Emulsion electrospinning of zein nanofibers with carotenoid microemulsion: Optimization, characterization and fortification

Creative Commons License

Altay F.

FOOD CHEMISTRY, vol.430, no.137005, pp.1-15, 2024 (SCI-Expanded)

  • Publication Type: Article / Article
  • Volume: 430 Issue: 137005
  • Publication Date: 2024
  • Journal Name: FOOD CHEMISTRY
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Food Science & Technology Abstracts, Metadex, Veterinary Science Database, Civil Engineering Abstracts
  • Page Numbers: pp.1-15
  • Istanbul Technical University Affiliated: Yes


In this study, carotenoid microemulsion was encapsulated in zein nanofibers via emulsion electrospinning. Optimization study was applied to determine optimum parameters by response surface methodology. The voltage, flow rate and distance as optimum conditions were determined as 23 kV, 1.7 mL/h and 12.75 cm, respectively. Lycopene, β-carotene, encapsulation efficiency, encapsulation yield and zeta potential of zein nanofibers in optimum conditions were estimated as 4.054 mg/kg, 0.649 mg/kg, 77.78%, 41.76% and − 29.73 mV, respectively. The addition of microemulsion affected nanofibers diameter and morphologies. Diffusion coefficient of zein nanofibers decreased with addition of microemulsion under optimum conditions. The electrospinning improved thermal stability of microemulsion. The carotenoid microemulsion could be entrapped into the zein fibers according to ATR–FTIR spectrum. Model foods were fortificated with zein nanofibers. The addition of nanofibers changed color of the foods during the storage. Carotenoid compounds were more stable in nanofibers followed by olive oil, milk and water.