L1adaptive controller design for a tail fin controlled fixed wing unmanned aerial vehicle

Creative Commons License

Demirli A., Koç İ. M., Kurkcu B.

13th EASN International Conference on Innovation in Aviation and Space for Opening New Horizons, Salerno, Italy, 5 - 08 September 2023, vol.2716 identifier

  • Publication Type: Conference Paper / Full Text
  • Volume: 2716
  • Doi Number: 10.1088/1742-6596/2716/1/012063
  • City: Salerno
  • Country: Italy
  • Istanbul Technical University Affiliated: Yes


The aim of this study is to design L1 adaptive controller, which is one of the robust control methods that can overcome model uncertainties, disturbances and noises, for a fixed-wing unmanned aerial vehicle (UAV) with tail fin controlled. In this context, first of all, the decoupled equations of motion of the six-degrees-of-freedom system are derived for the roll, pitch and yaw channels of the UAV. Then, the performance of the controller is demonstrated by simulation results for linearized system representation. By adding parameter errors to the system in question, the feature of tracking the given angle commands are analyzed. It has been observed that the L1 adaptive control structure exhibits rapid adaptation even in presence of system uncertainties. Finally, the controller is applied to the nonlinear system and operated throughout the entire flight envelope.