Selection of PolSAR Observables for Crop Biophysical Variable Estimation With Global Sensitivity Analysis

Creative Commons License

Erten E., Taşkın Kaya G., Lopez-Sanchez J. M.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, vol.16, no.5, pp.766-770, 2019 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 16 Issue: 5
  • Publication Date: 2019
  • Doi Number: 10.1109/lgrs.2019.2891953
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.766-770
  • Keywords: Agriculture, global sensitivity analysis (GSA), polarimetry, Radarsat-2, synthetic aperture radar
  • Istanbul Technical University Affiliated: Yes


The role of global sensitivity analysis (GSA) is to quantify and rank the most influential features for biophysical variable estimation. In this letter, an approximation model, called high-dimensional model representation (HDMR), is utilized to develop a regression method in conjunction with a GSA in the context of determining key input drivers in the estimation of crop biophysical variables from polarimetric synthetic aperture radar data. A multitemporal Radarsat-2 data set is used for the retrieval of three biophysical variables of barley: leaf area index, normalized difference vegetation index, and Biologische Bundesanstalt, Bundessortenamt and CHemische Industrie stage. The HDMR technique is first adopted to estimate a regression model with all available polarimetric features for each biophysical parameter, and sensitivity indices of each feature are then derived to explain the original space with a smaller number of features in which a final regression model is established. To evaluate the applicability of this methodology, root-mean square and coefficient of determination were performed under different amounts of samples. Results highlight that HDMR can be used effectively in biophysical variable estimation for not only reducing computational cost but also for providing a robust regression.