Enhancing two-dimensional computational approach for vortex-induced vibrations by scaling lift force

Duranay A., Kınacı Ö. K.

OCEAN ENGINEERING, vol.217, 2020 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 217
  • Publication Date: 2020
  • Doi Number: 10.1016/j.oceaneng.2020.107620
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), Communication Abstracts, Compendex, Computer & Applied Sciences, Environment Index, Geobase, ICONDA Bibliographic, INSPEC, Metadex, Civil Engineering Abstracts
  • Keywords: Flow induced motions, 2D VIV, 3D VIV, Effect of aspect ratio, Tip flow
  • Istanbul Technical University Affiliated: Yes


Vortex-induced vibrations (VIV) are generally evaluated with relatively simpler two-dimensional (2D) methods using direct numerical simulation (DNS), large eddy simulation (LES) or RANSE-based (Reynolds-Averaged Navier-Stokes Equations) methods. Computationally, these 2D approaches have relatively lower costs which make them more suitable for such applications. However, 2D flow assumes that there are no tip-flows at both ends or no cross-flows along the moving body. Cellular shedding, which also adds three-dimensionality in VIV, is also neglected. This study proposes a simpler 2D computational approach that accounts for the three-dimensional (3D) flow for VIV. A three-dimensionality factor is introduced to the forced vibration equation which allows calibration of numerical solutions with experiments. Numerical model presented in this study is developed for practical engineering approaches and takes all three dimensional effects into account. The model is tested with two different experimental setups. The first one is with the experiments carried out at the Ata Nutku Ship Model Testing Laboratory and the second is with the experiments published in the literature. Results of this study show that as the effects of tip flow, cellular shedding and cross-flows increase, range of synchronization decreases. The other outcome of this study is that the method adopted in this paper can be used to enhance numerical simulations of vibrating bodies in fluids.