EXERCISES 6-MULTIPLE RESERVOIR SYSTEMS

EXERCISE 1: Oil flows from reservoir A to reservoir D as shown in the figure. Discharge, Q , of the oil is given as $25 \mathrm{I} / \mathrm{s}$. The pipe diameter, D , is constant for all of the system and is equal to 10 cm . The length of the pipes $A B, L_{A B}$, and $C D, L_{c D}$, are 20 m and 30 m , respectively. By neglecting all of the minor losses; ($\rho_{\text {oil }}=0.90 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{v}=10^{-3} \mathrm{~m}^{2} / \mathrm{s}$)

- Determine the regime of the flow.
- Compute the power that must be given into the system by the pump (Efficiency coefficient of the pump, η, is 0.70).
- Draw the energy grade line of the system.

EXERCISE 2: Elevations and flow directions are shown in the figure on the right for water flow in a multiple reservoir system. The discharge of the pipe FG, Qfg, is $40 \mathrm{l} / \mathrm{s}$. By neglecting all of the minor losses and assuming that the water depths in the reservoirs remain constant;

- Determine the discharge of all pipes.
- Determine the water elevation in the reservoir H.
- Compute the power of the pump (Efficiency coefficient of the pump, η, is 0.70).
- Draw the energy grade line of the system.

EXERCISE 3: Elevations and flow directions are shown in the figure on the right for water flow in a multiple reservoir system.

The discharge of the pipe $B D, Q_{B D}$, is $100 \mathrm{I} / \mathrm{s}$. By neglecting all of the minor losses and assuming that the water depths in the reservoirs remain constant;

Pipe	L (m)	D (mm)	\mathbf{f}
AB	1000	300	
DB	1500	300	0.02
DC	2000	400	

- Compute the discharges of the pipes AD and DC.
- Determine the flow directions.
- Compute the pressure at D.
- Determine the water elevation in the reservoir C .
- Draw the energy grade line of the system.

EXERCISE 4: The system shown in the figure is feed by the reservoir A. The discharge of the pipe $A D, Q_{A D}$, is $170 \mathrm{l} / \mathrm{s}$. The water elevations of the reservoirs A and C are given in the figure; the ground elevation of the points D and E are 65 m and 60 m , respectively. By neglecting all of the minor losses and assuming that the water depths in the reservoirs remain constant;

- Determine the water elevation in the reservoir B.
- Compute the piezometric elevations of the points D and E.
- Compute the pressures at points D and E.
- Draw the energy grade line.

Pipe	L (m)	D (mm)	f
AD	500	400	
D1E	1000	300	
D2E	2000	300	
D3E	1000	300	
EB	600	250	
EC	800	200	

SOLUTION 1:

a) Süreklilik denkleminden

$$
\mathbf{V}=\frac{\mathbf{Q}}{\mathbf{A}}=\frac{0.025}{\pi 0.1^{2}} \mathbf{x} 4=3.183 \mathrm{~m}^{3} / \mathrm{s}
$$

Boru içerisindeki akımın rejimi:
$\mathrm{N}_{\mathrm{Re}}=\frac{\mathbf{V D}}{\boldsymbol{v}}=\frac{3.183 \mathbf{x} 0.1}{10^{-3}}=318.3<2000$ 'akım laminer'
b) $\mathbf{h}_{\mathbf{k}_{A B}}=\mathbf{f} \frac{\mathbf{L}_{\mathrm{AB}}}{\mathbf{D}} \frac{\mathbf{V}^{2}}{2 \mathbf{g}}=\left(\frac{64}{\mathbf{N}_{\mathrm{Re}}}\right) \frac{\mathbf{L}_{\mathrm{AB}}}{\mathbf{D}} \frac{\mathbf{V}^{2}}{2 \mathbf{g}}=20.76 \mathrm{~m}$
$\mathbf{h}_{\mathbf{k}_{\mathrm{CD}}}=\mathbf{f} \frac{\mathbf{L}_{\mathrm{CD}}}{\mathbf{D}} \frac{\mathbf{V}^{2}}{2 \mathbf{g}}=\left(\frac{64}{\mathbf{N}_{\mathrm{Re}}}\right) \frac{\mathbf{L}_{\mathbf{C D}}}{\mathbf{D}} \frac{\mathbf{V}^{2}}{2 \mathbf{g}}=31.15 \mathrm{~m}$
Pompanın sisteme vereceği enerji yüksekliği $=\left[\left(H_{D}+h k_{C D}\right)-\left(H_{A}-h_{A B}\right)\right]$

