New phthalonitrile/metal phthalocyanine-gold nanoparticle conjugates for biological applications


Aftab J., Farajzadeh N., Yenilmez H. Y., ÖZDEMİR S., GONCA S., Altuntas Bayir Z.

DALTON TRANSACTIONS, cilt.51, ss.4466-4476, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 51
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1039/d2dt00041e
  • Dergi Adı: DALTON TRANSACTIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aquatic Science & Fisheries Abstracts (ASFA), Chimica, Communication Abstracts, Compendex, EMBASE, MEDLINE
  • Sayfa Sayıları: ss.4466-4476
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

The emergence of nanoscience and its effect on the development of diverse scientific fields, particularly materials chemistry, are well known today. In this study, a new di-substituted phthalonitrile derivative, namely 4,5-bis((4-(dimethylamino)phenyl)ethynyl)phthalonitrile (1), and its octa-substituted metal phthalocyanines {M = Co (2), Zn (3)} were prepared. All the newly synthesized compounds were characterized using a number of spectroscopic approaches, including FT-IR, mass, NMR, and UV-vis spectroscopy. The resultant compounds modified the surface of the gold nanoparticles (NG-1-3). Characterization of the newly synthesized conjugates was carried out by transmission electron microscopy. The antioxidant activity of compounds 1-3, NG-1-3, and NG was evaluated using the DPPH scavenging process and the highest radical scavenging activity was obtained with compounds 1, NG-1, 2, and NG-2 (100%). The antimicrobial activity of compounds 1-3, NG-1-3, and NG was studied using a microdilution assay and the most effective antimicrobial activity was obtained for NG-3 against all the tested microorganisms. The newly synthesized compounds demonstrated high DNA cleavage activity. Compounds 1-3, NG-1-3, and NG significantly inhibited the microbial cell viability of E. coli and exhibited perfect antimicrobial photodynamic therapeutic activity with 100% inhibition after 20 min LED irradiation. Besides, the biofilm inhibition activity of compounds 1-3, NG-1-3, and NG on the growth of S. aureus and P. aeruginosa were examined and compounds 1-3 and NG-1-3, especially NG-1-3, displayed high biofilm inhibition activities.