is 

very broad in this region («450 km).
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CONCLUSIONS

1. Transtensional volcanic plateaus and passive margins form along paleo- 

shear zones. The orientation of the paleo-shear zones have absolute control on a 

migrating and propagating ridge during its entrapment by the shear zone. An oblique 

impact o f a ridge and shear zone creates an asymmetric unstable stress configuration 

generating both extension and compression on either side o f the intersection. The 

impact angle controls the direction of deflection o f the propagating ridge, the rate o f 

spreading and style of newly forming oceanic crust. Marginal plateaus, seismic 

activity, underplating by deep-seated asthenosphere, multiple zones o f intrusions, heat 

injection and thermal rejuvenation o f the continental crust are found on the 

compressional side o f the ridge/paleo-shear zone intersection. In these locations, the 

continent-oceanic crustal transition is characterized by seaward dipping seismic 

reflectors, high heat flow, high gravity and magnetic smooth zones located on the 

compressional side o f impact along the transtensional margin.

Based on heat flow analyses o f the eastern margin o f the Norwegian- 

Greenland Sea the thermal crustal ages indicate that the thermal structure in many 

sections o f the passive margin have been reset to values appropriate for much younger 

lithosphere. Shear zones and their deep-seated extensional multiple-faults act as 

vertical magma conduits from the deep-seated asthenosphere associated with a
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propagating ridge to the surface. Rejuvenation occurs with lateral heat injection via 

these paleo-shear zone related deep-seated extensional faults.

2. Pre-existing deep-seated multiple-faults in extensional terrain may also act 

as detachment faults. Shear zones control the lithospheric extension style (simple 

shear lithospheric extension by a detachment fault), continental breakup, position, and 

mode in the upper crust. Major detachment faults are often accompanied by 

secondary detachment faults. These secondary detachment faults are responsible for 

the development o f a wide continent-oceanic crustal transition (as suggested by 

seaward-dipping seismic reflectors).

3. An asymmetric simple shear lithospheric extension mechanism (or perhaps 

a combination of it with symmetric pure shear) is responsible for the emplacement o f  

thick (but narrow) basaltic crust adjacent to the passive margin. Symmetric 

lithospheric extension models do not explain the wide variations in the passive margin 

geometry such as marginal plateau formation. There is a notable absence of 

symmetrical rift structures on the opposing margins of the Norwegian-Greenland Sea. 

If  this region is representative o f other transtensional margins, then it is reasonable to 

suggest that structural asymmetry is a general feature of transtensional volcanic 

passive margins. By analyzing heat flow it is possible to distinguish the events which 

occurred during the development of a transtensional volcanic margin and to determine 

whether or not simple-shear extension has taken place.
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4. Suggestions for further studies:

Few heat flow data are available from other transtensional margins in the world. 

Future analyses o f heat flow collected in these areas should be directed towards 

understanding the thermal characteristics o f a changing paleo-shear zone, the ofF-axial 

intrusion phenomena, and the magnitude o f thermal rejuvenation on a passive margin.

a. For a further study o f lithospheric extension modeling, a transect o f  

heat flow stations extending normal to the Eastern Jan Mayen Fracture Zone and 

additional drilling o f the Voring Plateau is suggested. An important test o f the 

detachment fault model would be to mount a drilling program into basement rocks in 

the Voring outer highs, to demonstrate the presence o f deeper level sediments and/or 

metamorphic rocks.

b. Few (or no) heat flow measurements have been collected from the 

Lofoten Islands, the western and eastern Barents Sea region, the area between Kong 

Karls Land and Franz Josef Land, and the Hinlopenstretet region, leaving substantial 

need to complete this picture.

c. A thermal boundary exists somewhere between the Yermak Plateau and 

Nordaustlandet. This boundary between high heat flow and low heat flow probably 

coincides with the magnetic and structural boundaries along the margin. The 

continental-oceanic crustal transition zone along the northeastern coast o f Svalbard is 

unclear and thus both the heat flow and seismic structure in this region need to be 

resolved to make any further estimation of the intrusion dates and nature o f this 

thermal boundary.
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APPENDIX

A. METHODOLOGY

I. SeaMARC-II AND INSTRUMENTATION

SeaMARC-II (Seafloor Mapping and Remote Characterization) is a 

combination of towed acoustic mapping systems developed by International 

Submarine technology in collaboration with the Hawaii Institute o f  Geophysics 

(Figure A-I). The SeaMARC-II system is a shallow towed-instrumentation package. 

