Estimates of seismic potential in the Marmara Sea region from block models of secular deformation constrained by global positioning system measurements


Meade B., Hager B., McClusky S., Reilinger R., Ergintav S., Lenk O., ...Daha Fazla

BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, cilt.92, sa.1, ss.208-215, 2002 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 92 Sayı: 1
  • Basım Tarihi: 2002
  • Doi Numarası: 10.1785/0120000837
  • Dergi Adı: BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.208-215
  • İstanbul Teknik Üniversitesi Adresli: Hayır

Özet

We model the geodetically observed secular velocity field in northwestern Turkey with a block model that accounts for recoverable elastic-strain accumulation. The block model allows us to estimate internally consistent fault slip rates and locking depths. The northern strand of the North Anatolian fault zone (NAFZ) carries approximately four times as much right-lateral motion (similar to24 mm/yr) as does the southern strand. In the Marmara Sea region, the data show strain accumulation to be highly localized. We find that a straight fault geometry with a shallow locking depth of 6-7 km fits the observed Global Positioning System velocities better than does a stepped fault geometry that follows the northern and eastern edges of the sea. This shallow locking depth suggests that the moment release associated with an earthquake on these faults should be smaller, by a factor of 2.3, than previously inferred assuming a locking depth of 15 km.