Facile synthesis of nanogels modified Fe3O4@Ag NPs for the efficient adsorption of bovine & human serum albumin


Shah M. T., Alveroğlu Durucu E.

MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, cilt.118, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 118
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1016/j.msec.2020.111390
  • Dergi Adı: MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Biotechnology Research Abstracts, Chemical Abstracts Core, Communication Abstracts, Compendex, EMBASE, INSPEC, MEDLINE, Metadex, Civil Engineering Abstracts
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

This article describes the preparation of Fe3O4 nanoparticles and its decoration with a layer of tiny Ag nano particles at room temperature. Later on, the synthesized Fe3O4@Ag heterostructures were protected with Silica and finally modified with Poly(N-isopropyl acrylamide) (PNIPA) nanogels through post-synthesis method to get multifunctional (superparamagnetic, plasmonic and thermosensitive) nanocomposite. The structural characteristics of Fe3O4@Ag@SiO2-PNIPA nanogels composite were investigated by instrumental techniques such as Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Vibrating Sample Magnetometer (VSM). The average particles diameter was calculated from XRD data through Scherer formula and it was found as 14 nm. The Fe3O4@Ag@SiO2-PNIPA polymeric composites were assessed for the adsorption of Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) proteins from aqueous media. The adsorption data of BSA and HSA were best explained by Langmuir isotherm model with maximum adsorption capacities of 322 and 166 (mg/g) respectively showing mono-layer adsorption. The kinetics data for both the proteins were fairly interpreted by pseudo-second-order model. Thermodynamics studies revealed that the adsorption phenomena of BSA and HSA on the surface of Fe3O4@Ag@SiO2-PNIPA nanogels composite are spontaneous and exothermic.