It simultaneously collects backscatter and bathymetric information for seafloor 

mapping (Shor, 1990). Acoustic sensors are towed behind a depressor in a 

streamlined, passively stabilized, naturally buoyant vehicle (Figure A-2).

The system is capable o f operating in any water-depth greater than 50 meters. 

Survey speed depending on weather averages between 3 and 9 knots. The side- 

looking sonar system is configured to produce a swath of data 10 km wide for sea

floor depths greater than 1 km. A blind zone at nadir is assigned a width o f 4% o f 

swath width, The bathymetric data is recorded from nadir to an angle o f 60°, or to a 

swath-width equal to 3.4 times water depth (seafloor multiples cause phase 

interference at and beyond this range) as suggested by Shor (1990).
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Figure A - l . SeaMARC-II towfish on transportable launch and recovery system.
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Figure A-2. The schematic SeaMARC-II Mapping System Configuration (after 
Blanckinton et al. (1983). The system operates at 11 kHz on the portside and 12 kHz 
to starboard.
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Bathymetry is determined by measurements taken 4000 times each second o f 

the magnitude and arrival angle (0°) o f narrow band acoustic energy, phase difference 

(0°), returned from each side o f ship's track (Figure A-3). Each array is composed of 

two banks o f transducers. During transmission the two banks are driven in parallel, 

but while receiving, the two are measured separately. The phase difference can be 

measured between the two lines. For the system C/FD is -2 °  (Shor, 1990; Masnadi- 

Shirazi and de Moustier, 1990).

SeaMARC-II image resolution is a function o f the beam width o f the signal 

2°, range, ping repetition rate and ship speed (Figure A-2). Side-looking images are a 

combination of the small scale reflecting properties o f the bottom (micro-reflectivity). 

SeaMARC-II side-looking images contain 1024 pixels of digital data on either side o f 

the swath. This unique combination allows more accurate and rapid understanding of 

seafloor character (Shor, 1990). SeaMARC-II system is used to investigate the results 

o f tectonic and structural processes. Linear features such as channels and faults are 

recognizable if they have dimensions of several to a few tens o f  meters.
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Figure A-3. Schematic illustration o f the SeaMARC-II phase difference measurement 
technique for determining acoustic angle to target on bottom. When combined with 
precise arrival times, range and depth pairs are calculated across a swath o f seafloor 
out to 60° to either side o f the towfish track (Shor, 1990).
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2. HEAT FLOW MODELS

a. Sedimentation and Compaction:

The sediment particle rates (Vs) depend only on z, positive downward

rs M - y s (z) [A.i].

As the porosity falls with increasing depth o f burial, the velocity o f the sediment 

grains is reduced; at depths (» ^ ,, compaction constant), the porosity, <f> is effectively 

zero and the sediment rate is given by

^ 6 >  = M i-< i> ) /(H 0  [A. 2],

The conductive and advective heat flux (Crane et al., 1982),

- K 3z T + [pw Cw Vw <f> + ps Cs Vs ( 1-4))]. T [A. 3 ]

where T(r,/) is temperature, function of depth z  and time t\ K(r,/) is composite 

thermal conductivity at depth, pw and p^ are pore fluid-density and sediment particle- 

density, Cw and Cy are heat capacity, Vw(z,t) pore fluid-velocity. The heat flow 

equation,

= dz (K dz T) -  dz {[pclv Vw $> + pcs Vs ( l -  ((,)] T} + IMP [A.4]

= [pcw (J> + pcs (1- <t>0)]. 8t T [A.5]

where <J>o is the surface porosity for the porosity o f  sediment at z  depth, and IHP is the 

internal heat production,

<f>(r) = §o . exp (-z/jJ = P (z) [A.6J.

A comparison o f observed heat flow data with heat flow corrected site by site. 

Decompacted sediment thickness can be calculated by first estimating where,

Hdecomp = ^comp H ■ <{•(-) 1 1 - <f)(0)] [A.7],
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This simplified equation taken from Crane et al. (1982) for decompacted sedimentary 

thickness is determined to yield an average depositional rate at any point.

