Glacier Velocity Monitoring by Maximum Likelihood Texture Tracking


Creative Commons License

Erten E. , REIGBER A., HELLWICH O., PRATS P.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, cilt.47, sa.2, ss.394-405, 2009 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 47 Konu: 2
  • Basım Tarihi: 2009
  • Doi Numarası: 10.1109/tgrs.2008.2009932
  • Dergi Adı: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
  • Sayfa Sayıları: ss.394-405

Özet

The performance of a tracking algorithm considering remotely sensed data strongly, depends on a correct statistical description of the data, i.e., its noise model. The objective of this paper is to introduce a new intensity, tracking algorithm for synthetic aperture radar (SAR) data, considering its multiplicative speckle/noise model. The proposed tracking algorithm is discussed regarding the measurement of glacier velocities. Glacier monitoring exhibits complex spatial and temporal dynamics including snowfall, melting, and ice flows at a variety, of spatial and temporal scales. Due to these complex characteristics, most traditional methods based on SAR suffer from speckle decorrelation that results in a low signal-to-noise ratio. The proposed tracking technique ill]proves the accuracy of the classical intensity, tracking technique by making use of the temporal speckle structure. Even though a new intensity-based matching algorithm is proposed, particularly for incoherent data sets, the analysis of the proposed technique was also performed for correlated data sets. As it is demonstrated, the velocity monitoring can he continuously performed by using the maximum likelihood (NIL) texture tracking without any assumption concerning the correlation of the data set. The NIL texture tracking approach was tested on ENVISAT-ASAR data acquired during summer 2004 over the Inyltshik glacier in Kyrgyzstan, representing line of the largest alpine glacier systems of the world. It will lie demonstrated that the proposed technique is capable of robustly and precisely, detecting the surface velocity field and velocity changes in time.