COLOR VIDEO SEGMENTATION USING FUZZY C-MEAN CLUSTERING WITH SPATIAL INFORMATION


Jaffar M. A. , Ahmed B., Naveed N., Hussain A., Mirza A. M.

8th WSEAS Int Conference on Signal Processing/3rd WSEAS Int Symposium on Wavelets Theory and Applicat in Appl Math, Signal Proc and Modern Sci, İstanbul, Türkiye, 30 Mayıs - 01 Haziran 2009, ss.23-26 identifier

  • Basıldığı Şehir: İstanbul
  • Basıldığı Ülke: Türkiye
  • Sayfa Sayıları: ss.23-26

Özet

Video segmentation can be considered as a clustering process that classifies one video succession into several objects. Spatial information enhances the quality of clustering which is not utilized in the conventional FCM. Normally fuzzy c-mean (FCM) algorithm is not used for color video segmentation and it is not robust against noise. In this paper, we presented a modified version of fuzzy c-means (FCM) algorithm that incorporates spatial information into the membership function for clustering of color videos. We used HSV model for decomposition of color video and then FCM is applied separately on each component of HSV model. For optimal clustering, grayscale image is used. Additionally, spatial information is incorporated in each model separately. The spatial function is the summation of the membership function in the neighborhood of each pixel under consideration. The advantages of this new method are: (a) it yields regions more homogeneous than those of other methods for color videos; (b) it reduces the Spurious blobs; and (c) it removes noisy spots. It is less sensitive to noise as compared with other techniques. This technique is a powerful method for noisy color video segmentation and works for both single and multiple-feature data with spatial information.