The thermal conductivity K5 o f a rock is the sum o f water and water rock 

matrix conductivities caused by lattice vibrations and by transfer o f heat by radiation. 

Average thermal conductivity o f rock,

KJ = K wn s .K jj 'JW, [A.8]

volume specific heat o f fluid.

PcOO = P%  W(Z) + PCR C1-$(-)] [A.9]

average thermal diffusivity is defined by

re = Ky / pc [A. 10]

which is needed to solve problems in heat conduction in which the temperature

changes with time. Parameters used for this calculations are given on Table A-I.

b. One-Layer Model:

If  it is assumed that the heat flow from depth has been constant and the 

sedimentation rate has been uniform, then the heat flow at the surface o f the 

sediments can be estimated (Langseth et al., 1980) using an equation derived by 

Benfield (1949):

qs = q b i  1 - 4 i2 • sr/c ( V V/ / 2Vtc)] [A. 11].

Where, qs  is the observed heat flux from the sedimentary surface, qfr the heat flow 

from great depth, t the duration of sedimentation (my), and V the sedimentation rate 

(km/my):
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Porosity <j>0 = 0.50
Compaction constant X = 2.0 km
Conductivities

Kw = 0.6 W/m°C 
Kr = 2.4 W/m°C

Volume Specific Heat
pore fluid pew = 4.2x106 J/m3oC
basement p cR = 2.7x 10s J/m3oC

1 mz/sec = 3.15 x 107 km2/my

Table A - l . Initial parameters used in heat flow modeling.
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Sedimentation Rate = Hfecomp /  Age o f Crust 

The factor by which the heat flow reduced is the following,

z - [ V 0 a /2 (!O 'o \

V : s C ' ,  Complex Plane

<!s = (lbO  - 4i2erfcz)

V :  = x+iy [A. 12]

Thus:

where,

and

erfz = n~m ¥(1/2, z2)  [A. 13]

erfc z = 171/2 r (! /2 , z2)

r(l/2) = Vtt [A. 14]

erfz  = 2 /\/jc Je~( 0 2 dt [A. 15]

erfc z = 1 - erf z [A. 16]

erfc r  = 2 / Vtc e~(-)2 [A. 17]

/ erfc z = - z (  1 - er/fel + 0.5(7-' e r/c  zjj) [A. 18]

r  erfc z = -z /2 (i erfc z) + 0.25 (I - erfc z) [A. 19]

c. Cooling Plate Model:

I have attempt to fit the combined heat flow data o f  the Norwegian-Greenland 

Sea using the cooling plate model o f McKenzie (1978) (Figure A-4). In this model 

the lithosphere is assumed to be a slab o f  uniform thermal properties



3 0 8

PS- Cooling Curve

900 
800 

% 700
I ®
£  500
§  400
Z  300 co
®  200 

100

a g e  o f c ru s t  (my)

Figure A-4. Theoretical heat flow versus age. Cooling oceanic crust is modeled by 
PS-cooIing curve (Parsons and Sclater, 1977). The solid line represents a fit of the 
data to the cooling crust model o f McKenzie (1978) assuming a spreading velocity o f 
1 cm/yr, a thickness o f 60 km and basal temperature o f 1475°C. Both seafloor depth 
and heat flow vary with age to provide the main constraints on the thermal structure 
and evolution o f the oceanic lithospheric (Stein and Stein, 1992). In the plate tectonic 
cycle oceanic lithosphere cools as it spreads away from mid-ocean ridges,
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moving away from the ridge axis at a constant velocity. The accreting edge o f the 

slab and the base o f the slab are assumed to be an isotherm and the surface 

temperature is assumed to be an uniform colder temperature taken as zero. The 

lithosphere cools by conduction as it moves away from the mid-ocean ridge axis.

