HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, vol.50, no.6, pp.1609-1619, 2021 (Journal Indexed in SCI Expanded)
We characterize disjoint hypercyclic and supercyclic tuples of unilateral Rolewicz-type operators on and , , which are a generalization of the unilateral backward shift operator. We show that disjoint hypercyclicity and disjoint supercyclicity are equivalent among a subfamily of these operators and disjoint hypercyclic unilateral Rolewicz-type operators always satisfy the Disjoint Hypercyclicity Criterion. We also characterize simultaneous hypercyclic unilateral Rolewicz-type operators on and , .