$$
\text { Hpompa }=[(60+31.15)-(50-20.76)]=61.91 \mathrm{~m}
$$

Pompanın şebekeden çekeceği güç $=\mathrm{N}_{\text {nominal }}=\frac{\gamma \mathbf{Q H}_{\text {pompa }}}{\eta}=\underline{1990} \mathrm{~kg} . \mathrm{m} / \mathrm{s}$

$$
\begin{aligned}
& \mathrm{N}_{\text {nominal }}=9.81 \times 1990=19521 \mathrm{Watt} \\
& \mathrm{~N}_{\text {nominal }}=1990 / 75=26.53 \mathrm{BB} .
\end{aligned}
$$

Pompanın gerçek gücü: $\mathrm{N}_{\text {gerçek }}=\gamma \mathbf{Q H}_{\text {pompa }}=900 \times 0.025 \times 61.91=\underline{1393} \mathrm{~kg} . \mathrm{m} / \mathrm{s}$

SOLUTION 2:

$h_{k A B}=H_{A}-H_{B}=10 \mathrm{~m}=0.02 \frac{500}{0.2} \frac{\mathbf{V}_{\mathbf{A B}}^{2}}{2 \mathbf{g}} \quad \rightarrow \quad \mathrm{~V}_{\mathrm{AB}}=1.981 \mathrm{~m} / \mathrm{s} ; Q_{A B}=0.0622 \mathrm{~m}^{3} / \mathrm{s}$
$h_{\mathrm{KCD}}=\mathrm{H}_{\mathrm{C}}-\mathrm{H}_{\mathrm{D}}=40-37=3 \mathrm{~m}=0.02 \frac{500}{0.15} \frac{\mathbf{V}_{\mathbf{C D}}^{2}}{2 \mathbf{g}} \rightarrow \mathrm{~V}_{\mathrm{CD}}=0.94 \mathrm{~m} / \mathrm{s} \quad ; \mathrm{Q}_{\mathrm{CD}}=\mathrm{V}_{\mathrm{CD}} . \mathrm{A}_{\mathrm{CD}}=0.017 \mathrm{~m}^{3} / \mathrm{s}$
$Q_{A B}=Q_{c D}+Q_{C F} \quad \rightarrow \quad Q_{C F}=Q_{A B}-Q_{C D}=0.062-0.017=0.045 \mathrm{~m}^{3} / \mathrm{s}$
$\mathbf{V}_{\mathbf{C F}}=\frac{\mathbf{Q}_{\mathbf{C F}}}{\mathbf{A}_{\mathbf{C F}}}=\frac{4 \mathbf{Q}_{\mathbf{C F}}}{\pi \mathbf{D}_{\mathbf{C F}}^{2}}=\frac{4 \mathbf{x} 0.045}{\pi 0.2^{2}}=1.43 \mathrm{~m} / \mathrm{s}$
$\mathbf{h}_{\mathbf{k}_{\text {CF }}}=0.02 \frac{500}{0.2} \frac{1.43^{2}}{19.62}=5.21 \mathrm{~m}$
$\left(h_{k}\right)_{A E F}=\left(h_{k}\right)_{A B}+\left(h_{k}\right)_{C F}=10+5.21=15.21 \mathrm{~m}=0.02 \frac{1000}{0.2} \frac{\mathbf{V}_{\text {AEF }}^{2}}{19.62}$
$V_{\text {AEF }}=1.73 \mathrm{~m} / \mathrm{s}$
$Q_{\text {AEF }}=\mathrm{V}_{\text {AEF }} . \mathrm{A}_{\text {AEF }}=0.054 \mathrm{~m}^{3} / \mathrm{s}$
$H_{\text {GIRIS }}=H_{A}-\left(h_{k}\right)_{\text {AEF }}=50-15.21=34.79 \mathrm{~m}$
$Q_{\text {aef }}+Q_{\text {cF }}=Q_{\text {fg }}+Q_{\text {fh }}$
$Q_{\text {fh }}=Q_{\text {AEF }}+Q_{\text {cF }}-Q_{\text {fg }}=0.054+0.045-0.045=0.059 \mathrm{~m}^{3} / \mathrm{s}$
$\mathbf{V}_{\mathbf{F G}}=\frac{\mathbf{Q}_{\mathbf{F G}}}{\mathbf{A}_{\mathbf{F G}}}=\frac{4 \mathbf{Q}_{\mathbf{F G}}}{\pi \mathbf{D}_{\mathbf{F G}}^{2}}=\frac{4 \mathbf{x} 0.04}{\pi 0.2^{2}}=1.24 \mathrm{~m} / \mathrm{s}$
$\mathbf{h}_{\mathbf{k}_{\mathrm{FG}}}=0.02 \frac{1500}{0.2} \frac{1.27^{2}}{19.62}=12.33 \mathrm{~m}$
$\mathbf{V}_{\mathbf{F H}}=\frac{\mathbf{Q}_{\mathbf{F H}}}{\mathbf{A}_{\mathbf{F H}}}=\frac{4 \mathbf{Q}_{\mathbf{F H}}}{\pi \mathbf{D}_{\mathbf{F H}}^{2}}=\frac{4 \mathbf{x} 0.059}{\pi 0.3^{2}}=0.83 \mathrm{~m} / \mathrm{s}$
$\mathbf{h}_{\mathbf{k}_{\mathrm{FH}}}=0.02 \frac{2000}{0.3} \frac{0.83^{2}}{19.62}=4.68 \mathrm{~m}$
$H_{H}=H_{G}-\left(h_{k}\right)_{F G}-\left(h_{k}\right)_{F H}=80+12.33-4.68=87.65 \mathrm{~m}$
$\left(H_{F}\right)_{\text {cikiss }}=H_{H}+\left(h_{k}\right)_{F H}=87.65+4.68=92.33 \mathrm{~m}$
$H_{\text {Pompa }}=\left(\mathrm{H}_{\mathrm{F}}\right)_{\mathrm{ClikIS}}-\left(\mathrm{H}_{\mathrm{F}}\right)_{\mathrm{GIRIS}}=92.33-34.79=57.54 \mathrm{~m}$