3. NUMERICAL MODELING

a. Pure Shear Lithospheric Extension:

Pure shear is defined by the initial width of the vertical region o f the 

Lithosphere thinning {Wo) and the rate o f separation of one side o f the rift from the 

other (Ur), the rate o f crustal thinning Wr(t) at any given time (Figure A-5a); after the 

initiation o f rifting is given by:

Wr(t) = W0+ Ur . t [A.20]

For this model, the horizontal gradient o f  horizontal velocity, {dU/dX) is constant 

across the width of the extending region and equal to the vertical gradient o f  vertical 

velocity, (dW/dZ). For the general model of the pure shear lithospheric extension, the 

thickness o f the crust within the rift at (/) is given by:

D(t) = Do exp [- (Ur /  Ub) hi (Ub t /W„+  I)] [A .21 ]

where ( D0) is the initial thickness of the crust and (Ufa) is the rate o f the extensional 

boundary extension. I f  the boundaries o f the zone of extension are fixed, Ub = 0.

Then the crustal thickness within the extending pure shear region will vary as 

exp(-Ur t /  Wo) or for extreme pure shear model {Ub = Ur ) and the thickness o f  the 

crust within the shearing region varies as {Ub . t f WQ + I)"*.
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Figure A-5a. Numerical modeling of the pure shear lithospheric extension; the initial 
rift width of the extending area is 28.8 km, and the total extension rate is 0.8 cm/yr 
during a 25 my time period.
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The 2-D equation o f advective and diffusive heat transport: 

dT/dt + U. BT/Bx + W. BT/Bz =k . (Bf /BX2 + d f / B Z 2)  [A.22]

is solved. In this case, (7) is the temperature in °C, (t) is the time in seconds, (k) is 

diffiisivity, (x) and (z) are horizontal and vertical directions, (u) and (v) are horizontal 

and vertical velocities. The boundary conditions for the temperatures are that 

T = 0 °C on the top boundary (z= 0 bn) and T = 1300 °C on the bottom boundary 

(r = 125 bn, see Table A-2). The temperature equation [A.22J is solved using a finite 

difference method. The values are calculated on a fixed Eulerian Grid representing 

the Lithosphere. The accurancy of the method was evaluated by repeating 

calculations at three grid cell spacings and examining the rate o f convergence. The 

smallest grid-spacing is used in the calculations, the distribution o f crustal thickness in 

the models is calculated analytically as a function o f position and time.

b. Simple Shear Lithospheric Extension:

For the simple shear model, the strain fields do not change with time but are 

affected by the separation rate (Buck etal,, 1988). Lithospheric simple shear 

extension models are inefficient at generated melts, they do not produce partial 

melting unless the plate separation rate is high or the shear zone has a steep dip, Heat 

flow and uplift increase with increasing rate o f extension and dip angle, because the 

thermal anomaly is distributed over a wide area.
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Model Physical Constants

Crustal Thickness 

Crustal Density at 0 °C 

Lithospheric Thickness 

Lithospheric Density at 0 °C 

Thermal Expansion Coefficient 

Thermal Conductivity 

Thermal Diffiisivity 

Surface Temperature 

Boundary Temperature

32 km 

2.8 g.cm'3 

125 km 

3.33 g.cm'3 

3.4x1 O'5 C '1 

3.2 Wm*1 C '1 

10-6 m 'V  

0°C  

1300 °C

Table A-2. Physical constants used in numerical modeling.
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Wo =  Do  / ("tan 6 ° + W ss)  [A.23]

If is the width o f the shear zone, and the dip o f the shear zone or 

detachment fault is (0°), then the initial crustal width W0 (Figure A-5b) is determined 

by the initial crustal thickness {Do) and detachment fault dip.

Illustrations of numerical modeling results for pure and simple-shear 

lithospheric extension are shown in Figures A-5a and A-5b. In these figures, the top 

panel shows the compensated topography (seafloor bathymetry) produced by the 

crustal subsidence component and the isostatic thermal uplift component. Observed 

surface heat flow and seafloor bathymetiy (topography) are two significant constraints 

imposed on this modeling.

The second panel shows the component o f the isostatic Airy subsidence 

caused by thinning o f the crust. The third panel shows the component o f  the Airy 

isostatic thermal uplift caused by heating o f the lithosphere. The fourth panel shows 

the synthetic heat flow curve determined by numerical modeling. The lower panel 

indicates the thermal structure of the lithosphere with isotherms superimposed. The 

crust is shown in light gray and the material moved from the asthenosphere is shown 

in dark gray. Temperature is assumed to remain at 0 °C at the surface of the 

extending crust and 1300°C at the bottom of the extending lithosphere (at 

approximately 125 km-depth).

