Polypyrrole doped graphene nanocomposites as advanced positive electrodes for vanadium redox flow battery


GÜRSU H., Ersozoglu M. G., Sarac A. S., ŞAHİN Y.

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, cilt.33, sa.18, ss.14754-14771, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 33 Sayı: 18
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1007/s10854-022-08396-2
  • Dergi Adı: JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Chemical Abstracts Core, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.14754-14771
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

Obtaining high catalytic activity and cycling stability of electrodes play a crucial role in vanadium redox flow batteries (VRFBs). However, some limitations, such as cost and required multiple synthesis procedures force us as an alternative solution; polypyrrole-sulfur-doped graphenes (PPy-SGs) are synthesized with a user-friendly electrochemical method and applied as a positive electrode for VRFB for the first time in the literature. Polypyrrole and sulfur-doped graphenes are formed on the graphite electrodes simultaneously in a 0.001 M pyrrole and 1.0 M H2SO4 solution at room temperature by a single-step cyclic voltammetry (CV) process. The electrode surface modification parameters such as the amount of S-doping, defect, and functionality rate of polymers and graphene are controlled by changing the cycle numbers at the scanned in a specific potential range. FTIR, Raman, XPS, SEM, and CV methods show the formation of PPy and sulfur-doped graphene layers on graphite electrode surfaces. The effects of PPy-SGs were investigated in VRFB for VO+2/VO2+ redox reactions. The electrochemical measurements of the PPy-SGs are carried out by CV and electrochemical impedance spectroscopy (EIS) analysis. According to CV results, PPy-SG20 demonstrates the best performance as a positive electrode material of the VRFB. This can be attributed to the significant improvement in the electrochemical kinetics by polypyrrole decorating graphene and enhancing active sites.