Chronic impact of tetracycline on nitrification kinetics and the activity of enriched nitrifying microbial culture


KATIPOGLU-YAZAN T., MERLIN C., PONS M., Ubay-Cokgor E., Orhon D.

WATER RESEARCH, cilt.72, ss.227-238, 2015 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 72
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1016/j.watres.2014.12.041
  • Dergi Adı: WATER RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.227-238
  • Anahtar Kelimeler: Nitrification, Enriched microbial culture, Respirometry, Modeling, Gene activity, DIFFERENT SLUDGE AGES, MESSENGER-RNA LEVELS, 16S RIBOSOMAL-RNA, ACTIVATED-SLUDGE, BIODEGRADATION, ERYTHROMYCIN, QUANTIFICATION, TRANSCRIPTION, BACTERIA, PEPTONE
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

This study evaluated the chronic impact of tetracycline on biomass with enriched nitrifying community sustained in a lab-scale activated sludge system. For this purpose, a fill and draw reactor fed with 100 mg COD/L of peptone mixture and 50 mg N/L of ammonia was sustained at a sludge age of 15 days. At steady-state, the reactor operation was continued with a daily tetracycline dosing of 50 mg/L for more than 40 days, with periodic monitoring of the microbial composition, the nitrifying bacteria abundance, as well as the amoA and 16S TRNA gene activity, using molecular techniques. Changes in the kinetics of nitrification were quantified by modelling concentration profiles of major nitrogen fractions and oxygen uptake rate profiles derived from parallel batch experiments. Activated sludge modeling results indicated inhibitory impact of tetracycline on the growth of nitriflers with a significant increase of the half saturation coefficients in corresponding rate equations. Tetracycline also inactivated biomass components of the enriched culture at a gradually increasing rate with time of exposure, leading to total collapse of nitrification. Molecular analyses revealed significant changes in the composition of the microbial community throughout the observation period. They also showed that continuous exposure to tetracycline inflicted significant reduction in amoA mRNA and 16S rRNA levels directly affecting nitrification. The chronic impact was much more pronounced on the ammonia oxidizing bacteria (AOB) community. These observations explained the basis of numerical changes identified in the growth kinetics of nitrifiers under stress conditions. (C) 2014 Elsevier Ltd. All rights reserved.