Poly(silyl ether)s (silyl ether copolymers) via hydrosilylation of carbonyl compounds

Lüleburgaz S., Tunca Ü., Durmaz H.

Polymer Chemistry, vol.14, no.25, pp.2949-2957, 2023 (SCI-Expanded) identifier

  • Publication Type: Article / Review
  • Volume: 14 Issue: 25
  • Publication Date: 2023
  • Doi Number: 10.1039/d3py00365e
  • Journal Name: Polymer Chemistry
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Biotechnology Research Abstracts, Chemical Abstracts Core, Chimica, Compendex, INSPEC
  • Page Numbers: pp.2949-2957
  • Istanbul Technical University Affiliated: Yes


Hydrosilylation of carbonyl compounds gives the corresponding silyl ethers in the presence of various catalysts. Previously, transition metals and metal halides, such as Ni, NiCl2, ZnCl2, and H2PtCl6, were efficiently used for the hydrosilylation of carbonyls. The hydrosilylation strategy using dicarbonyls (diketones and dialdehydes) or hydroxy ketones with dihydrosilanes was then implemented in polymer production to afford the synthesis of poly(silyl ether)s (PSE)s. The first preparation of PSEs by the Weber group used aromatic α,ω-dicarbonyl, and dihydrosilane catalyzed by transition metal complexes, expensive/low abundance ruthenium, and rhodium, whereas nowadays, inexpensive/high abundance catalysts (Mn, Zn, and Cu) and metal-free catalyst (tris(pentafluorophenyl)borane (B(C6F5)3)) have attracted much interest in the synthetic approach toward PSEs. Furthermore, the metal-free catalysts utilized in the hydrosilylation of carbonyls have recently found practical applications in polymer chemistry. Moreover, the chiral PSEs developed by the Zhou group have promising applications in asymmetric catalysis and chiral separation as chiral stationary phases. Particularly, this review focuses on the synthesis of PSEs through various dicarbonyls (or hydroxyl carbonyls) and disilanes. We excluded papers regarding methods involving the polycondensation of diols with dichlorosilanes, diaminosilanes, or dialkoxysilanes and ring-opening polymerization (ROP) of cyclic carbosiloxane.