Pure- and simple-shear numerical models produce different patterns o f 

topography, heat flow, and thermal structure within an extending region. For
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Simple Shear

StfTpWtr*ir mod*) WOffcm] • 30 C iintJlttiOJi*tt^fn) ■ 320
T jit*  (M y  ) .  3 5 1 A ngi* -  2 2 .0
CW icl (Kjt.> .  n j . j  Vvoafr lurifi) .  o j

Gnd d-mtmion* .  1 3 i i M

Topography

Crustal Subsidence
o.

■6 .

Therm al Uplift

Lithospheric Section

b

Figure A-5b. Numerical modeling of the simple shear lithospheric extension: this 
extension occurs along a detachment fault with a dipping angle o f 22° and a total 
extension rate o f 0.3 cm/yr.
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example, the pure-shear extension mode! is produced by a high extension rate and a 

narrow rift width. Upwelling asthenosphere (vertical heat flux) and melting are 

centered symmetrically under the extending region (Figure A-5a). With continued 

extension, the lithosphere generates a steady-state temperature structure, which is 

homogeneous everywhere below the mantle solidus. The simple-shear extending 

model is produced by a detachment fault geometry where there is a finite width of 

isostatic response. Lower crust is progressively stripped off the center of the 

extending zone (Figure A-5b). The extension rate and the dip angle of the 

detachment fault effect the amount and duration of heat input from the asthenosphere 

into the lithosphere.
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i T a b le  A-3 i

1 I 1............i
j HEAT FLOW
i
! W ater ! Obs.
S t# Latitude Longitude Depth : Hf Error
i °E m ■ mW/m2 (-/+)

!
Northern Nordaustlanc et Margin t

#16-11/371 j86o09.09, 22°09.92 3556 i 192 21
#15-11/370 85°56.23' 22°41.35' 5100 ! >1164
#14-11/370 85°53.84‘ 22°50.19' 4390 ! >885
#12-11/364 85°22.30' 26°02.75“ 3580 ! 86 4
#111-11/362 85°03.00’ 28°47.14‘ 4024 26 2
*1j1 82°47.70' 06°44.80' ! 92
*!2 82°30.10' 06°27.30' I 54
*!3 82°19.10’ 06°11.10’ ! 54 j
#7-11/310 82°01.34' 32°13.39’ 2925 ! 80 12
* 5 81°56.60' 05°32.30’ I 33.9
# '6-11/296 81°47.34' 31°30.14’ 2991 77 4
#; 5-11/287 81 °39.64' 30°48.73' 2698 91 1
#3-11/282 81 °35.82' 31°31.13' 1437 98 5
#:2-11/280 81 °34.46’ 31°38.47' 886 88 4

|Y18 81°33.00’ 29°22.52' 1512 109 65
i Y17 81°25.14' 23°17.89’ 509 61 9

#‘20-11/423 81 °19.51’ 15°17.06’ 2219 64 5
1It

Northwestern Svalbard Margin
|V4 80°28.99' 14°23.62' W 325 69 2
;Y6 82°00.14' 07°05.00’ W 3350 173 12

JY 8 81°24.20' 00°53.81’ 1596 130 10
Y9 81°06.46' 03°16.32' 820 148 10
Y10 80°47.18' 05°06.42' 682 133 8
Y16 80°16.44’ 07°05.08' 560 121 11

★ Jackson  e t al, (1984)
# Sundvor and Torp (1987)

Y: YMER (1980) |
V: V em a (Lanpseth a n d  Zielinski, 1974)

Table A-3, Heat flow data from the Norwegian-Greenland Sea.
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---------------------------------
Table A-3 Ccont.)

W ater Obs.
S t# Latitude Longitude Depth Hf Error

°N °E m mW/m2 f c y

Southern Yermak Plateau

• 68 80°22.15’ 07°42.82’ 688 125 6
67 80°24.73’ 08°14.86' 813 138 6
66 80°26.62' 08°49.29' 840 131 2