$$
\begin{aligned}
\mathbf{N}_{\text {Pompa }} & =\frac{\gamma \mathbf{Q} H_{\text {Pompa }}}{\eta .75}=\frac{1000 \mathbf{x}(0.054+0.045) \mathbf{x} 57.54}{0.70 \mathbf{x} 75}=108.5 \mathrm{BB} \\
& =8137.8 \mathrm{~kg} \mathrm{c}_{\mathrm{t}} \mathrm{~m} / \mathbf{s} \\
& =79.8 \mathbf{K w}
\end{aligned}
$$

SOLUTION 3:
$V_{B D}=\frac{Q_{B D}}{A_{B D}}=\frac{4 Q_{B D}}{\pi D_{B D}^{2}}=\frac{4 x 0.100}{\pi 0.3^{2}}=1.41 \mathrm{~m} / \mathrm{s}$
$h_{k_{B D}}=\frac{f}{D} \frac{V_{B D}^{2}}{2 g} L=\frac{0.02}{0.3} \frac{1.41^{2}}{2 g} 1500=10.13 \mathrm{~m}$
$H_{D}=100-10.13=89.97 \mathrm{~m}$
$h_{k A D}=95-89.97=5.13 \mathrm{~m}$
$h_{k_{A D}}=\frac{f}{D} \frac{V_{A D}^{2}}{2 g} L$
$5.13=\frac{0.02}{0.3} \frac{V_{A D}^{2}}{2 g} 1000$
$V_{A D}=1.23 \mathrm{~m} / \mathrm{s}$
$Q_{A D}=V_{A D} \cdot A_{A D}=1.23 \cdot \frac{\pi D_{A D}^{2}}{4}=0.087 \mathrm{~m}^{3} / \mathrm{s}$
$Q_{D C}=Q_{A D}+Q_{B D}=0.187 \mathrm{~m}^{3} / \mathrm{s}$
$V_{D C}=\frac{Q_{D C}}{A_{D C}}=\frac{4 Q_{D C}}{\pi D_{D C}^{2}}=\frac{4 x 0.187}{\pi 0.4^{2}}=1.49 \mathrm{~m} / \mathrm{s}$
$h_{k_{D C}}=\frac{f}{D} \frac{V_{D C}^{2}}{2 g} L=\frac{0.02}{0.4} \frac{1.49^{2}}{2 g} 2000=11.31 \mathrm{~m}$
$\mathrm{H}_{\mathrm{C}}=89.87-11.31=78.56 \mathrm{~m}$

