Thermodynamic Optimization of Irreversible Radiation-Driven Power Plants

Sahin A. Z., Yilbas B. S., Ayar T.

JOURNAL OF ENERGY ENGINEERING, vol.139, no.3, pp.207-213, 2013 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 139 Issue: 3
  • Publication Date: 2013
  • Doi Number: 10.1061/(asce)ey.1943-7897.0000110
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.207-213
  • Keywords: Power plant, Efficiency, Power maximization, Irreversibility, OPTIMUM OPERATING-CONDITIONS, EFFICIENCY, ENGINE
  • Istanbul Technical University Affiliated: No


A second-law thermodynamic analysis is carried out for a solar-driven power plant subjected to radiation and convection heat transfer. The collective role of radiation and convection modes of heat transfer is investigated. Heat transfer from a hot reservoir is assumed to be radiation dominated, whereas convection heat transfer is assumed to be the primary mode of heat transfer to a low temperature reservoir. The irreversibilities resulting from these finite rates of heat transfer are considered in determining the limits of efficiency and power generation that are discussed through varying process parameters. The upper limit is found to be a function of both the functional temperature dependence and of heat transfer and relevant system parameters. (C) 2013 American Society of Civil Engineers.