Combustion reactivity estimation parameters of biomass compared with lignite based on thermogravimetric analysis


Bilkic B., Haykiri-Acma H., Yaman S.

Energy Sources, Part A: Recovery, Utilization and Environmental Effects, cilt.45, sa.1, ss.370-383, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1080/15567036.2020.1851326
  • Dergi Adı: Energy Sources, Part A: Recovery, Utilization and Environmental Effects
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, CAB Abstracts, Communication Abstracts, Compendex, Computer & Applied Sciences, Environment Index, Greenfile, INSPEC, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.370-383
  • Anahtar Kelimeler: Combustionreactivity, biomass, lignite, thermogravimetry, MUNICIPAL SOLID-WASTE, CO-GASIFICATION, BITUMINOUS COAL, PULVERIZED COAL, SEWAGE-SLUDGE, KINETICS, BEHAVIOR, COCOMBUSTION, PYROLYSIS, SYNERGY
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

Combustion reactivity of biomass (Robinia Pseudoacacia) was compared with lignite’s reactivity using various parameters (group A) based on thermal analysis data including ignition temperature (Ti), burning rate (dw/dt), burnout temperature (Tb), heat-flow (H), weights/temperatures/times, etc., and some calculated parameters (Group B) such as conversions or indices of reactivity/combustion performance [mean combustion reactivity (Rm), time-based reactivity (Rt), reactivity normalized to initial sample weight (Rw), ignition index (Di), comprehensive combustion index (S), burnout performance index (Db), combustion index (Hf), and combustion stability indices (Dcs, Dw)]. Although the conversion yields as well as Rt or Rw pointed out that biomass was more reactive than lignite, some reactivity parameters such as the Ti, temperature/time at 5% conversion, the temperature of maximum heat flow implied that lignite’s reactivity was higher probably due to catalytic effects of minerals. Therefore, a comparison of reactivity considering only the Group A parameters especially for low temperatures can lead to misconception.