Investigating and predicting spatiotemporal variations in vegetation cover in transitional climate zone: a case study of Gansu (China)


Creative Commons License

He Q., Chun K. P., Dieppois B., Chen L., Fan P. Y., Toker E., ...Daha Fazla

THEORETICAL AND APPLIED CLIMATOLOGY, cilt.150, sa.1-2, ss.283-307, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 150 Sayı: 1-2
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1007/s00704-022-04140-2
  • Dergi Adı: THEORETICAL AND APPLIED CLIMATOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, IBZ Online, PASCAL, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Environment Index, Geobase, Index Islamicus, INSPEC, Pollution Abstracts, Veterinary Science Database
  • Sayfa Sayıları: ss.283-307
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

Vegetation ecosystems are sensitive to large-scale climate variability in climate transition zones. As a representative transitional climate zone in Northwest China, Gansu is characterized by a sharp climate and vegetation gradient. In this study, the spatiotemporal variations of vegetation over Gansu are characterized using the satellite-based normalized difference vegetation index (NDVI) observations during 2000-2020. Results demonstrate that a significant greening trend in vegetation over Gansu is positively linked with large-scale climate factors through modulating the water and energy dynamics. As a climate transition zone, the northern water-limited and southern energy-limited regions of Gansu are affected by water and energy dynamics, differently. In the water-limited region, a weakening Asian monsoon along with colder Central Pacific (CP) and warmer North Pacific (NP) Oceans enhances prevailing westerlies which bring more atmospheric moisture. The enhanced atmospheric moisture and rising temperature promote the local vegetation growth. In contrast, large-scale climate variations suppress the southwest monsoon moisture fluxes and reduce precipitation in southern energy-limited regions. In these energy-limited regions, temperature has more effects on vegetation growth than precipitation. Therefore, the greenness of vegetation is because of more available energy from higher temperatures despite overall drying conditions in the region. Based on the above mechanism, future scenarios for climate impacts on vegetation cover over Gansu region are developed based on the two latest generation from coupled climate models (Coupled Model Intercomparison Project Phase 5 and Phase 6; CMIP5 and CMIP6). In the near-term future (2021-2039), the vegetation is likely to increase due to rising temperature. However, the vegetation is expected to decrease in a long-term future (2080-2099) when the energy-limited regions become water-limited due to increasing regional temperatures and lowering atmospheric moisture flux. This study reveals an increasing desertification risk over Gansu. Similar investigations will be valuable in climate transition regions worldwide to explore how large-scale climate variability affects local ecological services under different future climate scenarios.