Poly(p-phenylene) with Poly(ethylene glycol) Chains and Amino Groups as a Functional Platform for Controlled Drug Release and Radiotherapy


Guler B., Akbulut H., Barlas F. B., GEYİK C., ODACI DEMİRKOL D., Senisik A. M., ...Daha Fazla

MACROMOLECULAR BIOSCIENCE, cilt.16, sa.5, ss.730-737, 2016 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 16 Sayı: 5
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1002/mabi.201500384
  • Dergi Adı: MACROMOLECULAR BIOSCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.730-737
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

Conventional cancer treatments such as chemotherapy, radiotherapy, or combination of these two result in side effects, which lower the quality of life of the patients. To overcome problems with these methods, altering the drug properties by conjugating them to carrier polymers has emerged. Such polymeric carriers also hold the potential to make tumor cells more sensitive to radiation therapy. Herein, poly(p-phenylene) (PPP) polymer with poly(ethylene glycol) (PEG) chains and primary amino groups (PPP-NH2-g-PEG) is synthesized and conjugated with anticancer drug Doxorubicin (DOX). pH dependent drug release experiments are performed at pH 5.3 and pH 7.4, respectively. Cell viability studies on human cervix adenocarcinoma cells show that lower doses of DOX inhibit cell proliferation when conjugated with nontoxic doses of PPP-NH2-g-PEG polymer. Additionally, PPP-NH2-g-PEG/Cys/DOX bioconjugate significantly increases radiosensitive properties of DOX. It is possible to use lower doses of DOX when conjugated to PPP-NH2-g-PEG in combination with radiotherapy.