!es 80°28.87' 09°28.10’ 880 114 1
164 [80°32.78' 10°01.25' 813 104 6

Molloy - W estern Svalbard Margin

Y13 79°19.53’ 04°03.02' 2910 179 16
Y14 79°15.86' 05°11.33' 1750 120 14
:84 79°01.46' 05°01.81' 2184 115 1
[85 79°00.18’ 05°58.10‘ 1685 99 4
'86 79°00.97’ 07°00.02' 1290 103 3
142 78°49.67' 04°29.93' 2405 117 13
!41 78°49.92' 05°00.77' 2667 128 4
1-40 78°49.93' 05°30.08' 2578 93 11
39 78°50.28' 05°58.52' 2454 87 8
38 78°50.14’ 06°29.48' 1960 117 1
37 78°49.97' 07°00.53 1426 116 2

i.36 78°49.96' 07°30.93‘ 1142 107 4
i;35 78°50.00' 08°01.43' 1003 85 3
:33 78°44.95' 08°10.88' 897 65 4
34 78°45.55’ 08°01.02’ 978 122 4
12 78°43.81* D7°28.82' 1146 101 5

!C11 78°42.17' 06°58.54' 1412 114 1
10 78°41.83' 36°44.36' 1560 118 3

! / 19 78°40.96' D6°29.40' 1740 118 2
: Y15 78°48.00' 37°29.14f 1154 118 4
88 78°46.74‘ 35°55.76‘ 2410 108 1
89 ?8°41.77' 35°24.85' 2325 113 3
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Table A-3 (cant.)

Water Obs.
S t# Latitude Longitude Depth Hf Error

°N °E m mW/m2 (-/+)

! 24/84 78°33.05' 03°56.29‘ 2325 128 5
' 25/84 78°35.51‘ 04°29.75' 2369 138 2
'26/84 78*37.18' 05°01.68' 2332 156 14

' ;90 '78°26.57' 05°24.26' 1874 137 2
27/84 i78°38.10' 05°29.31' 2340 154 6

i

'91 78°28.35' 05°55.03‘ 1905 139 2 '
92 78°30.95‘ 06°22,33' 2303 125 1

194 78°32.38* 06°37.86' 2774 197 2
! 93 78°35.42' 07°07.07’ 1735 91 4
21/V-27 78°24‘ 07°25' 2919 131 5
F17A-B 78°20.28‘ 01 “27.711 1375 75-80 13
51 78°16.92’ 08°06.52' 2329 124 4
4/ 78°18.00' 08°29.82' 1870 101 4
3/ 78°17.27‘ 08°50.42' 1390 100 1
F1 78°01.50’ 08°54.05' 1327 114 5
F8 78°01.08' 09°18.49' 727 132 3
F14 78°00.53' 04°55.61' 2863 121 4
F5 78°00.48‘ 08°16.03' 2089 179 3
F2 78°00.30’ 09°09.24' 1000 94-166
F3 78°00.42' 09°19.70' 733 175 22
F11 78°00.21' 06°22.42’ 2037 180 17
F12 78°00.19’ 06°00.12’ 2350 158 6
F13 78o00.07’ 05°30.76' 2570 176 6
F16 i 78°00.00’ 04°00.13’ 3046 98 1
F4 |77059.98' 08°29.31' 1780 109 6
F6B i 77°59.96‘ 07°57.54' 2560 297 3
F6A 77°59.79' 07°57.10' 2560 446 4
F15 77°59.76' 04°30.03' 2745 108 2
F10 77°59.70' D6°45.07‘ 2396 233 1
F18 75°26.50' 14°14.20’ 620 22 9
F19 75°25.93’ 13°59.30' 860 140 3
F22 ;75°25.61' 13°48.56' 1014 84 8
F23 !75°23.96’ 13°38.93’ 1165 81 4
F24 !75°23.07' |13°23.84' 1344 84 1
F38 [75°22.90' |i3°14.37' 1448 94

- 4 —



Table A-3 (cont.)

S t# L a t i tu d e Longitude Depth Hf Error
°N °E m mW/m2 {-/+)

F39 75°21.73' 13°01.86' 1586 92 2
F26 75°21.01’ 12°53.57’ 1700 82 4
F27 75°19.88' 12°37.80' 1858 82 3
F36 75°18.90’ 12°18.30' 2026 65 2
F2S 75°16.36' 11°59.50' 2169 64 2
F29 75°13.43' 11°21.18' 2358 96 4
F30 75°10.06' 10°43.27' 2460 94 5
F31 75°06.76’ 10°09.76' 2506 126 7
F32 75°03.40’ 09°32.64’ 2595 176 6
F34A 74°57.51‘ 08°43.16' 2642 264 11
F34B 74°57.44‘ 08°42.97' 2642 258 10

