Exfoliated black phosphorous-mediated CuAAC chemistry for organic and macromolecular synthesis under white LED and near-IR irradiation


Kocaarslan A., Eroglu Z., Metin O., Yağcı Y.

BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, cilt.17, ss.2477-2487, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17
  • Basım Tarihi: 2021
  • Doi Numarası: 10.3762/bjoc.17.164
  • Dergi Adı: BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, Chemical Abstracts Core, Directory of Open Access Journals
  • Sayfa Sayıları: ss.2477-2487
  • Anahtar Kelimeler: black phosphorus, click chemistry, heterogeneous photocatalyst, near infrared, phosphorene, GRAPHITIC CARBON NITRIDE, CLICK CHEMISTRY, 1,3-DIPOLAR CYCLOADDITIONS, HETEROGENEOUS CATALYST, PHOTOPOLYMERIZATION, PHOTOCATALYST, CONSTRUCTION, LIGATION, POLYMERS, ALKYNES
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

The development of long-wavelength photoinduced copper-catalyzed azide-alkyne click (CuAAC) reaction routes is attractive for organic and polymer chemistry. In this study, we present a novel synthetic methodology for the photoinduced CuAAC reaction utilizing exfoliated two-dimensional (2D) few-layer black phosphorus nanosheets (BPNs) as photocatalysts under white LED and near-IR (NIR) light irradiation. Upon irradiation, BPNs generated excited electrons and holes on its conduction (CB) and valence band (VB), respectively. The excited electrons thus formed were then transferred to the Cu-II ions to produce active Cu-1 catalysts. The ability of BPNs to initiate the CuAAC reaction was investigated by studying the reaction between various low molar mass alkyne and azide derivatives under both white LED and NIR light irradiation. Due to its deeper penetration of NIR light, the possibility of synthesizing different macromolecular structures such as functional polymers, cross-linked networks and block copolymer has also been demonstrated. The structural and molecular properties of the intermediates and final products were evaluated by spectral and chromatographic analyses.