A Prism-Based Optical Readout Method for MEMS Bimaterial Infrared Sensors


Adiyan U., CIVITCI F., Ferhanoğlu O., Torun H., Urey H.

IEEE PHOTONICS TECHNOLOGY LETTERS, cilt.28, sa.17, ss.1866-1869, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 28 Sayı: 17
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1109/lpt.2016.2574123
  • Dergi Adı: IEEE PHOTONICS TECHNOLOGY LETTERS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1866-1869
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

This letter demonstrates a novel prism-based optical-readout, which uses a single prism to detect the incoming TM polarized wave just below the critical angle. The method is used with a 35-mu m-pixel pitch MEMS thermal sensor, whose inclination angle changes with the absorbed infrared (IR) radiation that results in an increase in the reflectivity at the prism's glass-air interface. We compared this approach with the conventional knife-edge method. Noise equivalent temperature difference for a single sensor was measured as 200 mK for knife-edge method, and 154 mK for the proposed critical angle approach. Our approach shows a significant improvement for the sensitivity of the IR sensor. Both methods utilize an AC-coupled readout method for a single MEMS pixel using a photodetector, which responds only to changes in the scene. This method can be scaled to achieve smart pixel cameras for read sensor arrays with low-noise and high-dynamic range.