Neuro-control of vibration for a maglev vehicle traveling at high speeds


Yau J. D.

11th WSEAS International Conference on Automatic Control, Modelling and Simulation, İstanbul, Turkey, 30 May - 01 June 2009, pp.250-251 identifier

  • Publication Type: Conference Paper / Full Text
  • City: İstanbul
  • Country: Turkey
  • Page Numbers: pp.250-251

Abstract

This paper is intended to present a neuro-PD (Proportional-Derivative) controller for tuning the dynamic response of a maglev vehicle running at high speeds around speficic accelration amplitude. The maglev vehicle IS Simulated as a rigid car body supported by a rigid magnetic bogie-set with a uniformly distributed spring-dashpot system, in which the electromagnetic force is controlled by an on-board PD controller. Considering the motion-dependent nature of electromagnetic force working in a maglev system, this Study presents an iterative approach to compute the dynamic response of the running maglev vehicle system based on the Newmark method. To determine the PD gains for a maglev vehicle traveling at various speeds, a proposed neuro-PD controller is trained using back propagation neural network (BPN) in such a way that its PD gains are correlated to the generated dataset of moving speeds and the maximum vertical accelerations of the maglev vehicle. Numerical simulations demonstrate that a trained neuro-PD controller has the ability to tune the acceleration amplitude of a running maglev vehicle within an allowable region of restricted acceleration.