Toxicity evaluation of bulk and nanosheet MoS2 catalysts using battery bioassays

Arefi-Oskoui S., Khataee A., Koba Ucun O., Kobya M., Ölmez Hancı T., Arslan Alaton İ.

CHEMOSPHERE, vol.268, 2021 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 268
  • Publication Date: 2021
  • Doi Number: 10.1016/j.chemosphere.2020.128822
  • Journal Name: CHEMOSPHERE
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Istanbul Technical University Affiliated: Yes


Herein, the main aim is to study the influence of the materials' structural properties on their ecotoxicological properties. The acute toxicity of the bulk (molybdenum disulfide) MoS2 and 2D nanosheet MoS2 was investigated using organisms of four different taxonomic groups. Ultrasound-assisted liquid-phase exfoliation method was used for preparing 2D nanosheets from bulk MoS2. Bulk and nanosheet MoS2 were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analyses. The acute toxicity of the bulk and nanosheet MoS2 catalysts was evaluated with four different bioassays using the test organisms Vibrio fischeri (a marine photobacterium), Pseudokirchnerialla subcapitata (a freshwater microalga), Daphnia magna (a freshwater crustacean) and the freshwater duckweed Spirodela polyrhiza. The toxic effect of the materials depended on their structural/size features and the type/sensitivity of the test organism. Generally speaking, bulk MoS2 was more toxic than its nanosheet form. The freshwater crustacean Daphnia magna appeared to be the most suitable, easy-to-handle, and at the same time sensitive test organism for bulk and nanosheet MoS2 among the tested organisms. (C) 2020 Elsevier Ltd. All rights reserved.