Time series analysis of InSAR data: Methods and trends


Osmanoglu B., Sunar F. , WDOWINSKI S., CABRAL-CANO E.

ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, cilt.115, ss.90-102, 2016 (SCI İndekslerine Giren Dergi) identifier

  • Cilt numarası: 115
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1016/j.isprsjprs.2015.10.003
  • Dergi Adı: ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
  • Sayfa Sayıları: ss.90-102

Özet

Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal "unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City. (C) 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.