Microfluidic Nonwoven-Based Device as a Potential Biosensor for Sweat Analysis


BAYSAL G., Kök F. N. , Trabzon L. , Kızıl H. , Göcek İ. , KAYAOGLU B. K.

2nd International Conference on Mechanical Design and Power Engineering (ICMDPE 2013), Beijing, Çin, 29 - 30 Kasım 2013, ss.274-276 identifier identifier

Özet

Monitoring body fluids such as sweat composition can provide useful information about the physiological status. Physiological monitoring of body fluids such as sweat with a textile-based system has the advantage of being non-invasive and easily accessible and such monitoring is beneficial to indicate information about body's physiological status. In the present study, it is aimed to design a textile-based system with non-invasive methods which can be used to monitor a sportsman's performance. A novel, disposable and wearable biochemical analytical device was designed and fabricated by patterning micro channels and reservoirs using SU-8 photoresist through photolithography technique on an absorbant bicomponent Evolon (R) nonwoven substrate. It was obtained that hydrophilic reservoirs were well defined and demarcated by hydrophobic barriers. Therefore, no liquid leakage was observed around the reservoirs which was crucial for achieving a proper enzyme immobilization and the successful detection of the color change after the simulated sweat was deposited on the hydrophilic reservoir areas. Analyte optimization studies revealed that color change became more evident with the increasing analyte concentration until 20 mM and started to decrease with further increase due to analyte inhibition. Also, on textile fabrics, color densities started to decrease after 40 mM analyte concentration.