EXPERIMENTAL VALIDATION OF LMTD METHOD FOR MICROSCALE HEAT TRANSFER


Creative Commons License

PARLAK N., Gür M., ENGİN T., KÜÇÜK H.

JOURNAL OF THERMAL ENGINEERING, cilt.3, sa.2, ss.1181-1195, 2017 (ESCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 3 Sayı: 2
  • Basım Tarihi: 2017
  • Doi Numarası: 10.18186/thermal.298619
  • Dergi Adı: JOURNAL OF THERMAL ENGINEERING
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.1181-1195
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

The single phase fluid flow and heat transfer characteristic has been investigated experimentally. Experiments were conducted to cover transition zone for the Reynolds numbers ranging from 100 to 4800 by fused silica and stainless steel microtubes having diameters of 103-180 mu m. The applicability of the Logarithmic Mean Temperature Difference (LMTD) method was revealed and an experimental method was developed to calculate the heat transfer coefficient. Moreover the scaling effects in micro scale such as axial conduction, viscous heating and entrance effects were discussed. The heat transfer coefficients were compared with data obtained by the correlations available in the literature in the study. The Nusselt numbers of microtube flows do not accord with the conventional results when the Reynolds number was lower than 1000. After that, the Nusselt number approaches the conventional theory prediction. On the aspect of fluid characteristics, the friction factor was well predicted with conventional theory and the conventional friction prediction was valid for water flow through microtube with a relative surface roughness less than about 4 %.