New Chromenylium-cyanine based dual channel chemosensors for copper and hypochlorite sensing


KARAOĞLU K., Kaya K., Yılmaz İ.

DYES AND PIGMENTS, cilt.180, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 180
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.dyepig.2020.108445
  • Dergi Adı: DYES AND PIGMENTS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Anahtar Kelimeler: Hypochlorite sensing, Near-IR chemosensor, Chromenylium-cyanine, INFRARED FLUORESCENT-PROBE, AQUEOUS-MEDIA, CU2+, ACID, CHEMODOSIMETER, DESIGN, HG2+
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

Based on a change in optical properties of chromenylium-cyanine Schiff base derivatives (5a-c), a series of colorimetric dual sensors have been for the first time designed, synthesized and characterized to monitor Cu2+ and OCl- ions at near-IR (NIR) region in aqueous samples. The colorimetric responses of the sensors toward Cu2+ and OCI- ions were evaluated for aqueous samples within a series of the competitive anions and cations at pH 7.2. The sensors detected Cu2+ selectively via Cu2+-promoted spimcyclic ring-opening reaction while photophysical change during OCl- recognition is due to the spimcyclic ring-opening reaction by coordination Cu2+ ion generated from reaction between Cu+ and hypochlorite ions in analysis media. Mass and IR data suggest a 1:1 complex formation between Cu2+ and the receptor via phenolic O atom, N atom from Schiff base and O atom from spirocycle form. The detection limits of the dual sensors (5a-c) were determined to be 3.3 x 10(-8) M, 1.93 x 10(-8) M and 2.36 x 10(-8) for Cu2+ determination and 2.83 x 10(-8) M, 2.10 x 10(-8) M and 2.60 x 10(-8) M for OCl- determination, indicating a high sensitivity of the sensors for Cu2+ and OCl- detection Additionally, we present the first single-crystal structure analysis of a chromenylium-cyanine Schiff base in this study.