Energy landscape of LeuT from molecular simulations


Creative Commons License

Gur M. , ZOMOT E., CHENG M. H. , BAHAR I.

JOURNAL OF CHEMICAL PHYSICS, cilt.143, 2015 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 143 Konu: 24
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1063/1.4936133
  • Dergi Adı: JOURNAL OF CHEMICAL PHYSICS

Özet

The bacterial sodium-coupled leucine transporter (LeuT) has been broadly used as a structural model for understanding the structure-dynamics-function of mammalian neurotransmitter transporters as well as other solute carriers that share the same fold (LeuT fold), as the first member of the family crystallographically resolved in multiple states: outward-facing open, outward-facing occluded, and inward-facing open. Yet, a complete picture of the energy landscape of (sub) states visited along the LeuT transport cycle has been elusive. In an attempt to visualize the conformational spectrum of LeuT, we performed extensive simulations of LeuT dimer dynamics in the presence of substrate (Ala or Leu) and co-transported Na+ ions, in explicit membrane and water. We used both conventional molecular dynamics (MD) simulations (with Anton supercomputing machine) and a recently introduced method, collective MD, that takes advantage of collective modes of motions predicted by the anisotropic network model. Free energy landscapes constructed based on similar to 40 mu s trajectories reveal multiple substates occluded to the extracellular (EC) and/or intracellular (IC) media, varying in the levels of exposure of LeuT to EC or IC vestibules. The IC-facing transmembrane (TM) helical segment TM1a shows an opening, albeit to a smaller extent and in a slightly different direction than that observed in the inward-facing open crystal structure. The study provides insights into the spectrum of conformational substates and paths accessible to LeuT and highlights the differences between Ala-and Leu-bound substates. (C) 2015 AIP Publishing LLC.