Effect of nanoboehmite/poly(ethylene glycol) on the performance and physiochemical attributes EPVC nano-composite membranes in protein separation


Farjami M., Vatanpour Sargheın V., Moghadassi A.

CHEMICAL ENGINEERING RESEARCH & DESIGN, cilt.156, ss.371-383, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 156
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.cherd.2020.02.009
  • Dergi Adı: CHEMICAL ENGINEERING RESEARCH & DESIGN
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, Greenfile, INSPEC, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.371-383
  • Anahtar Kelimeler: Nano-composite, Poly(vinyl chloride), Ultrafiltration membrane, Nanoboehmite particles, Poly(ethylene glycol), PES ULTRAFILTRATION MEMBRANES, MIXED MATRIX MEMBRANES, ANTIFOULING PROPERTIES, POLYETHYLENE-GLYCOL, OSMOSIS MEMBRANES, MOLECULAR-WEIGHT, PHASE INVERSION, NANOPARTICLES, IMPROVEMENT, MORPHOLOGY
  • İstanbul Teknik Üniversitesi Adresli: Hayır

Özet

The synergistic effect of nanoboehmite particles and various amounts of poly(ethylene glycol) (PEG 4000, 0-4 wt.%) as a pore-former agent on the characteristics, permeability and fouling resistance ability of the nanoboehmite/EPVC blended membranes has been investigated. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX), atomic force microscopy (AFM) and water contact angle analyses were utilized to examine the morphology, surface roughness, nanoboehmite dispersion and surface hydrophilicity, respectively. By increasing the PEG content in the EPVC dope solution, hydrophilicity, porosity and pores diameter improved, leading to the performance promotion of the membranes. The pure water flux (PWF), flux recovery ratio (FRR) and bovine serum albumin (BSA) flux of the nanoboehmite/EPVC composite membrane improved by enhancing the PEG loading up to 2 wt.% and then they dropped at higher content of it. Anti-fouling ability of the mixed-matrix nanoboehmite/EPVC composite membrane including 2 wt.% of PEG had a dramatic growth (68.3%) relative to the pristine EPVC membrane. Moreover, all the membranes were able to reject BSA proteins more than 98%. The obtained results displayed that the influence of PEG concentration enhancement on the characteristics and efficiency of the EPVC and EPVC/nano-composite membrane was different. The addition of various amounts of PEG to the nano-composite membranes matrix has not unfavorably influenced the amount of BSA rejection and membrane structure. (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.