GEOLOGY AND CONDITIONS OF FORMATION OF THE ZEOLITE-BEARING DEPOSITS SOUTHEAST OF ANKARA (CENTRAL TURKEY)


Karakaya M. C., KARAKAYA N., Yavuz F.

CLAYS AND CLAY MINERALS, cilt.63, ss.85-109, 2015 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 63
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1346/ccmn.2015.0630202
  • Dergi Adı: CLAYS AND CLAY MINERALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.85-109
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

The pyroclastic sediments studied here contained varied amounts of zeolite and were formed in the saline alkaline Tuzgolii Basin following the alteration of dacitic volcanic materials during the Early to Late Miocene. The present study focused on the geological-geochemical properties of the zeolites and describes their formation. Mineralogical and chemical compositions were determined by X-ray diffraction, scanning electron microscopy, optical microscopy, and inductively coupled plasma mass spectrometry. Results indicated that the zeolitic tuffs consisted mainly of heulandite/clinoptilolite (Hul/Cpt), chabazite, erionite, and analcime associated with smectite. Smectite, calcite, and dolomite are abundant in the clay and carbonate layers which alternate with the zeolitic tuffs. K-feldspar, gypsum, and hexahydrite (MgSO4 center dot 6H(2)O) were also found in some altered tuffs and clay-marl layers as accessory minerals. The zeolite and other authigenic minerals showed weak stratigraphic zonation. Some vitric tuff layers contained no zeolite minerals and others were found to consist of almost pure Hul/Cpt and chabazite layers with economic potential. The rare earth elements (REE), large ion lithophile elements (LILE), and high-field strength elements (HFSE) in the Hul/Cpt-rich tuffs and vitric tuffs were enriched or depleted relative to the precursor rock, while many major elements were slightly or significantly depleted in all zeolitic tuffs. The amounts of REE in the chabazite- and erionite-rich tuffs were generally smaller than those in the precursor rock. The middle and heavy REE (MREE and HREE, respectively) were abundant in the Hull Cpt-rich tuffs, tuffs, and smectitic bentonites. Chondrite-normalized REE values of the sample groups are characterized by sub-parallel patterns with enrichment in LREE relative to HREE. The mineral assemblages and geological setting indicated that zeolite diagenesis occurred in a saline-alkaline basin. The delta O-18 and delta D compositions of the Hul/Cpt, chabazite, and smectite indicated that the minerals formed at low to moderate temperatures and that some of the zeolitization occurred due to diagenetic alteration under closed-system conditions that varied according to the nature of the basin and with the composition and physical properties of the volcanic materials.