Quantization of set theory and generalization of the fermion algebra


Arik M., Tekin S.

JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, cilt.35, ss.4591-4598, 2002 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 35 Konu: 21
  • Basım Tarihi: 2002
  • Doi Numarası: 10.1088/0305-4470/35/21/308
  • Dergi Adı: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
  • Sayfa Sayıları: ss.4591-4598

Özet

The quantum states of a d-dimensional fermion algebra are in one to one correspondence with the subsets of a d-element universal set. In this paper we use this set theoretical motivation to construct a one-parameter deformation of the fermion algebra and extend it to a d-dimensional generalization which is invariant under the group U(d). This discrete fermionic oscillator system is extended to the continuous case. We also show that the q-deformation of these systems is related to supercovariant q-oscillators.