Aeronautical Networks for In-Flight Connectivity: A Tutorial of the State-of-the-Art and Survey of Research Challenges


Creative Commons License

Bilen T., Ahmadi H., Canberk B., Duong T. Q.

IEEE ACCESS, vol.10, pp.20053-20079, 2022 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 10
  • Publication Date: 2022
  • Doi Number: 10.1109/access.2022.3151658
  • Journal Name: IEEE ACCESS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, INSPEC, Directory of Open Access Journals
  • Page Numbers: pp.20053-20079
  • Keywords: Satellite broadcasting, Satellites, Aircraft, Routing protocols, Low earth orbit satellites, Internet, Organizations, Aeronautical networks, in-flight connectivity, aeronautical ad-hoc networks, air-to-ground networks, satellite connectivity, AD-HOC NETWORKS, TRANSPORT PROTOCOL, SATELLITE, MANAGEMENT, LINK, PERFORMANCE, ACCESS, BAND
  • Istanbul Technical University Affiliated: Yes

Abstract

The aeronautical networks attract the attention of both industry and academia since Internet access during flights turns to the crucial demand from luxury with the evolving technology. This In-Flight Connectivity (IFC) necessity is currently dominated by the satellite connectivity and Air-to-Ground (A2G) network solutions. However, the high installation/equipment cost and latency of the satellite connectivity reduce its efficiency. The A2G networks are utilized through the 4G/5G ground stations deployed on terrestrial areas to solve these satellites' problems. This terrestrial deployment reduces the coverage area of A2G networks, especially for remote flights over the ocean. The Aeronautical Ad-hoc Networks (AANETs) are designed to provide IFC while solving the primary defects of dominating solutions. The AANET is an entirely novel solution under the vehicular networks since it consists of aircraft with ultra-dynamic and unstructured characteristics. These characteristics separate it from the less dynamic Flying Ad-Hoc Networks (FANETs). Therefore, the environmental and mobility effects cause specific challenges for AANETs. This article presents a holistic review of these open AANET challenges by investigating them in data link, network, and transport layers. Before giving the details of these challenges, this article explores the state-of-the-art literature about satellite and A2G networks for IFC. We then give our specific interest to the AANET by investigating its particular characteristics and open research challenges. The main starting point of this study is that there is a lack of compact research on this exciting topic, although IFC is an inevitable need for the aeronautical industry. Also, the AANET could be underlined by giving all state-of-the-art about the dominating IFC solutions. Therefore, this is the first work exploring the state-of-the-art for all the existing aeronautical networking technologies under a single comprehensive survey by deeply analyzing specific characteristics and open research challenges of AANETs. Additionally, the AANET is a novel topic and should be separately investigated from the FANETs as given in current literature.