Signal modelling and hidden Markov models for driving manoeuvre recognition and driver fault diagnosis in an urban road scenario


Boyraz P. , Acar M., Kerr D.

IEEE Intelligent Vehicles Symposium, İstanbul, Türkiye, 13 - 15 Haziran 2007, ss.717-722 identifier identifier

  • Basıldığı Şehir: İstanbul
  • Basıldığı Ülke: Türkiye
  • Sayfa Sayıları: ss.717-722

Özet

Hidden Markov models (HMM) are used to identify a vehicle's manoeuvre sequence and its appropriateness for a given urban road driving situation. One of the novel aspects of this work has been the development of an efficient signal modelling approach to form a context-aware, flexible system which proved to respond well in urban road scenarios, especially in situations where the driver is likely to have an accident due to impaired performance. Another contribution has been to clarify how HMMs can be used not just to recognize vehicle manoeuvres but also to distinguish an impaired driver from a normal one in complex driving contexts. The system has worked well on simulator data and is about to be implemented in the real conditions of an urban trajectory.