On Convex Functions with Complex Order Through Bounded Boundary Rotation


Aydoğan S. M., Sakar F. M.

Mathematics in Computer Science, vol.13, no.3, pp.433-439, 2019 (Scopus) identifier identifier

  • Publication Type: Article / Article
  • Volume: 13 Issue: 3
  • Publication Date: 2019
  • Doi Number: 10.1007/s11786-019-00405-8
  • Journal Name: Mathematics in Computer Science
  • Journal Indexes: Scopus
  • Page Numbers: pp.433-439
  • Keywords: Analytic function, Convex function, Radius of starlikeness, Coefficient estimates
  • Istanbul Technical University Affiliated: Yes

Abstract

Let F be the class of functions f(z)=z+a2z2+&#x22EF;" role="presentation" >f(z)=z+a2z2+ which are analytic in D={z:|z|&lt;1}" role="presentation" >D={z:|z|<1} and satisfies the condition

1+1bzf&#x2033;(z)f&#x2032;(z)=pt(z),(b&#x2260;0,b&#x2208;C,z&#x2208;D)" role="presentation" >1+1bzf(z)f(z)=pt(z),(b0,bC,zD)

where pt(z)=(t4+12)p1(z)&#x2212;(t4&#x2212;12)p2(z)" role="presentation" >pt(z)=(t4+12)p1(z)(t412)p2(z)t&#x2265;2,p1(z),p2(z)&#x2208;P" role="presentation" >t2,p1(z),p2(z)PP" role="presentation" >P is the class of analytic functions with the positive real part (Caratheodory class) then this function will be called convex function by means of bounded boundary rotation and denoted by K(tb). In this present paper, we will introduce this class and its some properties.