Graph Embedding Using Constant Shift Embedding

Jouili S., Tabbone S.

20th International Conference on Pattern Recognition Conference, İstanbul, Turkey, 23 - 26 April 2010, vol.6388, pp.83-92 identifier

  • Publication Type: Conference Paper / Full Text
  • Volume: 6388
  • City: İstanbul
  • Country: Turkey
  • Page Numbers: pp.83-92
  • Istanbul Technical University Affiliated: No


In the literature, although structural representations (e.g. graph) are more powerful than feature vectors in terms of representational abilities, many robust and efficient methods for classification (unsupervised and supervised) have been developed for feature vector representations. In this paper, we propose a graph embedding technique based. on the constant shift embedding which transforms a graph to a real vector. This technique gives the abilities to perform the graph classification tasks by procedures based on feature vectors. Through a set of experiments we show that the proposed technique outperforms the classification in the original graph domain and the other graph embedding techniques.