Senja - Vering - Jan A ayen Line
DHF44 72°05.54’ 13°36.22 1460 65 2
DHF50 72° 18.28’ 14°45.8~9' 965 59 2
DHF55 72°25.60' 15°29.45’ 607 48 10
DHF52 72°27.99' 15°42.84’ 505 38 4
DHF40 72°24.99' 15°31.12' 620 84 6
DHF41 72°21.19’ 15°00.56‘ 731 121 6
DHF42 72°14.98' 14°31,27’ 1065 58 6
DHF43 72° 10.52' 14°03.61’ 1225 63 3
53/V-23 72°04' 1°24' 2360 268 9
DHF45 72°00.43' 13°07.43' 1650 71 2
1O/V-27 72°11’ 08°35’ 2537 84 7
DHF46 71°55.04' 12°40.54' 1842 64 2
DHF48 71°49.83' 12°13.25' 1995 71 2
DHF49 71°43.84' 11°35.55* 2169 62 1
54/V-23 70°59' 06°41' 3043 115 8
145/V-29 70°54' 04°55' W 1939 144 7
113/V-30 7 o ° ir 31°49' W 2905 108 8
114/V-30 □9°39' D2°30’ 3210 76 10
37/86 39° 12.44’ 35°57.411 V 3030 75 2
DHF75 38°27.34' D4°33.27' 2358 73 3
DHF74 f38°18.80' )4°31.58' 2198 67 1
32/V-28 £37°53' ()1°56' W 3376 113 8.
DHF69 57049.84’ {)5°18.85' 1341 72 2
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3 . V E L O C IT Y  S T R U C T U R E

1 1

i \ T ab le  A -4a
VELOCITY STRUCTURE IN THE SOUTHER N N G S

I W ater
Long D epth V1 h 1 V2 h2 V3 h3 V4

° E m km/s km km/s km km/s km km/s
1
j
ip

02°28' 3180 1.9 1.06 5.37 3.01 6.94
18°10' 280 1.88 0.87 2.26
07°16‘ 2790 2.56 1.78 4.38
08°41' 2510 2.45 3.16 5.1 2.03 6.05
13°50' 2350 2 2.08 3.43 2.46
03°21 ’ ! 1280 1.91 0.56 5.2
03°59' ! 1210 2.12 0.14
03°10' ! 1480 2.2 2.06 3.64 1.82 4.43
03°57' | 1550 2 0.99 5.35
06°09' : 1030 2.04 i 2.39 3.62 1.38 4.32
08°56' i 300 2 I 0.65 2.63
08°27‘ 310 2.14 1 1.39 3.25
06°15' ; 1230 1.75 | 0.34
06°39’ : 2980 1.56 ; 0 .64
10°42' 2600 2.13 : 1.28
00°37‘ 3150 2.2 ' 0 .77 !

Table A-4. Velocity structure in the Norwegian-Greenland Sea.
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_______ _

------ --- ------ | J___
T able  A-4b

----------
i

----------

VELOCITY STRUCTURE IN NGS
A rea A verage  v e lo c itie s  (km /s) S o u rc e s

V' | V2 V3

' |
i

Norwegian Shelf {62°-65°N) 2.2 3.6 5.2 (Talwani&Eldholm, 977)

Barents Shelf 2.2 3.6 (Eldholm&Ewing, 1971)

Voring Plateau 2.2 3.4 4.4 (Talwani&Eldholm, 1972)

Nansen Ridge Flanks 1.8 8.2 (Kristoffersen et al., 1982)
1 (Jackson et al. , 1984)

O D P LEG 138 SITES
S t # Lat Long ii A ge

°N °E i my
j

338 6 7 ° 4 7 . i r 05°23.60' Outer Vering Plateau (49-53)
342 67°57.04' 04°56.02' Outer Voring Plateau (44 my)
343 68°42.91 ' 05°45.73' Base of the Voring Plateau (49-53)

(Talwani&Eldholm, 1977)
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Figure A-6. Location of published seismic stations and Lamont-Doherty sonobuoy 
profiles in the southern Norwegian-Greenland Sea (see also Table 5-3).
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