Effect of chemical and biological treatment on COD fingerprints of textile wastewaters


Dulekgurgen E., Dogruel S., ORHON D.

WATER SCIENCE AND TECHNOLOGY, cilt.55, sa.10, ss.277-287, 2007 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 55 Sayı: 10
  • Basım Tarihi: 2007
  • Doi Numarası: 10.2166/wst.2007.332
  • Dergi Adı: WATER SCIENCE AND TECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.277-287
  • Anahtar Kelimeler: biological treatment, chemical treatment, COD fractionation, particle size distribution, textile wastewater, ultrafiltration, TANNERY WASTEWATERS, FRACTIONS
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

Particle size distribution (PSD) via sequential filtration/ultrafiltration was used as the tool for COD fractionation and colour profiling of textile wastewaters before and after treatment. Profiles prior to treatment suggested PSD-based COD fingerprints characteristic for the influents. Treatment efficiencies were determined via comparing the profiles of the effluents from chemical- and biological-treatment to those of the corresponding influents. COD fingerprints of the wastewaters from the textile plants, applying different treatment alternatives, were different especially at the upper size range; yet profiles after treatment were similar, with the soluble fraction (< 2 nm) being almost the only apparent one. Half of the overall COD-removal via chemical treatment was at the particulate- and upper colloidal-ranges, revealing that this alternative was effective at higher ranges, but not at the soluble fraction. In contrast, biological treatment was effective at both ends of size distribution, with total removal at the particulate range and 50% elimination at the soluble portion. Overall colour content and PSD-based colour profiles of the influents were also different. Chemical treatment was successful in removing colour originating from the entire colloidal range, but was not efficient at the soluble fraction. Conversely, colour removal efficiency of biological treatment was moderate throughout the entire size spectrum.