Weakly non-linear waves in a tapered elastic tube filled with an inviscid fluid

Bakirtas I. , DEMİRAY H.

INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, vol.40, no.6, pp.785-793, 2005 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 40 Issue: 6
  • Publication Date: 2005
  • Doi Number: 10.1016/j.ijnonlinmec.2004.03.003
  • Page Numbers: pp.785-793


In the present work, treating the artery as a tapered, thin walled, long and circularly conical prestressed elastic tube and using the longwave approximation, we have studied the propagation of weakly non-linear waves in such a fluid-filled elastic tube by employing the reductive perturbation method. By considering the blood as an incompressible inviscid fluid, the evolution equation is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equation admits a solitary wave-type solution with variable wave speed. It is observed that, the wave speed decreases with distance for positive tapering while it increases for negative tapering. It is further observed that, the progressive wave profile for expanding tubes (a > 0) becomes more steepened whereas for narrowing tubes (a < 0) it becomes more flattened. (c) 2004 Elsevier Ltd. All rights reserved.