Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells


ÜNAL F. A. , Ok S., Unal M., Topal S., Cellat K., ŞEN F.

JOURNAL OF MOLECULAR LIQUIDS, cilt.299, 2020 (SCI İndekslerine Giren Dergi) identifier identifier

Özet

In this paper, we present the synthesis of different metal-doped TiO2 compounds (pure TiO2, Fe doped TiO2 (FexTi1-xO2), Ni doped TiO2 (NixTi1-xO2), Zr doped TiO2 (ZrxTi1-xO2)) thin films in order to improve the performance of dye-sensitized solar cell (DSSC). Undoped TiO2 particles and Ni, Fe and Zr transition metals doped TiO2 particles were synthesized by the sol-gel method for the utilization of the anodic part of the DSSC. The cathode of the DSSC was a carbon electrode. Fluorine Doped Tin Oxide (FTO) coated electrodes on the glass surfaces and electrolyte solution containing I/I-2 was obtained a dye-sensitized solar cell. Pure TiO2 and Ni, Fe and Zr doped TiO2 nanopowders were characterized by DLS, XRD, SEM/EDX, and UV-Vis Spectroscopy. The thin films have been deposited on the glass substrate by the doctor blade method. The effect of synthesized nano-materials on the cell performance of DSSC was investigated by J-V curves. J-V characterization of solar cell module shown that the highest power conversion efficiency was the solar cell module that fabricated with 10% of Zr doped TiO2 with the short circuit current (Jsc) and the efficiency was at 0.13 mA cm(-2) and 0.020%, respectively. However, yields on the cell performance of other nanomaterials were obtained as 0.019%, 0.017% and 0.015% for pure TiO2, Fe doped TiO2, and Ni doped TiO2, respectively. (C) 2019 Elsevier B.V. All rights reserved.