Patent value analysis using support vector machines

Ercan S., Kayakutlu G.

SOFT COMPUTING, vol.18, no.2, pp.313-328, 2014 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 18 Issue: 2
  • Publication Date: 2014
  • Doi Number: 10.1007/s00500-013-1059-x
  • Journal Name: SOFT COMPUTING
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.313-328
  • Istanbul Technical University Affiliated: Yes


Receiving patents or licenses is an inevitable act of research in order to protect new ideas leading innovation. Request for patents has increased exponentially in order to legalize the intellectual property. Measuring economical value of each patent has been widely studied in the literature. Majority of the research in this field is focused on the patent driver prospect handled for the patent offices. There are a variety of criteria affecting decisions on each patent right; and predicting the possibility of grant may help the researchers to take some precautions. Objective of this study is to propose a robust model to determine if the appeal has a chance of approval. A case study is run on the patents that are accepted and rejected in home appliance industry to construct an intelligent classification model. The support vector machine, Back-Propagation Network and Bayes classification methods are compared on the proposed model. The proposed model in this study will help the decision makers to predict whether the patent appeal will be accepted. The study is unique with the approach that helps the candidate patent owners.