SOLUTION 4:

$$
\begin{aligned}
& V_{A D}=\frac{Q_{A D}}{A_{A D}}=\frac{4 Q_{A D}}{\pi D_{A D}^{2}}=\frac{4 x 0.170}{\pi 0.4^{2}}=1.35 \mathrm{~m} / \mathrm{s} \\
& h_{k_{A D}}=\frac{f}{D} \frac{V_{A D}^{2}}{2 g} L=\frac{0.03}{0.4} \frac{1.35^{2}}{2 g} 500=3.48 \mathrm{~m} \\
& \mathrm{H}_{D}=100-3.48=96.52 \mathrm{~m} \\
& h_{k_{D E 1}}=h_{k_{D E 2}}=h_{k_{D E 3}} \\
& \frac{f}{D} \frac{V_{D E 1}^{2}}{2 g} L=\frac{f}{D} \frac{V_{D E 2}^{2}}{2 g} L=\frac{f}{D} \frac{V_{D E 3}^{2}}{2 g} L \\
& V_{D E 1}^{2} * 1000=V_{D E 1}^{2} * 2000=V_{D E 1}^{2} * 1000 \\
& V_{D E 1}=\sqrt{2} V_{D E 2}=V_{D E 3} \\
& Q_{A D}=Q_{D E 1}+Q_{D E 2}+Q_{D E 3} \\
& 0.170=V_{D E 1} \cdot \frac{\pi 0.3^{2}}{4}+V_{D E 2} \cdot \frac{\pi 0.3^{2}}{4}+V_{D E 3} \cdot \frac{\pi 0.3^{2}}{4} \\
& 2.707 V_{D E 1}=\frac{4 * 0.170}{\pi 0.3^{2}} \\
& V_{D E 1}=0.89 \mathrm{~m} / \mathrm{s} \\
& V_{D E 2}=0.63 \mathrm{~m} / \mathrm{s} \\
& V_{D E 3}=0.89 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
h_{k_{D E}}=\frac{f}{D} \frac{V_{D E}^{2}}{2 g} L=\frac{0.03}{0.3} \frac{0.89^{2}}{2 g} 1000=4.04 \mathrm{~m}
$$

$$
\mathrm{H}_{\mathrm{E}}=96.52-4.04=92.48 \mathrm{~m}
$$

$h_{k_{E C}}=92.48-84=8.48 \mathrm{~m}$
$8.48=\frac{f}{D} \frac{V_{E C}^{2}}{2 g} L=\frac{0.03}{0.2} \frac{V_{E C}^{2}}{2 g} 800$
$V_{E C}=1.18 \mathrm{~m} / \mathrm{s}$
$Q_{E C}=1.18 \cdot \frac{\pi 0.2^{2}}{4}=0.037 \mathrm{~m}^{3} / \mathrm{s}$
$Q_{E B}=0.170-0.037=0.133 \mathrm{~m}^{3} / \mathrm{s}$
$V_{E B}=\frac{4^{*} 0.133}{\pi 0.25^{2}}=2.71 \mathrm{~m} / \mathrm{s}$

$h_{k_{E B}}=\frac{f}{D} \frac{V_{E B}^{2}}{2 g} L=\frac{0.03}{0.25} \frac{2.71^{2}}{2 g} 600=26.95 \mathrm{~m}$
$\mathrm{H}_{\mathrm{B}}=92.48-26.95=65.53 \mathrm{~m}$

