NEW CONSERVATION FORMS AND LIE ALGEBRAS OF ERMAKOV-PINNEY EQUATION


Orhan O. , Özer T.

DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, cilt.11, sa.4, ss.735-746, 2018 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 11 Konu: 4
  • Basım Tarihi: 2018
  • Doi Numarası: 10.3934/dcdss.2018046
  • Dergi Adı: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S
  • Sayfa Sayıları: ss.735-746

Özet

In this study, we investigate first integrals and exact solutions of the Ermakov-Pinney equation. Firstly, the Lagrangian for the equation is constructed and then the determining equations are obtained based on the Lagrangian approach. Noether symmetry classification is implemented, the first integrals, conservation laws are obtained and classified. This classification includes Noether symmetries and first integrals with respect to different choices of external potential function. Furthermore, the time independent integrals and analytical solutions are obtained by using the modified Prelle-Singer procedure as a different approach. Additionally, for the investigation of conservation laws of the equation, we present the mathematical connections between the lambda-symmetries, Lie point symmetries and the modified Prelle-Singer procedure. Finally, new Lagrangian and Hamiltonian forms of the equation are determined.